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“Did you ever look at Greenland on a map?”
“I guess I have, once or twice perhaps.”
“Did you ever notice that it’s never the same size on any two maps? The size of Greenland

changes map to map. It also changes year to year. It’s very large. It’s enormous. But
sometimes it’s a little less enormous, depending on which map you’re looking at.”

“I believe it’s the largest island in the world.”
“The largest island in the world,” Marvin said. “But you don’t know anyone who’s

ever been there. And the size keeps changing. What’s more, listen to this, the location also
changes. Because if you look closely at one map and then another, Greenland seems to move.
It’s in a slightly different part of the ocean. Which is the whole juxt of my argument.”

“What’s your argument?”
“You asked so I’ll tell you. That the biggest secrets are staring us in the face and we don’t

see a thing.”

Don DeLillo, Underworld





vii

Abstract
Twists of quaternionic Kähler manifolds

by Arpan Saha

In [Hay08], Haydys showed that to any hyperkähler manifold, equipped with a
Killing field Z̃ that preserves one of its Kähler structures and rotates the other two,
one can associate a quaternionic Kähler manifold of the same dimension, which has
positive scalar curvature and also carries a Killing field Z. This HK/QK correspon-
dence was extended to indefinite hyperkähler manifolds and quaternionic Kähler
manifolds of negative scalar curvature by Alekseevsky, Cortés, and Mohaupt in
[ACM13]. It was later described by Macia and Swann in [MS14] in terms of ele-
mentary deformations and the twist construction, originally introduced by Swann
in [Swa10].

In this dissertation, we use the twist realisation of the HK/QK correspondence to
write down an elegant formula relating the Riemann curvature of the quaternionic
Kähler manifold to that of the hyperkähler manifold. In particular, the Weyl cur-
vature of the quaternionic Kähler manifold (which is of hyperkähler type) can be
interpreted as a sum of two abstract curvature tensors, one coming from the curva-
ture on the hyperkähler side of the correspondence, and one coming from a standard
abstract curvature tensor constructed out of the twist form. We furthermore use the
twist construction to show that the Lie algebra of Hamiltonian Killing fields of the
quaternionic Kähler manifold commuting with Z is at least a central extension of
the Lie algbera of Hamiltonian Killing fields on the hyperkähler side that preserve
the HK/QK data. As an application of these general results, we prove that that
the 1-loop deformation of Ferrara–Sabharwal metrics with quadratic prepotential,
obtained using the HK/QK correspondence in [Ale+15], have cohomogeneity 1 in
every dimension.

In addition to the above, we also complete the twist-based picture of the HK/QK
correspondence by identifying certain canonical twist data on the quaternionic Käh-
ler manifolds and showing that the QK/HK correspondence can be realised as the
twist of an elementary deformation of the quaternionic Kähler manifold with respect
to this twist data. More generally, we construct 1-loop deformations of quaternionic
Kähler manifolds as twists of elementary deformations of the quaternionic Kähler
manifold directly. In doing so, we prove an analogue of Macia and Swann’s theorem
in [MS14] where instead of a hyperkähler manifold, we have a quaternionic Kähler
manifold.

In order to be able to efficiently carry out these constructions, we also develop
an alternative local formulation of the twist construction which requires weaker hy-
potheses than that of Swann. The description of 1-loop deformations in terms of a
local twist map is finally used to construct geometric flow equations on the space of
quaternionic Kähler structures on an open ball.





Zusammenfassung
Twists quaternionisch-Kählerscher Mannigfaltigkeiten

von Arpan Saha

In [Hay08] zeigte Haydys, dass man jeder Hyperkählermannigfaltigkeit (HK), aus-
gestattet mit einem Killingfeld Z̃, das eine der Kählerstrukturen erhält und die an-
deren beiden rotiert, eine quaternionisch-Kählersche Mannigfaltigkeit (QK) gleicher
Dimension zuordnen kann, die positive Skalarkrümmmung hat und ebenfalls ein
Killingfeld Z trägt. Diese sogenannte HK/QK-Korrespondenz wurde von Alek-
seevsky, Cortés und Mohaupt in [ACM13] auf indefinite Hyperkählermannigfaltig-
keiten und quaternionisch-Kählersche Mannigfaltigkeiten negativer Skalarkrümm-
ung erweitert. Sie wurde später von Macia und Swann in [MS14] mithilfe von ele-
mentaren Deformationen und Swanns Twistkonstruktion [Swa10] beschrieben.

In dieser Dissertation leiten wir mithilfe Twist-Realisierung der HK/QK-Korre-
spondenz eine elegante Formel her, die die riemannsche Krümmung der quaternion-
isch-Kählerschen Mannigfaltigkeit mit der Krümmung der Hyperkählermannigfaltig-
keit in Beziehung setzt. Insbesondere lässt sich die Weylkrümmung (von Hyperkähl-
er-Typ) der quaternionisch-Kählerschen Mannigfaltigkeit als die Summe zweier ab-
strakter Krümmungstensoren interpretieren: einer, der sich aus der Krümmung der
hyperkählerschen Mannigfaltigkeit ableitet und einer, der sich aus der Twistform
konstruieren lässt. Ferner wird die Twistkonstruktion eingesetzt, um zu zeigen, dass
die Lie-Algebra der hamiltonschen Vektorfelder der quaternionisch-Kählerschen Man-
nigfaltigkeit, die mit dem Vektorfeld Z kommutieren, zumindest eine zentrale Er-
weiterung der Lie-Algebra der hamiltonschen Vektorfelder auf der hyperkähler-
schen Seite, die die HK/QK-Daten erhalten, ist. Als Anwendung dieser allgemeinen
Ergebnisse wird bewiesen, dass alle durch die HK/QK-Korrespondenz in [Ale+15]
erhaltenen 1-Schleifen-Deformationen der von quadratischen Präpotentialen herleit-
baren Ferrara–Sabharwal-Metriken in jeder Dimension Kohomogenität 1 haben.

Darüber hinaus vervollständigen wir das Twistbild der HK/QK-Korrespondenz,
indem wir gewisse Twistdaten auf den quaternionisch-Kählerschen Mannigfaltigkeit-
en identifizieren und zeigen, dass sich die QK/HK-Korrespondenz als Twist einer el-
ementaren Deformation der quaternionisch-Kählerschen Mannigfaltigkeit bezüglich
dieser Twistdaten realisieren lässt. Allgemein konstruieren wir 1-Schleifen-Deforma-
tionen von quaternionisch-Kählerschen Mannigfaltigkeiten direkt als Twists element-
arer Deformationen von quaternionisch-Kählerschen Mannigfaltigkeiten. Dabei be-
weisen wir ein Analogon des Satzes von Macia und Swann [MS14] für quaternionisch-
Kählersche Mannigfaltigkeiten statt Hyperkählermannigfaltigkeiten.

Um diese Konstruktionen effizient ausführen zu können, entwickeln wir eine
alternative lokale Formulierung der Twistkonstruktion, die unter schwächeren Vo-
raussetzungen ausführbar ist als Swanns Konstruktion. Schließlich wird die Beschrei-
bung von 1-Schleifen-Deformationen durch eine lokale Twistabbildung benutzt, um
eine geometrische Flussgleichung auf dem Raum der quaternionisch-Kählerschen
Strukturen auf einem offenen Ball zu konstruieren.





xi

Acknowledgements
First and foremost, I am deeply indebted to my supervisor Vicente Cortés for in-
troducing me to the rich world of quaternionic Kähler and hyperkähler geometry,
and for his compassionate mentorship and insights over the last four years. These
have greatly shaped my own mathematical sensibilities and intuitions, and vastly
improved my ability to articulate them.

In my attempts to understand how quaternionic Kähler and hyperkähler ge-
ometry fit into a wider mathematical and physical context, I have also immensely
benefited from conversations with Bernd Siebert and Michel van Garrel about mir-
ror symmetry; with Murad Alim about variation of Hodge structures; with Florian
Beck, Aswin Balasubramanian, Markus Röser, and Sebastian Heller about the mod-
uli spaces of Higgs bundles; and with Thomas Mohaupt about supergravity and
string theory. The 2018 summer schools Quantum fields, geometry and representation
theory in Bangalore, and Higgs bundles in mathematics and physics in Hamburg have
been particularly helpful in this regard.

I would like to express in addition my gratefulness to Diego Conti for his careful
refereeing and detailed suggestions; to Hülya Argüz for more general dissertation-
related advice; to Áron Szabó for providing invaluable feedback regarding prelim-
inary versions of parts of this dissertation and help in translating the abstract; to
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Chapter 1

Introduction

In this chapter, we summarise the results in this dissertation and situate them in a
broader mathematical context.

In Section 1.1, we review the background necessary to make sense of this work.
We first give a brief rundown of the history of classification results in quaternionic
Kähler geometry and identify the goal of explicitly describing quaternionic Kähler
metric deformations as the overarching theme. Following this, we recount work
due to Swann, Haydys, Cortés and collaborators, on top of which the results in this
dissertation are built.

Section 1.2 meanwhile collects together the main results proved in this disserta-
tion and offers condensed accounts of the arguments behind the proofs.

Finally, the appendix at the end of the chapter reviews some of the physics back-
ground relevant to quaternionic Kähler manifolds. This is to better contextualise the
recurring examples in this dissertation.

1.1 Background

1.1.1 Overarching theme

The main objects of concern in this dissertation are quaternionic Kähler manifolds. The
idea behind such manifolds may be traced back to Berger’s classification of the pos-
sible holonomy groups that may be realised by the Levi-Civita connection on Rie-
mannian manifolds.

Theorem 1.1.1 ([Ber55] Chapitre IV, Théorème 3). The holonomy of the Levi-Civita con-
nection ∇g of a complete simply connected Riemannian manifold (M, g) that is neither a
product of two Riemannian manifolds nor a symmetric space belongs to the list in Table 1.1,
where Sp(n) ¨ Sp(1) denotes the Z2 quotient of Sp(n)ˆ Sp(1) given by the identification

(id2n, id2) „ (´id2n,´id2). (1.1)

dim(M) Possible holonomies
n SO(n)

2n SU(n), U(n)
4n Sp(n), Sp(n) ¨ Sp(1)
7 G2
8 Spin(7)

TABLE 1.1: Berger’s list
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G H dim(G/H)
SU(n + 2) S(U(n)ˆU(2)) 4n
SO(n + 4) SO(n) ¨ SO(4) 4n
Sp(n + 1) Sp(n) ¨ Sp(1) 4n
E6 SU(6) ¨ SU(2) 40
E7 Spin(12) ¨ Sp(1) 64
E8 E7 ¨ Sp(1) 112
F4 Sp(3) ¨ Sp(1) 28
G2 SO(4) 8

TABLE 1.2: List of Wolf spaces of compact type G/H

Note that Berger originally included 16-dimensional manifolds with holonomy
Spin(9) in his list, but this case was later shown to be locally symmetric by Alek-
seevsky [Ale68] and independently, Brown and Gray [BG72].

The requirement that the manifold be simply connected may be dropped if we in-
stead look at the restricted holonomy groups, i.e. the group of holonomies along con-
tractible loops. Quaternionic Kähler manifolds may then be defined to be (pseudo-
)Riemannian manifolds of dimension 4n ą 4 whose restricted holonomy is con-
tained in Sp(n) ¨ Sp(1) but not in Sp(n). Note that the case n = 1 is excluded because
Sp(1) ¨Sp(1) happens to be isomorphic to SO(4), the generic case. Later in Definition
2.1.3, we will provide an alternative definition that extends to n = 1. This turns out
to coincide with (anti-)self-dual Einstein metrics of nonzero scalar curvature.

Given their occurrence on Berger’s list, the question of producing examples of
and classifying quaternionic Kähler manifolds is one of great mathematical interest.
A preliminary observation in this regard is that excluding manifolds with restricted
holonomy contained in Sp(n) amounts to excluding Ricci-flat manifolds from our
definition. It was shown by Berger in [Ber66] that quaternionic Kähler manifolds are
necessarily Einstein, so a crude way to categorise them up to isometry and overall
scaling would be by sign of the scalar curvature. We shall see that positively curved
quaternionic Kähler manifolds are very different from negatively curved ones.

The dichotomy between positively and negatively curved quaternionic Kähler
manifolds is reflected in the examples of quaternionic Kähler symmetric spaces that
Wolf had earlier constructed, building off the classification of simply connected com-
plex homogeneous contact manifolds due to Boothby.

Theorem 1.1.2 ([Boo62] Theorem 1). There is a one-to-one correspondence between simply
connected complex homogeneous contact manifolds and compact simple Lie groups.

Theorem 1.1.3 ([Wol65] Theorems 6.1, 6.7). There is a one-to-one correspondence between
compact simply connected quaternionic Kähler symmetric spaces and simply connected com-
plex homogeneous contact manifolds, and a one-to-one correspondence between noncompact
quaternionic Kähler symmetric spaces and the noncompact duals of simply connected com-
plex homogeneous contact manifolds.

The two kinds of quaternionic Kähler symmetric spaces, referred to as Wolf spaces
of compact and noncompact types, have positive and negative scalar curvatures respec-
tively. The two results taken together imply that for every compact simple Lie group
G, there is one Wolf space of compact type, namely G/H, and one of noncompact
type, namely G˚/H, where H is an isotropy subgroup and G˚ is the noncompact
dual of G. The possible pairs (G, H) are listed in Table 1.2.
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The correspondence with complex homogeneous contact manifolds is given by
realising the complex contact manifolds as CP1-bundles over the quaternionic Käh-
ler manifolds. This was generalised by Salamon in [Sal82] to arbitrary quaternionic
Kähler manifolds as the twistor correspondence, closely related to Hitchin’s generali-
sation [Hit81] of the original twistor construction on R4 due to Penrose [Pen67].

Salamon’s twistor construction has been instrumental in establishing classifica-
tion results extending those of Wolf. As mentioned above, positively and negatively
curved quaternionic Kähler manifolds behave rather differently. No examples of
complete positively curved quaternionic Kähler manifolds that are not Wolf spaces
are known at the time of writing this. In fact, what we do know is the following.

Theorem 1.1.4 ([Hit81], [FK82] Main Theorem). Any complete connected positively
curved quaternionic Kähler manifold of dimension 4, in the sense of Definition 2.1.3, is iso-
metric to either the sphere S4 or the complex projective plane CP2 equipped with the canonical
metric. That is, it is necessarily a Wolf space.

Theorem 1.1.5 ([PS91] Theorem 1.1). Any complete connected positively curved quater-
nionic Kähler manifold of dimension 8 is necessarily a Wolf space.

Theorem 1.1.6 ([LS94] Theorem 0.1). For any positive integer n, there are up to isome-
tries and rescalings only finitely many positively curved quaternionic Kähler manifolds of
dimension n.

Based on the evidence above, it has been conjectured by LeBrun and Salamon
that a complete connected positively curved quaternionic Kähler manifold of any
dimension is necessarily a Wolf space. This is considered to be one of the major
open conjectures in the field of quaternionic Kähler geometry today.

Negatively curved quaternionic Kähler manifolds, by contrast, are a lot less rigid.
For instance, using Lie theoretic techniques, Alekseevsky in [Ale75] classified quater-
nionic Kähler manifolds of negative curvature with transitive, solvable isometries
that aren’t Wolf spaces. It was pointed out by the physicists Van Proeyen and de Wit
in [WVP92] that Alekseevsky’s classification was in fact incomplete. This was fixed
by Cortés in [Cor96]. We omit the completed list of Alekseevsky spaces here since
describing it involves setting up a large number of prerequisite definitions.

More strikingly, applying the deformation theory of complex manifolds to the
twistor space, LeBrun has shown that there is an abundance of negatively curved
quaternionic Kähler manifolds that are not even homogeneous!

Theorem 1.1.7 ([LeB91] Main Theorem). The tangent space of the moduli space of unob-
structed deformations of the quaternionic hyperbolic space HHn is isomorphic to H1(Z , O(2)),
where Z is the twistor space of HHn. In particular, the moduli space of complete quater-
nionic Kähler manifolds on R4n is infinite-dimensional.

Unfortunately, extracting the quaternionic Kähler metric from the twistor space
is rather nontrivial. The central theme around which this dissertation is organised
is describing at least some of these deformations as explicitly as possible. In the
past few decades, insights from physics, in particular, supergravity and superstring
theory, have been tremendously helpful in constructing explicit examples of such
deformations. This physical context is reviewed in the appendix to this chapter.

1.1.2 Immediate context

In parallel with developments in physics, there has been a lot of progress by mathe-
maticians in translating many of the physical constructions underlying supergravity
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and superstring theory into independent geometric constructions. In particular, the
notion of 1-loop deformations, originally applicable only to the hypermultiplet mod-
uli spaces of the Type II superstring, has been since generalised to arbitrary quater-
nionic Kähler manifolds equipped with a Killing field. We provide a short account
of this progress for establishing the more immediate context for this dissertation.

In his dissertation [Swa90], Swann showed that given a quaternionic Kähler
manifold M of dimension 4n, we may construct a Cˆ-bundle M over its twistor
space Z which carries a metric with holonomy contained in Sp(n + 1). With the
additional assumption that the quaternionic Kähler manifold is Riemannian, this
bundle, referred to as the Swann bundle, is positive definite if the curvature of the
the quaternionic Kähler manifold is positive and of signature (4, 4n) (minus signs
first) if the curvature is negative. (Pseudo-)Riemannian manifolds of dimension
4(n + 1) ě 8 with holonomy contained in Sp(n + 1) are said to be hyperkähler. These
may be characterised by the existence of three different Kähler structures I1, I2, I3
satisfying the quaternionic relation

I1 ˝ I2 = I3. (1.2)

The hyperkähler metric g on the Swann bundle of a quaternionic Kähler manifold
is special in that it carries an action of Hˆ i.e. it forms a cone. Given a hyperkähler
cone, one can always quotient out this Hˆ-action to obtain a quaternionic Kähler
whose Swann bundle is the given hyperkähler cone. This operation is called the su-
perconformal quotient and involves choosing a level set of the norm of the generator
of the Rˆ scaling action and then taking the ordinary (pseudo-)Riemannian quotient
by the action of the group of unit quaternions, which is just Sp(1), on this level set.

Theorem 1.1.8 ([Swa91] Corollary 3.6). There is a one-to-one correspondence between
positively (respectively, negatively) curved Riemannian quaternionic Kähler manifolds of
dimension 4n and Riemannian (respectively, pseudo-Riemannian) hyperkähler cones of di-
mension 4(n + 1).

Building on the work of Swann, Haydys in his dissertation [Hay06] made use of
the fact that Killing fields Z on a positively curved quaternionic Kähler manifold lift
to trihamiltonian Killing fields on its (Riemannian) Swann bundle, i.e. Killing fields Z
that are Hamiltonian with respect to all three of the Kähler forms vi := g ˝ Ii of the
hyperkähler metric g. Thus, we can take a hyperkähler quotient by first restricting to
the intersection P of level sets of the three moment maps µZ

i defined by

dµZ
i = ´ιZvi, (1.3)

and then taking the Riemannian quotient of P by the Z-action on it. This yields a
hyperkähler manifold of same dimension as the original quaternionic Kähler mani-
fold. Although Kähler moment maps are not unique, there is a unique choice which
is compatible with conical structure. When the level set chosen is one on which µZ

i
don’t all vanish, this new hyperkähler manifold inherits from the Hˆ-action on the
hyperkähler cone a Killing field Z̃ which isn’t trihamiltonian but rotating, i.e. its ac-
tion preserves one of the complex structures I1, but rotates the complex structures
I2, I3 orthogonal to it into one another.

This result, applicable to positively curved quaternionic Kähler manifolds, was
generalised by Alekseevsky, Cortés, and Mohaupt in [ACM13] to include the phys-
ically more relevant negatively curved quaternionic Kähler manifolds. In the more
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general case, the resulting hyperkähler manifold of the same dimension may be
pseudo-Riemannian.

In addition to the above, Haydys, and separately Alekseevsky, Cortés, and Mo-
haupt, showed that the above construction, referred to as the QK/HK correspondence,
can be inverted. This involves a certain conification procedure that is more gener-
ally applicable to Kähler manifolds (of which hyperkähler manifolds are a special
case). There is however an ambiguity in the inverse construction, i.e. the HK/QK cor-
respondence, which originates from having to make a choice of a certain Hamiltonian
function. The resulting construction gives back not only the original quaternionic
Kähler manifold but a whole 1-parameter family of such manifolds.

Theorem 1.1.9 ([Hay08] Theorems 2.3, 2.7, [ACM13] Theorem 2). There is a correspon-
dence between 1-parameter families of quaternionic Kähler manifolds with a U(1)-action and
hyperkähler manifolds of the same dimension with a rotating U(1)-action given by hyperkäh-
ler reduction of the Swann bundle by the triholomorphic lift of the U(1)-action for a choice of
nonzero level set of the homogeneous hyperkähler moment map.

Meanwhile, Swann introduced the twist construction in order to unify and gener-
alise several differential geometric constructions arising from T-duality in physics.
The construction takes as input the following twist data on a manifold M: a vector
field Z, an integral closed 2-form ω with respect to which Z is Hamiltonian, and a
choice of Hamiltonian function f that is nowhere vanishing.

Theorem 1.1.10 ([Swa10] Propositions 2.1, 2.3). Given twist data (Z, ω, f ) such that Z
generates a U(1)-action on M, there exists a U(1)-principal bundle P Ñ M with connection
η̂ having curvature ω and fundamental vector field XP such that the lift

Ẑ + f XP (1.4)

of Z, where Ẑ is the η̂-horizontal lift of Z to P, generates a U(1)-action on P and so defines
a well-defined quotient manifold

M̃ := P/xẐ + f XPy. (1.5)

Furthermore, the η̂-horizontal lift of any Z-invariant vector field on M and the pullback of
any Z-invariant function on M to P descend to a well-defined vector field and function on
M̃ respectively.

The well-defined vector field and function on M̃ that the η̂-horizontal lift of any
Z-invariant vector field on M and the pullback of any Z-invariant function on M to
P descend to are referred to as the twists of the vector field and function on M with
respect to the twist data (Z, ω, f ). By stipulating compatibility with contractions,
this notion of twists can be extended to arbitrary tensor fields, in particular sym-
metric bilinear forms. This twist construction is moreover an involution; M̃ carries
dual twist data (Z̃, ω̃, f̃ ), twists with respect to which are the inverses of twists with
respect to (Z, ω, f ).

As it turns out, one can always choose the level sets of the moment maps µZ
i

on the hyperkähler cone M so that their intersection P, along with the connection
η̂ induced by the Levi-Civita connection ∇g, forms precisely such a U(1)-principal
bundle over the reduced hyperkähler manifold M̃ with respect to some twist data
(Z̃, ω̃H, f̃H) on it. By identifying appropriate twist data on hyperkähler manifolds
with rotating U(1)-action, Swann and Macia were able to give an account of the
HK/QK correspondence due to [ACM13] that circumvented the conification proce-
dure. For this, they defined a generalisation of the notion of conformal scaling of
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hyperkähler metrics g̃ called elementary deformation by a Killing field Z̃, whereby the
restriction of g̃ to the span of Z̃, I1Z̃, I2Z̃, I3Z̃ and the restriction of g̃ to the subspace
orthogonal to this span are rescaled by different conformal factors.

Theorem 1.1.11 ([MS14] Theorem 1). Given a hyperkähler manifold (M̃, g̃) equipped with
a triple of Kähler forms (v1, v2, v3), a Killing field Z̃, and a nowhere vanishing function f̃1
satisfying

ιZ̃v1 = ´d f̃1, LZ̃v2 = v3, LZ̃v3 = ´v2, (1.6)

the twist of the “standard hyperkähler elementary deformation”

g̃H :=
K̃
f̃1

g̃ +
K̃
f̃ 2
1

(
(ιZ̃ g̃)2 +

3
ÿ

i=1

(ιZ̃vi)
2

)
(1.7)

with respect to twist data

(Z̃, ω̃H, f̃H) := (Z̃, k̃(v1 + d ˝ ιZ̃ g̃), k̃( f̃1 + g̃(Z̃, Z̃)), (1.8)

where k̃ and K̃ are nonzero constants, is quaternionic Kähler. Moreover, these are the only
combinations of elementary deformations by Killing fields Z̃ and twists with respect to twist
data of the form (Z̃, ω̃, f̃ ) that yield quaternionic Kähler metrics.

Note that we have the freedom of adding a constant c to the Hamiltonian func-
tion f̃1; this yields the expected 1-parameter family of quaternionic Kähler metrics.

There is a natural hyperkähler metric on the cotangent bundle of an affine spe-
cial Kähler manifold. This additionally carries a natural rotating U(1)-action when
it is a conical affine special Kähler manifold forming a Cˆ-bundle over a projective
special Kähler manifold. In other words, we have precisely the data that we need
for the HK/QK correspondence! Explicit computations carried out by Alekseevsky,
Cortés, Dyckmanns, and Mohaupt in [Ale+15] showed that the 1-parameter fam-
ily of quaternionic Kähler metrics this produces consists precisely of the Ferrara–
Sabharwal metrics and their 1-loop deformations, described in equations (1.71) and
(1.75) in Section 1.B of the appendix.

Theorem 1.1.12 ([Ale+15] Corollary 1). The Ferrara–Sabharwal metrics and their 1-loop
deformations are quaternionic Kähler.

Of course, this was already expected on physical grounds (and in the case of no
deformation, explicitly proved by Ferrara and Sabharwal in [FS90]), but the com-
putation in [Ale+15] established a mathematical proof for this claim. In addition, it
motivated a general definition of 1-loop deformations applicable to any quaternionic
Kähler manifold, not just the ones arising as hypermultiplet moduli spaces of the
Type IIA superstring: the 1-loop deformation of a given quaternionic Kähler met-
ric is roughly defined to be the 1-parameter family of quaternionic Kähler metrics
which produces the same hyperkähler metric under the QK/HK correspondence.

1.2 Main results

We now outline the new contributions in this dissertation. Since chapter summaries
have been included at the beginning of every chapter, we won’t provide a break-
down of results by chapter here. Instead, we provide a holistic summary. In par-
ticular, we bring together results that are proved in different chapters but are more
naturally stated as a single theorem. The rough statements here have of course been
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cross-referenced to wherever they have been stated in detail and proved in this dis-
sertation.

A key definition introduced in this work is a local version of Swann’s twist con-
struction in [Swa10]. For this, we first need to augment the twist data (Z, ω, f ) that
Swann makes use of with some auxiliary data: an open set U such that the restriction
ω|U is exact and the choice of a 1-form η on U such that f ´ η(Z) is nowhere van-
ishing and ω|U = dη. Given this extra data, we define a local twist map twZ, f ,η in
Definition 3.1.7 to be a C8(U)-linear map of tensor fields on U which in the special
case of functions h and 1-forms α is given by

twZ, f ,η(h) = h, twZ, f ,η(α) = α´
α(Z)

f
η. (1.9)

Stipulating compatibility with tensor products and contractions then fixes the map
for all tensor fields.

This ostensibly differs from Swann’s construction in two significant ways. First
of all, the local twist map may be applied to arbitrary tensor fields on U, and not just
Z-invariant ones. Secondly, the local twist map depends nontrivially on the auxiliary
1-form η. These two facts are in fact related. An application of Moser’s trick gives
Proposition 3.3.1 which may be roughly stated as follows.

Proposition 1.2.1. When restricted to Z-invariant tensor fields in an open set around a
given point p, the local twists with respect to two different choices of auxiliary 1-forms η0 and
η1 such that f ´ η0(Z) and f ´ η1(Z) have the same sign, are related by a diffeomorphism
of local neighbourhoods of p.

Thus, in general we can expect a global twist map to be well-defined only for
Z-invariant tensor fields. In order to obtain such a map, one would need to glue
together the local twist maps on open sets UΛ equipped with auxiliary 1-forms ηΛ
using these diffeomorphisms. Theorems 3.3.9 and 3.3.10 give a necessary and suffi-
cient existence criterion for when this can be consistenly done, which in slightly less
generality may be stated as follows.

Theorem 1.2.2. If the vector field Z that is part of the twist data (Z, ω, f ) on a manifold M
induces a U(1)-action on M, then local twist maps on M may be consistently glued together
if and only if there exists a U(1)-principal bundle P Ñ M with curvature ω to which the
action of Z lifts properly.

This is essentially Swann’s construction of the twist. Globally, our local twist
construction is in fact equivalent to that of Swann. But even though we don’t get
anything new, there are a few technical advantages our approach enjoys:

(a) We get to work directly with open sets on M without having to first lift tensor
fields to P,

(b) Technical difficulties associated with ensuring properness of group actions on P
can be entirely avoided,

(c) We can work with tensor fields which are not Z-invariant to verify local proper-
ties that the twists of certain tensor fields need to satisfy.

This allows us to obtain more direct proofs of many known results in addition to
some new results such as Proposition 3.2.4 and Corollary 3.2.6. These describe how
a Lie algebra of ω-Hamiltonian vector fields, such as the algebra of ω-Hamiltonian
Killing fields, interacts with the twist.
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Proposition 1.2.3. Let (Z, ω, f ) be twist data with dual twist data

(Z̃, ω̃, f̃ ) :=
(
´

1
f

twZ, f ,η(Z),
1
f

twZ, f ,η(ω),
1
f

)
. (1.10)

If S is a Z-invariant tensor field annihilated by a Lie algebra generated by ω-Hamiltonian
vector fields va with Z-invariant Hamiltonian functions fva and structure constants Cc

ab,
then the twist of S is annihilated by the Lie algebra generated by ṽ0 := Z̃ and the twists ṽa
of

va ´
fva + 1

f
Z. (1.11)

Furthermore, ṽa are Hamiltonian with respect to ω̃ with Z̃-invariant Hamiltonian functions

f̃ṽa :=
fva + 1

f
´ 1, (1.12)

and have structure constants

C̃c
ab =

#

Cc
ab when c ‰ 0,

ω(va, vb)´ C0
ab f ´

ř

d‰0 Cd
ab( fvd + 1) when c = 0.

(1.13)

The main upshot of the local twist map is that it makes formulating the QK/HK
correspondence in terms of a twist much simpler. Recall that on the hyperkähler
side, we have a rotating Killing field which preserves only one Kähler structure I1
but rotates the other two. This complicates a global approach, but in our local formu-
lation, it becomes possible to directly construct I2 and I3 locally on the quaternionic
Kähler manifold.

In order to perform a (local) twist of a quaternionic Kähler manifold, we need to
first identify (local) twist data on it. This is carried out in Lemmata 2.2.7 and 2.2.11.
We work with the characterisation of quaternionic Kähler manifolds as special cases
of almost quaternionic Hermitian (AQH) manifolds, i.e. (pseudo-)Riemannian mani-
folds (M, g) with a distinguished rank 3 subbundle Q of Hermitian structures which,
together with the identity endomorphism field form a faithful representation of
quaternion algebra H. We also make use of the quaternionic moment map µZ, de-
fined for any Killing field Z of (M, g) and given by the explicit expression

µZ = ´
2
ν

prQ(∇
gZ) =: ‖µZ‖JZ, (1.14)

where ν is the constant reduced scalar curvature

ν =
scalg

4n(n + 2)
, (1.15)

depending on the dimension 4n of (M, g), and ∇gZ is interpeted as a (skew-self-
adjoint) endomorphism field. In other words, µZ is the Sp(1) part of the endomor-
phism field ∇gZ.

Proposition 1.2.4. Any quaternionic Kähler manifold (M, g, Q) of reduced scalar curva-
ture ν with a nowhere vanishing Killing field Z admits on an open everywhere dense sub-
manifold twist data (Z, ωQ, fQ + b) where b is some constant and ωQ and fQ are given
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by

ωQ(u, v) = ´d
(

ιZg
‖µZ‖

)
(u, v)´ νg(JZu, v) + x∇g

u JZ, JZ ˝∇g
v JZy,

fQ = ´
g(Z, Z)
‖µZ‖ ´ ν‖µZ‖.

(1.16)

Furthermore, on any contractible open set U Ď M, we can find a local oriented orthonormal
frame (J1 = JZ, J2, J3) of Q with auxiliary local twist data (U, ηQ) given by

ηQ(u) = ´
g(Z, u)
‖µZ‖ ´ xJ2,∇g

u J3y. (1.17)

With this twist data, we can then prove an analogue of Theorem 1.1.11 due to
Macia and Swann for quaternionic Kähler manifolds in place of hyperkähler manifolds,
with an appropriate generalisation of the notion of elementary deformations to AQH
manifolds.

Theorem 1.2.5. Given a quaternionic Kähler manifold (M, g, Q) of reduced scalar curva-
ture ν with a nowhere vanishing Killing field Z, the twist of its elementary deformation

1
ν‖µZ‖´ b

g|HQZK ´
fQ + b

(ν‖µZ‖´ b)2 g|HQZ (1.18)

with respect to twist data (Z, ωQ, fQ + b) is locally hyperkähler with a rotating Killing field
when b = 0 and quaternionic Kähler otherwise. In fact, these are up to an overall scaling
the QK/HK dual and 1-loop deformation with deformation parameter c = ν/4b respectively.
Moreover, the b ‰ 0 case constitutes up to an overall scaling the only combinations of
elementary deformations by Killing fields Z and twists with respect to twist data of the form
(Z, ω, f ) that produce other quaternionic Kähler metrics.

The proof of this statement is split into the proofs of Theorems 4.1.11, 5.2.1, and
5.2.4, and Propositions 4.2.7 and 4.2.10. The key idea is to reduce it to Theorem
1.1.11 using Lemma 5.1.1 describing the composition of local twists that are not dual
to each other.

Lemma 1.2.6. Let (U, Z, ω, f , η) be local twist data with dual local twist data (U, Z̃, ω̃, f̃ , η̃).
Let (U, Z̃, ω̃1, f̃ 1, η̃1) be local twist data as well. Then the composition of local twist maps

twZ̃, f̃ 1,η̃1 ˝ twZ, f ,η (1.19)

is itself a local twist map with respect to some choice of local twist data.

The local formulation of the twist gives us the following geometric flow on the
space of quaternionic Kähler structures on a contractible open set, whose solution is
shown to be the 1-loop deformation in Proposition 5.3.2. (Contractibility is not really
necessary but we assume it in order to keep the discussion straightforward.)
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Proposition 1.2.7. The “naïve 1-loop flow” defined by the system of differential equations

dgc

dc
= ´

8
ν

ηc
Q ιZc gc + 4‖µZc‖ gc ´

4
ν

gc(Zc, Zc)

‖µZc‖ gc|HQc Zc ,

dZc

dc
= ´

4
ν
( f c

Q ´ ηc
Q(Zc))Zc,

dQc

dc
= ´

4
ν
[Qc, ηc

Q b Zc],

dηc
Q

dc
= ´

4
ν

f c
Q ηc

Q.

(1.20)

defines a flow on the space of analytic quaternionic Kähler metrics (U, gc, Qc) of reduced
scalar curvature ν equipped with a nowhere vanishing Killing field Zc and a choice of 1-form
ηQ as in (1.17), that is solved by the 1-loop deformation of a quaternionic Kähler metric.

Analyticity is needed in the statement as the Cauchy–Kovaleskaya theorem only
guarantees the uniqueness of the 1-loop flow solution for partial differential equa-
tions with analytic coefficients. This geometric flow is called naïve in order to dis-
tinguish it from a reparamerised version that preserves the norm of the quaternionic
moment map (Proposition 5.3.5) and a rescaled version that interpolates between a
quaternionic Kähler manifold and its QK/HK dual (Proposition 5.3.7).

The realisations of the QK/HK and HK/QK correspondences in terms of the
twist construction is a powerful tool that enables us to use information on the sim-
pler hyperkähler side to say something about the more complicated quaternionic
Kähler side. For instance, Proposition 1.2.3 above allows us to construct Killing fields
of a quaternionic Kähler manifold using Killings fields of its QK/HK dual. Carry-
ing out similar computations for the Levi-Civita connections (Propositions 3.2.8 and
4.2.8), we can relate the Riemann curvature of any quaternionic Kähler metric with
a Killing field to the Riemann curvature of its QK/HK dual along with an abstract
curvature tensor field constructed out of the data on the hyperkähler side that we
noted in Theorem 1.1.11 above! This is accomplished in Theorem 4.2.17.

Theorem 1.2.8. Let (M, g, Q) be a quaternionic Kähler manifold that is the HK/QK dual of
a locally hyperkähler metric g̃ with associated data as in Theorem 1.1.11. Then its Riemann
curvature g ˝ Rg is the twist of

K̃
f̃1

g̃ ˝ Rg̃ +
1

8K̃

(
g̃H ? g̃H +

3
ÿ

i=1

(g̃H ˝ Ii): (g̃H ˝ Ii)

)

´
K̃
8k̃

1
f̃1 f̃H

(
ω̃H : ω̃H +

3
ÿ

i=1

(ω̃H ˝ Ii)? (ω̃H ˝ Ii)

)
,

(1.21)

with respect to the twist data (Z̃, ω̃H, f̃H).

Here ? and : denote the Kulkarni–Nomizu and Riemann products on the sym-
metric bilinear forms and 2-forms respectively. These are defined in Definitions
4.2.12 and 4.2.13, and may be thought of as projections of the tensor products of
symmetric bilinear forms and 2-forms onto the space of abstract curvature tensor
fields. In particular, as pointed out in Remark 4.2.19, this may be regarded as a re-
finement of Alekseevsky’s decomposition of the Riemann curvature of quaternionic
Kähler metrics, quoted in Theorem 2.1.12, with the hyperkähler-type quaternionic
Weyl curvature being further decomposed into a piece arising from the curvature of
the locally hyperkähler QK/HK dual and a piece arising from the twist data.
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In the case of 1-loop-deformed Ferrara–Sabharwal metrics g1cFS with prepotential
F a quadratic polynomial, the relevant hyperkähler metric g̃ is flat and things be-
come particularly simple. We can always locally choose coordinates Xa so that the
prepotential F is given by

F(z) := F(z0, . . . , zn´1) =
n´1
ÿ

a=0

z2
a, (1.22)

and the metric g1cFS becomes

g1cFS = 2K̃

 1
4ρ2

ρ + 2c
ρ + c

dρ2 +
ρ + c

ρ

n´1
ÿ

a=1

|dXa|
2

1´
řn´1

b=1 |Xb|
2
+

ˇ

ˇ

ˇ

řn´1
a=1 XadXa

ˇ

ˇ

ˇ

2

(
1´

řn´1
b=1 |Xb|

2
)2


+

1
2ρ

(
´|dζ0|

2 +
n´1
ÿ

a=1

|dζa|
2

)
+

ρ + c
ρ2

ˇ

ˇ

ˇ
dζ0 +

řn´1
a=1 Xadζa

ˇ

ˇ

ˇ

2

1´
řn´1

b=1 |Xb|
2

+
1

4ρ2
ρ + c
ρ + 2c

(
dτ

2K̃
´

n´1
ÿ

a=1

2c Im(XadXa)

1´
řn´1

b=1 |Xb|
2
+ Im

(
ζ0dζ0 ´

n´1
ÿ

a=1

ζadζa

))2
 .

(1.23)

Then using Proposition 1.2.3, we obtain the following Killing fields for g1cFS in addi-
tion to Bτ:

u+
a = Re

(
´

n´1
ÿ

b=1

XaXbBXb + BXa
´ ζ0Bζa ´ ζaBζ0

+ 2iK̃cXaBτ

)
,

v+0 =
?

2 Re(Bζ0 + iK̃ζ0Bτ), v+a =
?

2 Re(Bζa ´ iK̃ζaBτ),

u´a = Im

(
´

n´1
ÿ

b=1

XaXbBXb + BXa
´ ζ0Bζa ´ ζaBζ0

+ 2iK̃cXaBτ

)
,

v´0 =
?

2 Im(Bζ0 + iK̃ζ0Bτ), v´a =
?

2 Im(Bζa ´ iK̃ζaBτ).

(1.24)

And using Theorem 1.2.8, we may compute the curvature norm of to be g1cFS

tr(R2)

= ν2

(
n(5n + 1) + 3

(
ρ3

(ρ + 2c)3 +
(n´ 1)ρ
(ρ + 2c)

)2

+ 3
(

ρ6

(ρ + 2c)6 +
(n´ 1)ρ2

(ρ + 2c)2

))
.

(1.25)

Together, these two results give us Theorem 4.2.21.

Theorem 1.2.9. The 1-loop-deformed quadratic prepotential Ferrara–Sabharwal metrics
have cohomogeneity 1.

For the case n = 1, i.e. the case of the 1-loop-deformed universal hypermultiplet
metric g1cUH, we in fact have the full isometry group explicitly described in Proposi-
tion 2.3.6.



12 Chapter 1. Introduction

Proposition 1.2.10. The full isometry group of the 1-loop-deformed universal hypermultplet
metric g1cUH is the semidirect product of a Heisenberg group with a rotation group

Heis3(R)¸O(2) (1.26)

consisting of isometries of one of the following two forms:

(ρ, ζ, τ) ÞÑ

(
ρ, eiθ(ζ + ζ1), τ + τ1 +

2
ν

Im(ζ1ζ)

)
,

(ρ, ζ, τ) ÞÑ

(
ρ, e´iθ(ζ + ζ

1
),´τ´ τ1 ´

2
ν

Im(ζ1ζ)

)
,

(1.27)

where τ1, θ P R and ζ1 P C are arbitrary constants.

The 1-loop-deformed universal hypermultiplet metric was the subject of inves-
tigation in our earlier work [CS17], where a computation of the sectional curvature
was used to conclude that this metric is different from the family of metrics γm on
(0, 1)ˆ S3 constructed by Pedersen in [Ped86] and given in terms of $ P (0, 1) and
SU(2)-invariant 1-forms ς1, ς2, ς3 on S3 by

γm =
1

ν(1´ $2)2

(
1 + m2$2

1 + m2$4 d$2 + $2(1 + m2$2)(ς2
1 + ς2

2) +
$2(1 + m2$4)

1 + m2$2 ς2
3

)
.

(1.28)

This too is a 1-parameter family of quaternionic Kähler metrics of cohomogeneity
1. The relationship between the two families are clarified in Proposition 2.3.7 by
their identification as subfamilies of a larger family of quaternionic Kähler metrics
constructed in [Ket01], namely

ga,b,c = ´
1

2νρ2

(
bρ + 2c

aρ2 + bρ + c
dρ2 +

2(bρ + 2c)|dζ|2

(1 + a
2 |ζ|

2)2

+
aρ2 + bρ + c

bρ + 2c

(
´

ν

2
dτ +

b Im(ζ dζ)

1 + a
2 |ζ|

2

)2
 .

(1.29)

Proposition 1.2.11. The 3-parameter family of quaternionic Kähler metrics ga,b,c in (1.29)
has cohomogeneity generically 1 and reduces to the 1-loop-deformed universal hypermultiplet
metric g1cUH when a = b = 0 and c is nonzero, and to a metric isometric to the Pedersen
metrics γm restricted to an open everywhere dense submanifold of (0, 1)ˆ S3 with

m =

c

4ac
b2 ´ 1 (1.30)

when 4ac ą b2.
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Appendix

This appendix provides a digest of various facts about supergravity and string the-
ory drawn from more comprehensive sources such as Polchinski [Pol07a; Pol07b],
Cecotti [Cec09], Freedman and Van Proeyen [FVP12], and Alexandrov [Ale13]. In
particular, a mathematically precise formulation of Bagger and Witten’s result in
[BW83] regarding the correspondence between supergravity and quaternionic Käh-
ler geometry is given in Subsection 1.A. For this, we follow Dell and Smolin [DS79]
and work in the setting of graded manifolds due to Kostant [Kos77] and Batche-
lor [Bat79], slightly adapted to account for extended supersymmetry and symplectic
Majorana spinors.

1.A Supergravity and quaternionic Kähler geometry

Quaternionic Kähler manifolds naturally arise in physics in the study of supergrav-
ity models. Let us recall that gravitational theories on a manifold S have among their
dynamical field content a pseudo-Riemmanian metric hS (typically of Lorentzian
signature (1, d´ 1) for some d ą 1) and that the dynamical equations of motion are
preserved under the action of diffeomorphisms of S. The infinitesimal version of
this is that for any vector field u on S, the equations of motions are annihilated by
the Lie derivative along u.

A supergravity theory involves enhancing the Lie algebra X (S) of vector fields
to a complex Lie superalgebra parametrised by a positive integer N and stipulating
that the equations of motion be preserved under the action of a real part of the Lie
superalgebra. To make this work, we set d = 4 and fix the following ingredients:

(a) A complex vector bundle V of complex rank N , equipped with an antilinear
map JV such that J2

V = ´idV , a nondegenerate form ωV P Γ(Λ2V˚), and a con-
nection ∇V preserving these structures,

(b) A spin bundle Σ over S, which comes equipped with a Clifford action γ P Γ(TSb
End(Σ)) subject to the convention

γ(α, β) + γ(β, α) = ´2h´1
S (α, β), (1.31)

an antilinear map JΣ such that J2
Σ = ´idΣ, and a nondegenerate form ε P Γ(Λ2Σ˚),

and a spin connection ∇Σ compatible with the Levi-Civita connection ∇hS pre-
serving these structures,

(c) ∇V-parallel central charges Z P Γ(Λ2V) and Z P Γ(Λ2V˚) subject to the reality
condition

ωV ˝ JV(Z) = Z. (1.32)

The Clifford action may be used to define an involution γ(‹hS 1) on Σ and so gives an
eigendecomposition of Σ into a left-handed part, whose elements are denoted with a
subscript L, and a right-handed part, whose elements are denoted with a subscript R.
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Vector fields on S are derivations on the algebra of smooth functions on S. In
analogy with this, we consider the space Der‚K of graded derivations acting on sections
of the Z-graded bundle

K‚ = Λ‚((ΣbV)‘ (Σ˚ bV˚)). (1.33)

The Z-grading on Der‚K is given by the canonical action

Der‚K ˆ K˛ Ñ K˛+‚. (1.34)

The defining property of graded derivations is that they are C-linear and they satisfy
a graded version of the Leibniz rule i.e.

D(Ξ^Θ) = (DΞ)^Θ + (´1)deg(D)deg(Ξ)Ξ^DΘ, (1.35)

where D P Der‚K and Ξ, Θ P Γ(K‚) are assumed to be homogeneous. As claimed in
[DS79], we may make an identification

Der‚K – Γ(K‚ b (TSC ‘ K1)). (1.36)

This identification is explicitly given in terms of the action D of the right-hand side
on Θ P Γ(K‚):

D(Ξb (ξ b a))Θ = Ξ^
(

γ(∇KΘ)ξ b a)^ +
1
2

ιξb aΘ
)

,

D(Ξb (ξ b a))Θ = Ξ^
(
(γ(∇KΘ)˚ξ b a)^ +

1
2

ιξb aΘ
)

,

D(Ξb u)Θ = Ξ^∇K
u Θ,

(1.37)

where

ξ b a P Γ(ΣbV) Ă Γ(K1), Ξ P Γ(K‚),

ξ b a P Γ(Σ˚ bV˚) Ă Γ(K1), u P Γ(TSC)
(1.38)

are arbitrary sections, ∇K is the connection induced on K‚ by ∇Σ and ∇V , and Ξ^
(γ(∇KΘ)ξ b a)^ denotes the composition

Γ(K‚) ∇
K

ÝÝÑ Γ(T˚Sb K‚)
γb idK‚
ÝÝÝÝÝÑ Γ(End(Σ)b K‚)

ev(ξ)b idK‚
ÝÝÝÝÝÝÝÑ Γ(Σb K‚)

b a
ÝÝÑ Γ((ΣbV)b K‚) ^

ÝÝÑ Γ(K‚+1)
Ξ^
ÝÝÑ Γ(K‚+deg(Ξ)+1),

(1.39)

with ev(ξ) denoting the evaluation of an endomorhism field in Γ(End(Σ)) on ξ P
Γ(Σ) and the map ^ denoting full antisymmetrisation. The term Ξ^ (γ(∇KΘ)˚ξ b
a)^ is to be similarly interpreted.

We finally have all the pieces required to introduce the complex (Z2-graded) Lie
superalgebra X ‚(S, Σ, V) = X 0(S, Σ, V)‘X 1(S, Σ, V) describing local supersym-
metry transformations. As a vector space, it is given by

X 0(S, Σ, V) = Γ(K2‚
C )‘Der2‚

K ,

X 1(S, Σ, V) = Γ(K2‚+1
C )‘Der2‚+1

K ,
(1.40)

where the subscript C only serves to distinguish the “central” K‚ from any copy of K‚
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present in Der‚K under the identification (1.36). We have an action D1 of X ‚(S, Σ, V)
on K‚ given by

D1(Ξb (ξ b a))Θ = D(Ξb (ξ b a))Θ + Ξ^ (εb Z)(ξ b a)^Θ,

D1(Ξb (ξ b a))Θ = D(Ξb (ξ b a))Θ + Ξ^ (ε´1 b Z)(ξ b a)^Θ,
D1(Ξb u)Θ = D(Ξb u)Θ, D1(ΞC)Θ = ΞC ^Θ,

(1.41)

where ΞC P K‚C. Then the super Lie bracket [Ψ, Φ]X‚ of Ψ, Φ P X ‚(S, Σ, V) may
be defined in terms of a graded commutator of endomorphisms by the following
lemma.

Lemma 1.A.1. Given elements Ψ, Φ P X ‚(S, Σ, V), there is a unique element [Ψ, Φ]X‚ P

X ‚(S, Σ, V) satisfying

D1
(
[Ψ, Φ]X‚

)
= [D1(Ψ),D1(Φ)]‚. (1.42)

Proof. In general, given an element Ψ P X ‚(S, Σ, V), the operator D1(Ψ) is not a
graded derivation but a first-order graded differential operator i.e. a C-linear endomor-
phism on the space of sections Γ(K‚) of the form

Θ ÞÑ DΘ + Ξ^Θ, (1.43)

where D is a graded derivation and Ξ is a section of K‚. This decomposition of a
first-order graded differential operator L into a derivation and a wedge product is
canonical and given by

L = (L´ (L1)^) + (L1)^, (1.44)

where L1 denotes the evaluation of L on the constant section 1 P Γ(K‚). As the
operator L´ (L1)^ is a graded derivation, the identification (1.36) gives us a unique
section

ΨL P Γ(K‚ b (TSC ‘ K1)), D(ΨL) := L´ (L1)^ . (1.45)

If we additionally let ΞL P Γ(K‚) be defined as

ΞL := (D(ΨL)´D1(ΨL) + L)1, (1.46)

then any first-order graded differential operator L can be uniquely written as

L = D1(ΨL ‘ ΞL,C), (1.47)

where ΞL,C is just ΞL but interpreted as a section of the central copy K‚C Ă X ‚(S, Σ, V).
Now that we have argued that any first-order graded differential operator is

canonically the action D1 of some element of X ‚(S, Σ, V) on K‚, all the remains to
complete this proof is showing that the graded commutator of two first-order graded
differential operators is a first-order graded differential operator. This follows from
the fact that the graded commutator of two graded derivations is a graded deriva-
tion:

[D + Ξ^, D1 + Ξ1^]‚ = [D, D1]‚ + ((DΞ1)´ (´1)deg(D1)deg(Ξ)(D1Ξ))^ . (1.48)

Remark 1.A.2. The graded Lie bracket [Ψ, Φ]X‚ given by the above prescription may
be described a little more explicitly as follows. In order to do so, we make use of a
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choice of local frame teµu for TS with dual frame tθµu. In terms of such a frame, we
may write

D1(ξ b a)Θ =
ÿ

µ

(γµξ b a)^∇K
eµ

Θ +
1
2

ιξb aΘ + (εb Z)(ξ b a)^Θ

=
ÿ

µ

D1((γµξ b a)b eµ)Θ +D1((εb Z)(ξ b a)C)Θ +
1
2

ιξb aΘ,

D1(ξ b a)Θ =
ÿ

µ

(γµ˚ξ b a)^∇K
eµ

Θ +
1
2

ιξb aΘ + (ε´1 b Z)(ξ b a)^Θ

=
ÿ

µ

D1((γµ˚ξ b a)b eµ)Θ +D1((ε´1 b Z)(ξ b a)C)Θ +
1
2

ιξb aΘ,

(1.49)

where γµ denotes γ(θµ) and (εb Z)(ξ b a)C is just (εb Z)(ξ b a) but interpreted as
a section of K‚C. It will be convenient to introduce the notation

I(Ξb (ξ b a)) = Ξb (ξ b a)´
ÿ

µ

(Ξ^ (γµξ b a))b eµ ´ Ξ^ (εb Z)(ξ b a)C,

I(Ξb (ξ b a)) = Ξb (ξ b a)´
ÿ

µ

(Ξ^ (γµ˚ξ b a))b eµ ´ Ξ^ (ε´1 b Z)(ξ b a)C,

(1.50)

so that we have

Ξ^ ιξb aΘ = D1 ˝ I(Ξb (ξ b a))Θ, Ξ^ ιξb aΘ = D1 ˝ I(Ξb (ξ b a))Θ. (1.51)

Using (1.49), we now compute the graded commutators

[D1(u),D1(v)]‚Θ = D1(Luv)Θ + RK(u, v)Θ,

[D1(u),D1(ξ b a)]‚Θ = D1(∇K
u (ξ b a))Θ +

ÿ

µ

(γµξ b a)^ RK(u, eµ)Θ,

[D1(u),D1(ξ b a)]‚Θ = D1(∇K
u (ξ b a))Θ +

ÿ

µ

(γµ˚ξ b a)^ RK(u, eµ)Θ,

[D1(ξ b a),D1(ςb b)]‚Θ

=
ÿ

µ

D1((γµξ b a)b∇K
eµ
(ςb b) + (γµςb b)b∇K

eµ
(ξ b a))Θ

+D1(ε(ξ, ς)Z(a, b)C)Θ +
ÿ

µ,ν
(γµξ b a)^ (γνςb b)^ RK(eµ, eν)Θ,

[D1(ξ b a),D1(ςb b)]‚Θ

=
ÿ

µ

D1((γµ˚ξ b a)b∇K
eµ
(ςb b) + (γµ˚ςb b)b∇K

eµ
(ξ b a))Θ

+D1(ε´1(ξ, ς)Z(a, b)C)Θ +
ÿ

µ,ν
(γµ˚ξ b a)^ (γν˚ςb b)^ RK(eµ, eν)Θ,

[D1(ξ b a),D1(ςb b)]‚Θ

=
ÿ

µ

D1((γµξ b a)b∇K
eµ
(ςb b) + (γµ˚ςb b)b∇K

eµ
(ξ b a))Θ

+
ÿ

µ

D1(xγµξ, ςyxa, byeµ)Θ +
ÿ

µ,ν
(γµξ b a)^ (γνςb b)^ RK(eµ, eν)Θ,

(1.52)
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where RK is the curvature of the connection ∇K. By introducing frames tξAu and
tapu for Σ and V respectively, with respective dual frames tξAu and tapu, we may
write this as a D1-action:

RK(u, v)Θ

=
ÿ

A,p

(RK(u, v)(ξA b ap)^ ιξAb ap Θ + RK(u, v)(ξA b ap)^ ιξ Ab ap
Θ)

(1.51)
=

ÿ

A,p

D1 ˝ I((RK(u, v)(ξA b ap)b (ξA b ap) + (RK(u, v)(ξA b ap)b (ξ A b ap))Θ.

(1.53)

Any other graded commutator can now be described in terms of the ones above
using the following identities:

[Ξ^D1(Ψ), Υ^D1(Φ)]‚Θ
= Ξ^ (D1(Ψ)Υ)^D1(Φ)Θ + (D1(Φ)Ξ)^ Υ^D1(Ψ)Θ + Ξ^ Υ^ [D1(Ψ),D1(Φ)]‚,
[D1(Ψ),D1(1C)]‚Θ = 0,

(1.54)

where Ξ, Υ P Γ(K‚) and Ψ, Φ P X ‚(S, Σ, V) are arbitary elements and 1C is the
constant function 1 interpreted as a section of K‚C.

There is a real structure on X ‚(S, Σ, V) induced by the real structure (ε ˝ JΣ)b
(ωV ˝ JV) on Σ b V. We denote real part of X ‚(S, Σ, V) with respect to this real
structure as X ‚

R(S, Σ, V). The reality condition (1.32) ensures that this forms a real
Lie superalgebra.

The complex rank of the complex vector bundle ΣbV is referred to as the num-
ber of supercharges. The “spacetime” manifold S has dimension d = 4, so this is
2td/2uN = 4N . Henceforth we set N = 2, so the number of supercharges is 8.

A supergravity theory is built out of various representations of the superalgebra
X ‚(S, Σ, V), which are referred to as multiplets. To avoid wading too far into certain
subtleties that have no bearing on the statement of the main result of this section, we
will not consider here representations of the full superalgebra X ‚(S, Σ, V) but only
of the superalgebra X ‚

1 (S, Σ, V) generated by the elements in K1 Ă X ‚(S, Σ, V).
This too carries a natural real structure and we denote its real part as X ‚

1,R(S, Σ, V).
This kind of bait-and-switch is permitted as representations of X ‚(S, Σ, V) can be
built out of representations of X ‚

1 (S, Σ, V) (see, for instance, Section 5.4 of [Soh85]).
Taking into account this interchangeability, we shall henceforth refer to representa-
tions of X ‚

1 (S, Σ, V) as multiplets as well.
Any supergravity theory is a theory of gravity, so it must contain at least the

gravitational multiplet. This consists of

(a) the metric hS on S,

(b) gravitino sections ψ P Γ(T˚SC b ΣbV) and ψ P Γ(T˚SC b Σ˚ bV˚) subject to
the reality condition

(ωΣ bωV) ˝ (JΣ b JV)(ψ(u)) = ψ(u), (1.55)

(c) a graviphoton field which is a connection on a U(1)-bundle locally represented
by a 1-form AG on S with curvature 2-form FG = dAG.
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We now specify an action Q of X ‚
1 (S, Σ, V) on these fields, given by

(Q(ξ b a)hS)(u, v) =
c

´
ν

2
(xγ(ιvhS)ξ, xub a, ψyy+ xγ(ιuhS)ξ, xvb a, ψyy),

Q(ξ b a)ψL =

c

´
8
ν
∇K(ξL b a) + G´

(
1
?

2
FG ´

c

´
ν

8
xψb ψy

)
(γξR b a),

Q(ξ b a)AG =
?

2 xξ b a, ψy,
(1.56)

and other similar expressions, where ν ă 0 is a real parameter related to Newton’s
constant, and G˘ assigns to any bilinear form F P Γ(T˚SC b T˚SC) an End(ΣbV)-
valued bilinear form G˘F as follows:

G˘F = Fb idΣbV ˘
1
2
(‹hS F^)b γ(‹hS 1)b idV , (1.57)

with the wedge in the superscript denoting antisymmetrisation α b β ÞÑ α ^ β. It
may then be verified that the following Lagrangian density is invariant modulo
closed terms and equations of motion under the action Q of the real Lie superal-
gebra X ‚

R(S, Σ, V):

LSG =

(
1
ν

scalhS ´
1
4
‖FG‖2 ´

1
2
‹hS xψ^ (γ(‹hS 1) ˝ γ)^ d∇ψy

+

B

ψ, h´1
S ˝G+

(?
´ν

4
FG +

ν

16
xψb ψy

)
˝ h´1

S ψ

F)
dvolhS ,

(1.58)

where ‖¨‖ denotes the pointwise norm and d∇ is covariant exterior derivative with
respect to the connection ∇ induced on the gravitino bundle T˚Sb Σb V by ∇hS ,
∇Σ, and ∇V . This defines the pure supergravity theory, the simplest supergravity
theory possible, with the gravitational muliplet being the only field content.

To make contact with quaternionic Kähler geometry, we need to introduce an-
other kind of representation of X ‚

1 (S, Σ, V), namely a hypermuliplet. The bosonic
field content of such a multiplet consists just of 4 scalar fields, i.e. smooth functions
on the manifold S. To write down the most general Lagrangian density that can
be built out of the gravitational multiplet and hypermultiplets, it helps to think of
the scalar fields as pullbacks of coordinate functions on some other fixed (pseudo-
)Riemannian manifold (M, g) along a map ϕ : S Ñ M. Given that the metric hS is
stationary and has suitable asymptotic behaviour, it can be shown that the values
of the scalar fields approach a constant as we go towards infinity. The manifold M
may thus be thought of as a moduli space of stationary solutions to the supergravity
equations of motion, parametrised by the boundary values of the scalar fields.

In order to give the field content of a theory with n hypermultiplets we first need
to fix the following data:

(a) A fixed (pseudo-)Riemannian manifold (M, g) of dimension 4n,

(b) A complex vector bundle H Ñ M of complex rank 2 equipped with an antilinear
map JH such that J2

H = ´idH, a nondegenerate form ωH P γ(Λ2H˚), and a
connection ∇H preserving all this structure,

(c) A complex vector bundle E Ñ M of complex rank 2n equipped with an antilin-
ear map JH such that J2

E = ´idE, a nondegenerate form ωE P γ(Λ2E˚), and a
connection ∇E preserving all this structure,



1.A. Supergravity and quaternionic Kähler geometry 19

(d) A section σ P Γ(T˚MCbHb E) that defines an isomorphism between TMC and
H b E sending the canonical real structure on TMC to JH b JE.

Given this, we can assemble our field content into the additional data below, follow-
ing notational conventions in [Jos+17]:

(a) A smooth map ϕ : S Ñ M,

(b) An identification of the pullback of H with V˚, i.e.

ϕ´1(H, JH, ωH,∇H) – (V˚, J˚V , ω´1
V ,∇V), (1.59)

so that the gravitinos ψ and ψ may be regarded as sections of T˚Sb Σb ϕ´1H˚

and T˚Sb Σ˚ b ϕ´1H respectively,

(c) Hyperino sections χ P Γ(Σb ϕ´1E) and χ P Γ(Σ˚ b ϕ´1E˚) subject to the reality
condition

(ωΣ bωE) ˝ (JΣ b JE)(χ) = χ. (1.60)

The situation is now complicated by the fact that the gravitino and hyperino bundles
T˚SC b Σ b ϕ´1H˚ and Σ b ϕ´1E depend on the map ϕ, which is acted on by the
superalgebra X ‚(S, Σ, V). (Complexified) infinitesimal variations in the map ϕ are
sections of the pullback bundle ϕ´1TMC, so it makes sense to define the action Q1 of
X ‚

1 (S, Σ, V) on ϕ to be given by

Q1(ξ b a)ϕ = (ϕ´1σ˚)(xχL, ξR b ay+ xχR, ξL b ay),

Q1(ξ b a)ϕ = (ϕ´1σ´1)(xξL b a, χRy+ xξR b a, χLy).
(1.61)

For notational convenience, we shall henceforth write the pulled back bundle map
ϕ´1σ as just σ. In order to specify the action Q1 on the other fields, let us denote by

w(ξ, a), w(ξ, a) P Γ(ϕ´1TMC) (1.62)

the projections of the sections Q1(ξb a)ϕ and Q1(ξb a)ϕ onto the image of dϕ. Then,
we have a well-defined action Q1 of X ‚

1 (S, Σ, V) on the rest of the fields given by

(Q1(ξ b a)hS)(u, v) =
c

´
ν

2
(xγ(ιvhS)ξ, xub a, ψyy+ xγ(ιuhS)ξ, xvb a, ψyy),

Q1(ξ b a)ψL =

c

´
8
ν
∇(ξL b a)´∇H

w(ξ,a)ψL

+ G´
(

1
?

2
FG ´

c

´
ν

8
xψb ψy

)
(γξR b a),

Q1(ξ b a)AG =
?

2 xξ b a, ψy,

Q1(ξ b a)χL = 2 xσ(dϕ), xξR, γy b ay ´∇E
w(ξ,a)χL,

(1.63)
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and similar expressions. The pure supergravity Lagrangian density LSG now has to
be supplemented with additional terms:

LHM =

(
´‖dϕ‖2 ´

1
2
xχ, /Dχy

+
1
16

A

xωH, σb σy´1(RE) + ν idEb E, trhS

(
xχL, γχLy

b2
Σ

)E
+

c

´
ν

2
(xχL, γ(xσ(dϕ), ψRy)y+ xχR, γ(xσ(dϕ), ψLy)y)

)
dvolhS ,

(1.64)

where /D is the Dirac operator and RE is the curvature of the connection ∇E. In
contrast to the pure supergravity case, it is not guaranteed that the theory described
by the Lagrangian density L := LSG + LHM is invariant under the action Q1 of the
real Lie superalgebra X ‚

1,R(S, Σ, V). The following result due to Bagger and Witten
gives the precise criterion for when this happens.

Folklore 1.A.3 ([BW83]). Given that the (pseudo-)Riemannian manifold of hypermultiplet
scalars (M, g) has dimension 4n ě 8, the Lagrangian density L := LSG + LHM is invariant
modulo closed forms and equations of motion under the action Q1 of the real Lie superalgebra
X ‚

1,R(S, Σ, V) if and only if the restricted holonomy of (M, g) is contained in Sp(n) ¨ Sp(1),
and its reduced scalar curvature

scalg

4n(n + 2)
(1.65)

is the constant ν ă 0.

For dimension 4, Bagger and Witten have an additional constraint on the metric
g. In fact, this additional constraint can be taken to define quaternionic Kähler man-
ifolds in dimension 4. Indeed, Definition 2.1.3 that we later provide in Chapter 2
reflects this additional constraint. Note also that the bundles H and E are precisely
the Sp(1)- and Sp(n)-bundles of Salamon’s EH formalism in [Sal82].

The takeaway from all this is that there is a correspondence between 4-dimensional
N = 2 supergravity coupled to hypermultiplets and quaternionic Kähler geome-
try. In particular, it should be possible to translate physical recipes for constructing
such supergravity Lagrangians into differential-geometric recipes for constructing
quaternionic Kähler manifolds.

1.B The Type IIA superstring and its dimensional reduction

Superstring theory is a particularly rich source of such recipes for constructing su-
pergravity Lagrangians.

Recall that string theory describes the propagation of a string through spacetime
S. As the string propagates, it traces out a 2-dimensional surface called the world-
sheet. From the perspective of the worldsheet C, string theory is essentially a con-
formal field theory (CFT) living on the worldsheet, with the background fields on S
realised as various parameters or couplings of the CFT. Since a CFT is sensitive to just
the conformal structure on C and not the metric, C may be thought of as a Riemann
surface or a complex curve. In dimension 2, excitations of the CFT are organised
into two sectors, i.e. subspaces of the full Hilbert space of excitations: holomorphic
and anti-holomorphic. Physically, these are the left-moving and right-moving modes of
the string.

Meanwhile, the “super” in superstring theory just means that the worldsheet
CFT is promoted to a superconformal field theory (SCFT) by introducing certain
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fermionic excitation modes on the string. On the closed string, these may be sub-
ject to either periodic or anti-periodic boundary conditions. This again gives us two
subsectors each of the left-moving and right-moving sectors: The Ramond and the
Neveu–Schwarz sectors respectively. All in all, we thus have four sectors: NS–NS,
R–NS, NS–R, and R–R.

Requiring consistency of the SCFT underlying superstring theory places heavy
constraints on the states that are allowed in its Hilbert space. It turns out, up to
equivalence, only five different consistent choices may be made. These are the vari-
ous Types: I, IIA, IIB, heterotic E8 ˆ E8, and heterotic O(32). We’ll be specialising to
Type IIA for the rest of this appendix.

Since the backgound S and the fields on it are realised as couplings for string
excitations, and are in fact labelled by the excitation modes, a constraint on al-
lowed states translates to a constraint on allowed backgrounds. The executive sum-
mary is that the background has to be a solution to the equations of motion of 10-
dimensional supergravity. Note that supersymmetry on the background is not the
same supersymmetry that is present on the worldsheet. Rather, it is a consequence
of a symmetry of the SCFT known as spectral flow symmetry.

The various fields constituting the 10-dimensional supergravity background are
labelled by the string excitations. The bosonic fields are labelled by NS–NS and R–R
excitations, while the fermionic fields are labelled by NS–R and R–NS excitations.
Let us restrict our attention to only the bosonic fields. The NS–NS fields of the 10d
supergravity theory are as follows:

(a) the 10d metric hS,

(b) the Kalb–Ramond field, which is a connection on a gerbe locally represented by a
2-form B with a curvature 3-form H = dB,

(c) a scalar dilaton φ.

The R–R fields meanwhile comprise of the following:

(a) the 10d graviphoton AG with curvature 2-form FG,

(b) a connection on a 2-gerbe locally represented by a 3-form AD with curvature
4-form

FD = dAD ´ AG ^ H. (1.66)

In order to make contact with the well-established fact that the world we live in is
4-dimensional, we consider background manifolds S of the form R1,3ˆY, where Y is
a compact manifold of real dimension 6, whose size is presumed to be smaller than
the length scales we can probe with our measuring devices. It turns out that such a
background can support supergravity solutions if and only if Y is Calabi–Yau, which
is to say a (Ricci-flat) Kähler manifold with vanishing first Chern class.

Keeping only the lowest Fourier modes of a stationary 10d supergravity solution
on R1,3 ˆY gives a stationary solution to 4d N = 2 supergravity. We have already
observed that the scalars of a supergravity theory form (a partial set of) coordinates
on its moduli space of solutions. Thus, we describe the scalars of the dimensionally
reduced 4d theory by describing certain coordinates on the moduli space of classical
10d supergravity solutions.

First of all, supersymmetry preserving deformations of 10d metric hS are essen-
tially Calabi–Yau deformations of the Calabi–Yau metric hY. It is known that the
moduli space of such deformations has a product structure NC ˆ N1

K, where NC is a
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4d scalar 10d origin Sector Multiplet
Xa hS NS–NS hyper
Re(si) hS R–R vector
Im(si) B NS–NS vector
ζ0, ζa AD R–R hyper
τ B NS–NS hyper
φ φ NS–NS hyper

TABLE 1.B.1: Scalars in dimensionally reduced 4d supergravity

complex manifold of complex dimension h2,1 parametrised by h2,1 complex numbers
Xa, and N1

K is a manifold of real dimension h1,1 parametrised by h1,1 real numbers.
Here, h2,1 and h1,1 are the Hodge numbers of the Calabi–Yau manifold Y:

1
0 0

0 h1,1 0
1 h2,1 h2,1 1

0 h1,1 0
0 0

1

(1.67)

It is clear that the full moduli space of scalars forms a bundle over the manifold
NC ˆ N1

K, and that fibre coordinates are obtained by fixing a Calabi–Yau manifold Y
and looking for coordinates describing the rest of the fields on R1,3 ˆY.

Up to gauge equivalence, the fields B, AG, AD are characterised by their curva-
ture forms H, FG, FD. To extract coordinates from these, we follow the following
general prescription. Say α is a harmonic curvature k-form. This means that both
α as well as its Hodge dual, the (10´ k)-form ‹hS α, are closed. Since we are con-
sidering only stationary solutions, there is by definition an asymptotically timelike
Killing field v which preserves all fields. This may be shown to imply that ιvα and
ιv(‹hS α) are both closed and can therefore be unambiguously integrated along cycles
of the appropriate dimension. Integrating ιvα along a (k´ 1)-cycle of Y (if available)
and ιv(‹hS α) along a (9´ k)-cycle of Y (if available) thus gives one coordinate each
for every (k´ 1)-cycle of Y and one coordinate each for every (9´ k)-cycle of Y.

The Hodge diamond (1.67) of the Calabi–Yau manifold Y tells us which cycles
are present. Following the above prescription, we obtain 2h2,1 + 2 real coordinates
by integrating ιvFD over the 2h2,1 + 2 independent 3-cycles. These can be combined
into h2,1 + 1 complex coordinates ζ0, ζa. Meanwhile, integrating ιvH over the h1,1

independent 2-cycles yields h1,1 real coordinates which may be combined with the
real Kähler moduli to give h1,1 complexified Kähler moduli si P C. We also have the
full 6-dimensional Calabi–Yau manifold itself on which we can integrate ιv(‹hS H).
This gives the real coordinate τ, called the axion.

Finally, the 10d dilaton trivially descends to the 4d dilaton giving us the last
scalar moduli φ. These are summarised in Table 1.B.1. Not all of these scalars are or-
ganised in hypermultiplets; the complexified Kähler moduli belong to another kind
of representation referred to as vector multiplets. On general physical and representa-
tion theoretic grounds, one can conclude that the full 4d scalar moduli space also has
a product structure M ˆ NK, with M being the manifold of hypermultiplet scalars
forming a bundle over NC, and NK being the manifold of vector multiplet scalars
forming a bundle over N1

K.
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By Folklore 1.A.3, we know that there has to be a quaternionic Kähler metric on
M. Consistent with this, we note that the real dimension of M is 4h2,1 + 4, corre-
sponding to

(a) h2,1 complex coordinates Xa parametrising the complex structure moduli space
NC of the Calabi–Yau manifold Y,

(b) h2,1 + 1 complex coordinates ζ0, ζa parametrising the Weil intermediate Jacobian
of Y (see Chapter 7 of [Aal11] for details),

(c) Coordinates φ and τ parametrising fibres of a Cˆ bundle over the Weil interme-
diate Jacobian.

The pairs (Xa, ζa) combine into h2,1 different hypermultiplets; the number of these
depends on the specific Calabi–Yau manifold we compactify on. The triple (φ, τ, ζ0)
meanwhile forms the universal hypermultiplet, called so because because its pres-
ence is universal across all choices of Calabi–Yau manifolds.

The complex structure moduli space NC of a Calabi–Yau manifold is itself known
to have an interesting Riemannian structure, namely a projective special Kähler metric
gN , first introduced by Cecotti, Ferrara, and Girardello in [CFG89] and later given a
precise definition by Freed in [Fre99]. These may be characterised by a local holo-
morphic homogeneous function F of degree 2 in formal coordinates z0, za called the
prepotential. The quaternionic Kähler metric g on M in terms of gN was first de-
scribed in physical terms (and proved to be indeed quaternionic Kähler) by Ferrara
and Sabharwal in [FS90] and later in a mathematically precise way by Hitchin in
[Hit09]. To write down the Ferrara–Sabharwal metric, we first introduce some nota-
tion, following Section 4.3 of [CHM12].

Given a holomorphic prepotential F(z0, . . . , zn´1) which is homogeneous of de-
gree 2, we let Nab, with a, b now running from 0 to n´ 1, denote twice the imaginary
part of the entries of its Hessian matrix:

Nab = 2 Im
(

B2F
Bza Bzb

)
. (1.68)

This is a holomorphic homogeneous function of degree 0, and so may be used to
define another holomorphic homogeneous function Nab of degree 0 as follows:

Nab(z0, . . . , zn´1) =
F(z0, . . . , zn´1)

z2
0

+ i

ř

b,d NabNcdzbzd
ř

e, f Ne f zez f
. (1.69)

This may be used to define functions < and = taking values in real square matri-
ces of size n on the complex structure moduli space NC (and so by pullback on the
hypermultiplet moduli space M) in the following way:

<ab(X1, . . . , Xn´1) + i=ab(X1, . . . , Xn´1) = Nab (1, X1, . . . , Xn´1) . (1.70)

It was shown in Corollary 5 of [CHM12] that = is invertible everywhere. We may
thus write the Ferrara–Sabharwal metric gFS on M as

gFS = gNC +
dρ2

4ρ2 +
1

4ρ2

(
dτ +

n´1
ÿ

a=0

(yadxa ´ xadya)

)2

+
1

2ρ

n´1
ÿ

a,b=0

=abdyadyb

+
1

2ρ

n´1
ÿ

a,b=0

(=´1)ab

(
dxa +

n´1
ÿ

c=0

<acdyc

)(
dxb +

n´1
ÿ

c=0

<bddyd

)
,

(1.71)
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where we have set ζa = xa + iya, with xa, ya real.
So far, our discussion of the background supergravity theory and its associated

hypermultiplet moduli space metric has been strictly classical. It turns out that when
quantum effects are taken into account, this metric undergoes a deformation which
is still quaternionic Kähler! In order to make precise what we mean by quantum
effects, we first have to interpret the metric g on M in terms of the worldsheet SCFT.

1.C Quantum corrections to Type IIA hypermultiplets

What we have seen so far is that points on the moduli spaces of superstring theory
encode the background through which the superstring is propagating. A tangent
vector on the quaternionic Kähler manifold that is the hypermultiplet moduli space
therefore represents a variation in the hypermultiplet scalars in the background.
Such variations of the background may be interpreted as vertex operators from the
point of view of the worldsheet SCFT (see for instance Chapter 7 of [Ton09]). There
is a natural pairing on such operators induced by the 2-point correlator, depicted in
Figure 1.C.1a, which is encoded by the quaternionic Kähler metric on the moduli
space evaluated on two tangent vectors.

In any quantum theory, classical correlators are expected to receive quantum
corrections given by a formal series expansion in some parameter h̄ assumed to be
small. Superstring theory has two such parameters: the string length scale `s and the
string coupling ρ´1 := e´2φ. The former is a dimensionful parameter that needs to be
put in by hand. The latter is a dimensionless parameter that is by contrast a natural
consequence of the presence of a term

1
4π

φ scalhC dvolhC (1.72)

in the worldsheet Lagrangian density, coupling the scalar curvature scalhC of the
worldsheet metric hC with the background dilaton φ. From the Gauß–Bonnet theo-
rem we know that the integral

1
4π

ż

C
φ scalhC dvolhC = φ(2´ 2gC) (1.73)

is a topological invariant, with gC being the genus of the worldsheet C. The quantum-
corrected correlator is formally given by an appropriate path integral over a config-
uration space parametrising the worldsheets and the fields on them. Such a con-
figuration space consists of several connected components labelled by the genus gC
of the worldsheet. And since the Gauß–Bonnet integral is a topological invariant, it
contributes an overall weight

e´φ(2´2gC) = ρ1´gC (1.74)

to the path integral evaluated on the component with label gC. In other words, ρ´1

acts as the formal parameter for the string genus expansion, analogous to the Feyn-
man loop expansion for point particles in quantum field theory.

Since superstring theory is, from the worldsheet perspective, a superconformal
field theory, the string length scale `s comes into play only through dimensionless
ratios with the length scales of the compactification, encoded in the Kähler moduli
of the Calabi–Yau manifold Y. For the Type IIA superstring, the Kähler moduli are
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(A) (B)

(C)

(D)

FIGURE 1.C.1: Contributions to the hypermultiplet metric labelled
by abstract configurations of worldsheets (red), D-branes (green), and

NS5-branes (blue).

not included in the hypermultiplets, hence the hypermultiplet metric admits no `s
corrections. However, there are ρ´1 corrections to the hypermultiplet metric.

These corrections are of two kinds: perturbative and nonperturbative. Given a
suitable parametrisation of the quaternionic Kähler metric, the perturbative correc-
tions to it consist of terms proportional to ρ´k coming from the genus expansion
that we have described above and depicted in Figure 1.C.1b. In a generic quan-
tum theory, the resulting formal series diverges rapidly and has to be interpreted as
an asymptotic series. However, in supersymmetric theories, there is improved be-
haviour. In fact, it was shown by Robles-Llana, Saueressig, and Vandoren in Section
4.3 of [RSV06] that with an appropriate field redefinition, the full set of perturba-
tive corrections of all orders to the Ferrara–Sabharwal metric can be absorbed into
an order 1 or 1-loop correction. This yields the 1-loop-deformed Ferrara–Sabharwal
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metric

g1cFS

=
ρ + c

ρ
gNC +

1
4ρ2

ρ + 2c
ρ + c

dρ2 +
1

4ρ2
ρ + c
ρ + 2c

(
dτ + c dcK +

n´1
ÿ

a=0

(yadxa ´ xadya)

)2

+
1

2ρ

n´1
ÿ

a,b=0

=abdyadyb +
1

2ρ

n´1
ÿ

a,b=0

(=´1)ab

(
dxa +

n´1
ÿ

c=0

<acdyc

)(
dxb +

n´1
ÿ

c=0

<bddyd

)

+
2c
ρ2 eK

∣∣∣∣∣n´1
ÿ

a=0

(
Xadxa +

BF
Bza

(1, X1, . . . , Xn´1)dya

)∣∣∣∣∣
2

,

(1.75)

where K is the Kähler potential on the projective special Kähler manfold given by
evaluating at (z0, z1, . . . , zn´1) = (1, X1, . . . , Xn´1) the expression

´ log

(
n´1
ÿ

a,b=0

Nabzazb

|z0|2

)
, (1.76)

while the parameter c is related to the Euler characteristic χY of the Calabi–Yau man-
ifold Y on which the theory is compactified by

c = ´
χY

192π
. (1.77)

Nonperturbative corrections on the other hand arise from the presence of higher-
dimensional objects in string theory that can be charged under the various back-
ground gauge fields. These are again of two kinds: D-branes and NS5-branes.

D-branes or Dirichlet branes are objects that are charged under the R–R gauge
fields that descend to the complex-valued fields ζa = xa + iya and are called so be-
cause the ends of the fundamental string of string theory are restricted to be incident
on them, as depicted in Figure 1.C.1c. In other words, they provide Dirichlet bound-
ary conditions on the associated SCFT on the string worldsheet. For the Type IIA
superstring, these are defects localised on special Lagrangian 3-cycles of the Calabi–
Yau 3-fold Y labelled by tuples of integers (pa, qa), one for each a P t0, . . . , h2,1u,
referred to as its dyonic charge. These contribute corrections proportional to

exp

(
´2πZp,qρ´ 2πi

ÿ

a
(qaxa ´ paya)

)
, (1.78)

where Zp,q is the pullback of a certain central charge function defined on the complex
structure moduli space of the Calabi–Yau manifold Y over which the hypermultiplet
moduli space forms a bundle. In particular, the presence of D-branes breaks the
isometries generated by the vector fields

1
2
(Bxa + yadτ),

1
2
(Bya ´ xadτ). (1.79)

NS5-branes are objects that are charged under the Kalb–Ramond 2-form B in the
NS–NS sector that descends to the axion τ. The Kalb–Ramond 2-form B is a higher
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analogue of the electromagnetic 1-form A in that it is the field under which the fun-
damental string is charged, just like how point particles are charged under the elec-
tromagnetic field. NS5-branes then are to the fundamental string what magnetic
monopoles are to electric charges. An NS5-branes cannot be incident on the fun-
damental string; however, they can be incident on D-branes, which can in turn be
incident on both NS5-branes and the fundamental string. Such a brane configuration
is depicted in Figure 1.C.1d. Geometrically, the NS5-branes is the Calabi–Yau mani-
fold itself with an attached integer charge r. It contributes corrections proportional
to

exp
(
´2π|r|Vol(Y)ρ2 ´ πirτ

)
, (1.80)

where Vol(Y) is the volume of the Calabi–Yau manifold Y. In particular, the presence
of NS5-branes breaks the isometries generated by the vector field Bτ.

The nonperturbative corrections are exponentially suppressed in comparison to
the perturbative corrections. So, it makes sense to retain only the perturbative i.e.
the 1-loop correction. Studying the deformation of quaternionic Kähler metrics this
induces shall be the focus of this dissertation.

However, it is still worth saying a few words about why the full set of corrections
are interesting to mathematicians. First of all, on physical grounds, it is expected that
the resulting quaternionic Kähler manifold will be complete. Moreover, physical ar-
guments also suggest that this manifold will have no continuous isometries. Having
explicit examples of complete quaternionic Kähler manifolds without any continu-
ous isometries would be valuable for any attempts at a classification of negatively
curved quaternionic Kähler manifolds.

Quaternionic Kähler geometry is not the only field of mathematics that would
stand to gain from such an investigation. From the point of view of the supergravity
theory in dimension 4, in the regime that the associated charges pa, qa, r are large, the
brane confugurations described above appear as solutions to the supergravity equa-
tions of motions that are localised around certain instants in time. (This incidentally
is why they are often referred to as D-instantons or NS5-instantons.) These may be
analytically continued in a formal manner to yield multi-centred black hole solu-
tions with Taub-NUT charge r and BPS charges (pa, qa), which would be interesting
to construct in their own right. But there are additional reasons this is interesting.

As we move about the moduli space, a black hole can split apart into many or
many black holes may combine into one. The overall smoothness of the moduli
space metric, again expected on physical grounds, severely constrains the precise
way in which this happens. In a string theoretic context, these constraints have been
shown in [APP11] to encode a lot of nontrivial information about dilogarithm identi-
ties and the Donaldson–Thomas invariants of the underlying Calabi–Yau manifold.
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Chapter 2

Quaternionic Kähler manifolds

In this chapter, we define quaternionic Kähler manifolds and collect in one place
results and facts about them that we shall be relying on later. These are interspersed
with several examples illustrating these facts as we proceed.

In particular, we introduce the quaternionic moment map constructed in [GL88]
and use it to identify certain twist data associated to quaternionic Kähler manifolds, a
notion that will be formally introduced in Chapter 3. These are then computed for an
important class of examples of dimension 4 related to the continuous Toda integrable
system, which includes the 1-loop-deformed universal hypermultiplet metric.

Most of the results and examples in this chapter are well-established in mathe-
matical lore. There are nonetheless a few original results: certain constructions using
the quaternionic moment map (Lemmata 2.2.7, 2.2.10, 2.2.11), a complete description
of the full isometry group of the 1-loop-deformed universal hypermultiplet metric
(Proposition 2.3.6), and the identification of the family of quaternionic Kähler man-
ifolds (2.95) constructed by applying separation of variables to the continuous Toda
system in [Ket01], with the well-known Pedersen family of quaternionic Kähler met-
rics (Proposition 2.3.7).

2.1 Definition and basic properties

We have already seen in Chapter 1 what quaternionic Kähler manifolds are sup-
posed to be: roughly speaking, (pseudo-)Riemannian manifolds with local holon-
omy contained in Sp(1) ¨ Sp(n), at least when the dimension is greater than 4. While
this was the characterisation that originally motivated mathematical interest in qua-
ternionic Kähler manifolds, it is not so easy to work with. We shall hence choose a
different starting point.

Definition 2.1.1 (Almost quaternionic Hermitian manifolds). An almost quaternionic
Hermitian (AQH) manifold (M, g, Q) is a (pseudo-)Riemannian manifold (M, g)
with a distinguished subbundle Q Ă End(TM) locally spanned by three almost
Hermitian structures J1, J2, J3 satisfying the following equation:

J1 ˝ J2 = J3. (2.1)

Remark 2.1.2. The “quaternionic” in the name comes from the fact that J1, J2, J3 along
with the identity idTM form a representation of the quaternion algebra H. This may
be seen as follows:

J2 ˝ J1 = J2
1 ˝ J2 ˝ J1 ˝ J2

2 = J1 ˝ (J1 ˝ J2)
2 ˝ J2 = J1 ˝ J2

3 ˝ J2 = ´J1 ˝ J2,

J2 ˝ J3 = ´J2
1 ˝ J2 ˝ J3 = ´J1 ˝ (J1 ˝ J2) ˝ J3 = ´J1 ˝ J2

3 = J1.
(2.2)
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The bundle Q is therefore referred to as the quaternionic bundle of the almost quater-
nionic Hermitian manifold.

Definition 2.1.3 (Quaternionic Kähler manifolds). A quaternionic Kähler (QK) man-
ifold (M, g, Q) is a non-Ricci-flat AQH manifold (M, g, Q) such that the quaternionic
bundle Q is parallel with respect to the Levi-Civita connection∇g associated to g and
satisfies

[R, Q˚ ^ idT˚M] = 0, (2.3)

where R P Γ(End(Λ2T˚M)) is the Riemann curvature map, and Q˚ Ă End(T˚M) is
the transpose of Q.

Remark 2.1.4. The Riemann curvature map R is related to the more familiar Riemann
curvature Rg via

R(α^ β)(u, v) = α(Rg(u, v)β7), (2.4)

where α, β are arbitrary 1-forms and u, v are arbitrary vector fields. The vanishing of
[R, Q˚ ^ idT˚M] is equivalent to the statement

´ J ˝ R(u, v)w + R(u, v) ˝ Jw + R(Ju, v)w + R(u, Jv)w = 0, (2.5)

for all sections J P Γ(Q) and all vector fields u, v, w. This is automatic when the
dimension of M is greater than 4, and we may drop the condition from the definition
in this case.
Remark 2.1.5. In accordance with convention, Ricci-flat manifolds have been explic-
itly excluded from this definition, so the local holonomy is a subgroup of Sp(1) ¨
Sp(n) not contained in an Sp(n) subgroup. The reason for this is that many con-
structions related to quaternionic Kähler manifolds, such as the quaternionic mo-
ment map (to be introduced in the next section) or the Swann bundle fail to be
well-defined in case of hyperkähler manifolds, i.e. manifolds which are Ricci-flat
but otherwise satisfy the quaternionic Kähler conditions. These however are pretty
important in their own right and in fact very much relevant to the goals of this dis-
sertation. We shall be seeing hyperkähler manifolds again in Chapter 4.
Remark 2.1.6. Since it is only the span of J1, J2, J3 that is required to be∇g-parallel and
not J1, J2, J3 individually, quaternionic Kähler manifolds are in general not Kähler. In
fact, since the Ji are only locally defined, there may not even be a global almost
complex structure, as the following example shall demonstrate.

Example 2.1.7 (Quaternionic projective spaces). The quaternionic projective space
HPn is the space of quaternionic lines in Hn+1. By quaternionic lines, we mean
subspaces of real dimension 4 that are closed under right multiplication

q := (q0, q1, . . . , qn) ÞÑ (q0s, q1s, . . . , qns) =: qs (2.6)

by nonzero quaternions s P Hˆ. This may be realised as the coset space

Sp(n + 1)/(Sp(1)ˆ Sp(n)). (2.7)

To describe the metric g and quaternionic bundle Q, we note that tangent vectors at

[q] := q ¨Hˆ := (q0, q1, . . . , qn) ¨H
ˆ (2.8)

may be identified with orbits [q, v] of pairs (q, v) P [q] ˆ [q]K under the right Hˆ-
action

(q, v) ÞÑ (qs, vs). (2.9)
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Here, [q]K denotes the orthogonal complement of the subspace [q] Ď Hn+1 with
respect to the standard inner product ĝ on Hn+1. The metric now is simply given by
the well-defined expression

g([q, v], [q1, v1]) =
ĝ(v, v1)
ĝ(q, q1)

, (2.10)

where q and q1 are required to be parallel, which in particular implies [q]K = [q1]K.
Using Pontryagin classes, Hirzebruch showed in [Hir54] that there are no global

almost complex structures on HPn. (In fact, there are no almost complex structures
on any compact quaternionic Kähler manifolds of positive scalar curvature other
than the complex Grassmannians SU(n + 2)/S(U(n) ˆ U(2)) [GMS11].) However,
if we make a local choice of representatives q P Hn+1 of points [q] P HPn, then we
may define local almost complex structures J1, J2, J3 as follows:

J1([q, v]) = [q,´vi], J2([q, v]) = [q,´vj], J3([q, v]) = [q,´vk]. (2.11)

These definitions are sensitive to the choice of representative q, but the span Q of
them, which just involves v getting right-multiplied by imaginary quaternions, is
not. Thus, Q is globally defined even though the basis tJ1, J2, J3u is not.

There is a natural pointwise inner product x¨, ¨y induced on End(TM) by the
metric g:

xA, By =
1

dim(M)
tr(A:g ˝ B), (2.12)

where A and B are sections of End(TM), and A:g := g´1 ˝ A˚ ˝ g is the adjoint of A
with respect to the metric g. The adjoint of any Hermitian structure A is just ´A, so
the restriction of the inner product to the bundle Q is just

xA, By|Q = ´
1

dim(M)
tr(A ˝ B). (2.13)

In particular, we see that (J1, J2, J3) is a local oriented orthonomal frame for Q. Two
such frames are related by an SO(3) transformation. As an immediate consequence,
we see that the tensor fields Ω7, Ω, Ω^ given by the local expressions

Ω7 =
ÿ

i

Ji b Ji, Ω =
ÿ

i

ωi b Ji, Ω^ =
ÿ

i

ωi ^ωi, (2.14)

with ωi = g(Ji¨, ¨), are in fact global sections of the bundles QbQ, Q5 ˆQ, Q5 ^Q^

respectively. Note that since we have only used the fact that Ji are Hermitian struc-
tures satisfying J1 ˝ J2 = J3, this observation in fact holds true for any AQH manifold
and not just quaternionic Kähler ones. The 4-form Ω^ in particular referred to as the
fundamental 4-form of the AQH manifold in question.

Example 2.1.8. In the case of HPn, the tensor field Ω is given by the following ex-
pression:

Ω7([q, v], [q1, v1]) = [q, vi]bR [q1, v1i] + [q, vj]bR [q1, v1j] + [q, vk]bR [q1, v1k]
– [qbR q1, vibR v1i + vjbR v1j + vkbR v1k],

(2.15)
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where q and q1 are required to be parallel and the pairs [qbR q1, vbR v1] denote the
orbits of the right (Hˆ)2-action

(qbR q1, vbR v1) ÞÑ (qsbR q1s1, vsbR v1s1). (2.16)

The fact that Ω7 is globally well-defined then amounts to the statement that

Ω7([qs, vs], [q1s1, v1s1]) = Ω7([q, v], [q1, v1]), (2.17)

for all s P Hˆ. In other words, the definition of Ω7 is not sensitive to the local choice
of representatives (q, v), (q1, v1) for the vector fields [q, v], [q1, v1].

Since the inner product x¨, ¨y is naturally induced by the metric g, at least up to
an overall constant factor, it is compatible with the connection on Q induced by the
Levi-Civita connection ∇g, which we denote by ∇g as well. This leads us to deduce
a rather useful property of Ω7, Ω, Ω^.

Proposition 2.1.9. The tensor fields Ω7, Ω, Ω^ on a quaternionic Kähler manifold (M, g, Q)
are ∇g-parallel. In particular Ω^ is a closed form.

Proof. It’s enough to show that Ω7 P Γ(QbQ) is ∇g-parallel. Note that if Ji form a
local orthonormal basis of sections of Q, then Jj b Jk form a local orthonormal basis
of sections of Q b Q (with respect to inner product on Q b Q induced by that on
Q). If we can show xJj b Jk,∇gΩ7y vanishes for all j, k, we are done. We therefore
compute:

xJj b Jk,∇gΩ7y =

C

Jj b Jk,
ÿ

i

(∇g Ji b Ji + Ji b∇g Ji)

G

=
ÿ

i

(xJj,∇g JiyxJk, Jiy+ xJj, JiyxJk,∇g Jiy)

= xJj,∇g Jky+ xJk,∇g Jjy = dxJj, Jky = 0.

(2.18)

In fact, something more is true: we can use the closedness of Ω^ to characterise
quaternionic Kähler manifolds of dimension greater than 8.

Theorem 2.1.10 ([Swa91] Theorem 2.2). A non-Ricci-flat AQH manifold (M, g, Q) with
dim(M) ą 8 is quaternionic Kähler if and only if its fundamental 4-form Ω^ is closed.

Remark 2.1.11. One way to think about this is by analogy to Kähler manifolds: a
Hermitian manifold (M, g, J) is Kähler if and only if the 2-form ω := g(J¨, ¨) is closed.
Thus, the fundamental 4-form Ω^ plays a role analogous to the Kähler form.

Meanwhile, for dimensions 4 and 8, we invoke the following result due to Alek-
seevsky, applicable to quaternionic Kähler manifolds of all dimensions.

Theorem 2.1.12 ([Ale68] Tables 1 and 2). The Riemann curvature Rg of a quaternionic
Kähler manifold (M, g, Q) of dimension 4n is of the form

Rg = νRHPn + Wg
Q, (2.19)

where ν is a constant, RHPn is formally the Riemann curvature of the quaternionic projective
space HPn, and Wg

Q is the “quaternionic Weyl” curvature. The latter is a traceless abstract
curvature tensor field of “hyperkähler type” i.e. it satisfies for all vector fields u, v on M,

[Wg
Q(u, v), Q] = 0. (2.20)
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In particular, (M, g) is Einstein with constant reduced scalar curvature ν and all sections
u, v P Γ(TM) and A P Γ(Q) satisfy

[Rg(u, v), A] := ((∇g)2
u,v ´ (∇g)2

v,u)A =
ν

2
[ιuιvΩ, A]. (2.21)

Remark 2.1.13. It is instructive to restate the above result in the Cartan formalism, in
which the connection and curvature of Q are respectively realised as a set of 1-forms
αij and 2-forms βij via

αij(u) = xJi,∇
g
u Jjy, βij(u, v) = xJi, [Rg(u, v), Jj]y. (2.22)

These are equivalently described in terms of the Cartan structure equations:

αij = ´αji, dωi +
ÿ

j

αij ^ωj = 0, dαij +
ÿ

k

αik ^ αkj = βij. (2.23)

In particular, the algebraic ideal generated by the locally defined 2-forms ωi (and
therefore the bundle Q5 locally spanned by them) is a differential ideal i.e. closed
under the action of the exterior derivative d.

As for Theorem 2.1.12, it reduces to the following equation:

βij = ν
ÿ

k

εijkωk, (2.24)

where εijk is the Levi-Civita symbol. Equations (2.23) and (2.24) together are equiv-
alent to the self-dual (respectively, anti-self-dual) Einstein condition in dimension
4 when the bundle Q5 is identified with the bundle of anti-self-dual (respectively,
self-dual) 2-forms Λ2

´(TM) (respectively, Λ2
+(TM)).

Theorem 2.1.14 ([Swa91] Theorem 2.2). An AQH manifold (M, g, Q) of dimension 8 is
quaternionic Kähler if and only if its fundamental 4-form Ω^ is closed and the algebraic ideal
generated by Q5 is a differential ideal.

Proposition 2.1.15. An oriented (pseudo-)Riemannian manifold (M, g) of dimension 4
admits a quaternionic Kähler structure (M, g, Q) if and only if it is self-dual and Einstein
or anti-self-dual and Einstein.

Remark 2.1.16. An anti-self-dual oriented (pseudo-)Riemannian manifold becomes
self-dual if its orientation is reversed. So these are not two separate cases.

Example 2.1.17 (Complex hyperbolic plane). Let C1,2 denote C3 endowed with the
standard Hermitian inner product of signature (1, 2) (minus signs first). Then, the
complex hyperbolic plane CH2 is the space of complex lines of negative norm, and it
carries a metric g induced by the Hermitian inner product on C1,2 in a manner anal-
ogous to that in the case of quaternionic projective spaces. This space is also a coset
space, namely SU(1, 2)/U(2). The horospherical coordinatisation for the complex
line

Cˆ ¨ z := Cˆ ¨ (z0, z1, z2) P CH2 (2.25)

spanned by z := (z0, z1, z2) P C1,2, subject to

‖z‖2 = ´|z0|
2 + |z1|

2 + |z2|
2 ă 0, (2.26)
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is given by

Cˆ ¨ (z0, z1, z2) ÞÑ (ρ, τ, ζ)

=

(
´
‖z‖2

|z0 + z1|
2 ,´Im

(
z0 ´ z1

z0 + z1

)
,
?

2 z2

z0 + z1

)
.

(2.27)

This is a diffeomorphism from CH2 to Rą0 ˆRˆC with inverse given by

(ρ, τ, ζ) ÞÑ Cˆ ¨

(
1,

1´ (ρ + |ζ|2 ´ iτ)
1´ (ρ´ |ζ|2 ´ iτ)

,
?

2 ζ

1´ (ρ´ |ζ|2 ´ iτ)

)
. (2.28)

Moreover, the metric g in these coordinates is given by

g =
1

4ρ2

(
dρ2 + 2ρ |dζ|2 + (dτ + Im(ζ dζ))2) . (2.29)

In [CS17], we computed its Ricci curvature map g´1 ˝ Ric P Γ(End(T˚CH2)) and
Weyl curvature map W P Γ(End(Λ2T˚CH2)) to be

g´1 ˝Ric = ´6 idT˚M, W =
1
2
(1 + ‹)(R + 2 idΛ2T˚M). (2.30)

Since CH2 is both Einstein and self-dual, it follows that it admits a quaternionic
Kähler structure. In order to describe the quaternionic Kähler sructure explicitly,
let us set ζ = x + iy and choose the following orthonormal frame for the tangent
bundle:

e1 = 2ρ Bρ, e2 =
a

2ρ (Bx ´ y Bτ), e3 =
a

2ρ (By + x Bτ), e4 = 2ρ Bτ. (2.31)

This induces a dual frame ϑa for the cotangent bundle:

ϑ1 =
dρ

2ρ
, ϑ2 =

dx
a

2ρ
, ϑ3 =

dy
a

2ρ
, ϑ4 =

1
2ρ

(dτ + y dx´ x dy). (2.32)

Then we can use ea and ϑa to construct the following orthonormal frame for Q:

J1 = ϑ2 ^g e3 ´ ϑ1 ^g e4,

J2 = ϑ3 ^g e1 ´ ϑ2 ^g e4,

J3 = ϑ1 ^g e2 ´ ϑ3 ^g e4,

(2.33)

where we have introduced the notation

α^g u := αb u´ u5 b α7. (2.34)

One may check that the connection 1-forms αij associated with this frame are given
by

α23 = ´ϑ4, α31 = ´2ϑ3, α12 = 2ϑ2, (2.35)
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while the curvature 2-forms βij are given by

β23 = ´2(ϑ2 ^ ϑ3 ´ ϑ1 ^ ϑ4) = ´2ω1,

β31 = ´2(ϑ3 ^ ϑ1 ´ ϑ2 ^ ϑ4) = ´2ω2,

β12 = ´2(ϑ1 ^ ϑ2 ´ ϑ3 ^ ϑ4) = ´2ω3,

(2.36)

where ωi = g(Ji¨, ¨).

2.2 The quaternionic moment map

2.2.1 Definition and examples

The quaternionic moment map was introduced by Galicki and Lawson [GL88] in
order to define quaternionic quotients by “quaternionic” Killing fields, analogous to
the Marsden–Weinstein quotient construction for symplectic manifolds. A quater-
nionic Killing field was defined by them to be a Killing field Z of a quaternionic
Kähler manifold such that the quaternionic bundle Q and the fundamental 4-form
Ω^ are Z-invariant. However, this definition was later shown to be superfluous.

Proposition 2.2.1 ([Ale+03] p. 529). Any Killing vector field Z of a quaternionic Kähler
manifold (M, g, Q) with fundamental 4-form Ω^ satisfies

LZQ Ď Q, LZΩ^ = 0. (2.37)

Thus, following [Dyc15], we may drop the hypothesis (2.37) from Galicki and
Lawson’s definition of the quaternionic moment map.

Definition 2.2.2 (Quaternionic moment map, [GL88] Theorem 2.4). The quaternionic
moment map µZ of a quaternionic Kähler manifold (M, g, Q) with respect to a Killing
vector field Z thereof is the unique section µZ of Q satisfying

∇gµZ = ´ιZΩ. (2.38)

Remark 2.2.3. This definition may be motivated by the analogy between the funda-
mental 4-form Ω^ on a quaternionic Kähler manifold and the Kähler form on a Käh-
ler manifold. Using the metric to lower an index on µZ, we get a 2-form µZ5 P Γ(Q5).
Fully antisymmetrising ∇gµZ5 then gives the following:

dµZ5 = ´ιZΩ^. (2.39)

Remark 2.2.4. The solution to (2.38) can be written down rather explicitly as

µZ = ´
2
ν

prQ(∇
gZ), (2.40)

where ν is the (constant) reduced scalar curvature,∇gZ is interpreted as a section of
End(TM), and prQ(∇gZ) denotes its orthogonal projection onto Q, with respect to
the inner product x¨, ¨y. In terms of a local oriented orthonormal frame (J1, J2, J3), the
explicit solution (2.40) may also be written as

µZ =
1

2ν

ÿ

i,j,k

εijkxJi, (∇
g
Z ´LZ)JjyJk. (2.41)
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Remark 2.2.5. The definition of quaternionic moment maps µZ P Γ(Q) with respect to
Killing fields Z may be straightforwardly generalised to quaternionic moment maps
µg P g˚ bR Γ(Q) with respect to a Killing algebra g via

ιxµg = µZx , (2.42)

where Zx is the fundamental Killing vector field associated to the Lie algebra element
x P g.

Example 2.2.6. Continuing with Example 2.1.17, let g be the algebra of the complex
hyperbolic plane CH2 spanned by the Killing fields

Z1 =
1
2

(
e1 +

x
a

2ρ
e2 +

y
a

2ρ
e3 +

τ

ρ
e4

)
= ρ Bρ +

1
2
(x Bx + y By) + τ Bτ,

Z2 =
1
2

(
1

a

2ρ
e2 +

y
ρ

e4

)
=

1
2
(Bx + y Bτ),

Z3 =
1
2

(
1

a

2ρ
e3 ´

x
ρ

e4

)
=

1
2
(By ´ x Bτ), Z4 =

1
2ρ

e4 = Bτ.

(2.43)

Note that the frame (J1, J2, J3) as chosen in (2.33) is rather conveniently invariant
with respect to all of the Killing fields Za above. So, (2.41) just reduces to

µZ =
1
ν
(α23(Z)J1 + α31(Z)J2 + α12(Z)J3). (2.44)

From the above, we may read off µa := µZa as

µ1 =
τ

4ρ
J1 +

y
2
a

2ρ
J2 ´

x
2
a

2ρ
J3,

µ2 =
y

4ρ
J1 ´

1
2
a

2ρ
J3, µ3 = ´

x
4ρ

J1 +
1

2
a

2ρ
J2, µ4 =

1
4ρ

J1.
(2.45)

Note that the quaternionic moment map behaves quite differently from the Käh-
ler moment map. Recall that Kähler moment maps are only locally defined and
unique only up to addition by a constant function, so if we want to take Kähler quo-
tients, we are free to choose any level set of Kähler moment map. However, the
quaternionic moment map is globally defined and unique—Theorem 2.1.12 tells us
there cannot be any local parallel nonzero sections of the quaternionic bundle Q. So,
if we want to take quaternionic Kähler quotients, the uniqueness of µZ forces us to
consider only the zero-set.

From Example 2.2.6, we know that the zero-set of µZ may be empty for a certain
Killing field Z, so the existence of quaternionic Kähler quotients is far more restricted
than that of Kähler quotients. However, for the purposes of this dissertation, we are
interested precisely in the complement of the zero-set of µZ.

2.2.2 Anticipatory lemmata

On the complement of the zero set of µZ, there is a global Hermitian structure JZ P

Γ(Q) given by its normalisation

JZ =
µZ

‖µZ‖ :=
µZ

a

xµZ, µZy
. (2.46)
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This may be used to introduce twist data on the quaternionic Kähler manifold, a no-
tion we shall later define in Chapter 3, which we shall then use to construct hyper-
kähler manifolds in Chapter 4. In anticipation of this, we collect here a few lemmata
that will be later useful.

Lemma 2.2.7. Given a quaternionic Kähler manifold (M, g, Q) of reduced scalar curvature
ν equipped with Killing field Z with nowhere vanishing quaternionic moment map µZ with
normalisation JZ, the “quaternionic twist form” ωQ given by

ωQ(u, v) = ´d
(

ιZg
‖µZ‖

)
(u, v)´ νg(JZu, v) + x∇g

u JZ, JZ ˝∇g
v JZy, (2.47)

is a closed 2-form and Z is Hamiltonian with respect to it.

Proof. We work in a local oriented orthonormal frame (J11 = JZ, J12, J13) for Q, where
we have inoduced the prime to avoid confusion between this choice of frame and
that in (2.33) when we discuss examples. In particular, this means that the quater-
nionic moment map is given by

µZ = ‖µZ‖J11. (2.48)

Substituting the above into the defining property (2.38) of µZ then gives us

d‖µZ‖ = ´ιZω11, ‖µZ‖α121 = ´ιZω12, ‖µZ‖α131 = ´ιZω13, (2.49)

where as usual, ω1i = g(J1i ¨, ¨), and α1ij are the connection 1-forms associated to the
frame. As an immediate consequence, we have

α121(Z) = α131(Z) = 0. (2.50)

Meanwhile, we also have the following chain of equalities:

x∇g
u J11, J11 ˝∇

g
v J11y = x∇

g
u J11, J12yxJ

1
2, J11 ˝∇

g
v J11y+ x∇

g
u J11, J13yxJ

1
3, J11 ˝∇

g
v J11y

(2.13)
= x∇g

u J11, J2yxJ12 ˝ J11,∇g
v J11y+ x∇

g
u J11, J13yxJ

1
3 ˝ J11,∇g

v J11y

= ´x∇g
u J11, J12yxJ

1
3,∇g

v J11y+ x∇
g
u J11, J13yxJ

1
2,∇g

v J11y
(2.22)
= ´(α121 ^ α131)(u, v)

(2.23)
= (α121 ^ α123)(u, v).

(2.51)

This gives the following local expression for ωQ:

ωQ = ´d
(

ιZg
‖µZ‖

)
´ νω11 + α121 ^ α113. (2.52)

By (2.23) and (2.24), we know that

dα123 + α121 ^ α113 = νω11. (2.53)

So we have the following manifestly exact and thus closed local expression for ωQ:

ωQ = ´d
(

ιZg
‖µZ‖ + α123

)
. (2.54)
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Contracting (2.52) with Z and using the Z-invariance of ιZg and µZ meanwhile yields

ιZωQ = ´ιZd
(

ιZg
‖µZ‖

)
´ νιZω11 + ιZ(α

1
21 ^ α113)

= ´LZd
(

ιZg
‖µZ‖

)
+ d

(
g(Z, Z)
‖µZ‖

)
´ νιZω11 + ιZ(α

1
21 ^ α113)

= d
(

g(Z, Z)
‖µZ‖

)
´ νιZω11 + α121(Z)α113 ´ α113(Z)α121

(2.49)
= ´d

(
´

g(Z, Z)
‖µZ‖ ´ ν‖µZ‖

)
.

(2.55)

Remark 2.2.8. The 2-form ωQ was constructed in a different way by Haydys in the
proof of Theorem 14 in [Hay08], where he additionally proved that JZ is in fact inte-
grable.

Definition 2.2.9 (Elementary deformation). The elementary deformation of an AQH
manifold (M, g, Q) by a nowhere vanishing Killing field Z is an AQH manifold
(M, g1, Q) of the form

g1 = h1g|HQZK + h2g|HQZ, (2.56)

where h1 and h2 are nowhere vanishing functions, and HQZ denotes the quater-
nionic span of Z, i.e. the subbundle of TM spanned by the vector fields Z, J1Z, J2Z, J3Z,
and HQZK denotes the subbundle g-orthogonal to it.

Lemma 2.2.10. Let (M, g, Q) be a quaternionic Kähler manifold of reduced scalar curvature
ν equipped with Killing field Z with nowhere vanishing quaternionic moment map µZ with
normalisation JZ such that

fQ := ´
g(Z, Z)
‖µZ‖ ´ ν‖µZ‖ (2.57)

is nowhere vanishing, and let ωQ be the quaternionic twist form. Then, the “standard quater-
nionic elementary deformation” gQ, defined for a fixed nonzero constant parameter K by

gQ(u, v) =
K
‖µZ‖ ωQ(JZu, v) + K d

(
ιZg
‖µZ‖2

)
(JZu, v), (2.58)

is an elementary deformation of (M, g, Q) by Z.

Proof. We continue to work in the frame (J11 = JZ, J12, J13) introduced in the proof of
Lemma 2.2.7. Substituting the local expression (2.52) for ωQ into (2.58) and simpli-
fying, we get

gQ(u, v) = ´
K
‖µZ‖3 (‖µZ‖2(νω11 ´ α121 ^ α113) + d‖µ‖^ ιZg)(J11u, v). (2.59)
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Next we use (2.49) to see that

gQ(u, v) = ´
K
‖µZ‖3 (ν‖µZ‖2ω11 + ιZω12 ^ ιZω13)´ ιZω1 ^ ιZg)(J11u, v)

= ´
K
‖µZ‖3 (´ν‖µZ‖2g(u, v) + g(J12Z, J11u)g(J13Z, v)´ g(J13Z, J11u)g(J12Z, v)

´ g(J11Z, J11u)g(Z, v) + g(Z, J11u)g(J11Z, v))

=
K
‖µZ‖3 (ν‖µZ‖2g(u, v) + g(Z, u)g(Z, v) + g(J11Z, u)g(J11Z, v)

+ g(J12Z, u)g(J12Z, v) + g(J13Z, u)g(J13Z, v)).
(2.60)

It is now easy to see that this metric is the elementary deformation

gQ =
Kν

‖µZ‖ g|HQZK ´
K fQ

‖µZ‖2 g|HQZ. (2.61)

Lemma 2.2.11. Given a constant κ and a quaternionic Kähler manifold (M, g, Q) equipped
with Killing field Z with nowhere vanishing quaternionic moment map µZ with normali-
sation JZ, we can always find a local oriented orthonormal frame (J11 = JZ, J12, J13) for the
quaternionic bundle Q such that

LZ J12 = κ J13, LZ J13 = ´κ J11. (2.62)

Proof. Since the quaternionic bundle Q, the quaternionic moment map µZ, and hence
its normalisation JZ, are all Z-invariant, the Lie derivative of any section of Q orthog-
onal to JZ must necessarily be a section of Q orthogonal to JZ. So, any local oriented
orthonormal frame of the form (J21 = JZ, J22 , J23 ) must necessarily satisfy

LZ J22 = xJ22 , LZ J22 yJ
2
2 + xJ23 , LZ J22 yJ

2
3 = ´xJ22 , LZ J23 yJ

2
3 ,

LZ J23 = xJ22 , LZ J23 yJ
2
2 + xJ23 , LZ J23 yJ

2
3 = xJ22 , LZ J23 yJ

2
2 ,

(2.63)

where we have used the fact that

xJ2i , LZ J2j y+ xJ
2
j , LZ J2i y = LZxJ2i , J2j y = 0. (2.64)

Now we define a new local oriented orthonormal frame (J11, J12, J13) given by

J11 = J21 = JZ, J12 = cos(χ)J22 ´ sin(χ)J23 , J13 = sin(χ)J22 + cos(χ)J23 , (2.65)

where χ is a smooth function satisfying the following inhomogeneous linear PDE:

Z(χ) + xJ22 , LZ J23 y+ κ = 0. (2.66)

Then we may check that

LZ J12 = ´(Z(χ) + xJ22 , LZ J23 y)J13 = κ J13,
LZ J13 = (Z(χ) + xJ22 , LZ J23 y)J13 = ´κ J12.

(2.67)
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Example 2.2.12. Continuing with Example 2.2.6, we note that the quaternionic mo-
ment map for Z1 vanishes on the line

x = y = τ = 0, (2.68)

but those of Z2, Z3, Z4 are nowhere vanishing, with norms given by

‖µ2‖ = 1
4ρ

b

y2 + 2ρ, ‖µ3‖ = 1
4ρ

b

x2 + 2ρ, ‖µ4‖ = 1
4ρ

. (2.69)

Therefore, it ought to be possible to find for each of these Za, local oriented orthonor-
mal frames (J11, J12, J13) for Q such that

LZa J11 = 0, LZa J12 = κ J13, LZa J13 = ´κ J12. (2.70)

In case of Z2, such a frame is given by

J11 =
µ2

‖µ2‖ =
yJ1 ´

a

2ρ J3
a

y2 + 2ρ
,

J12 = cos(´2κx)J2 ´ sin(´2κx)J11 ˝ J2,
J13 = sin(´2κx)J2 + cos(´2κx)J11 ˝ J2.

(2.71)

In case of Z3, such a frame is given by

J11 =
µ2

‖µ2‖ =
´xJ1 +

a

2ρ J2
a

x2 + 2ρ
,

J12 = cos(2κy)J3 ˝ J11 ´ sin(2κy)J3,
J13 = sin(2κy)J3 ˝ J11 + cos(2κy)J3.

(2.72)

And finally, in case of Z4, such a frame is given by

J11 =
µ2

‖µ2‖ = J1,

J12 = cos(´κτ)J2 ´ sin(´κτ)J3,
J13 = sin(´κτ)J2 + cos(´κτ)J3.

(2.73)

In particular, for the final case we have

α123 = α23 ´ κ dτ = ´ϑ4 ´ κ dτ. (2.74)

2.3 Przanowski–Tod Ansatz and continuous Toda

2.3.1 Quaternionic moment map for the Ansatz

The next thing to do is to generalise the computation of the quaternionic moment
map for CH2 to a general quaternionic Kähler manifold of dimension 4 admitting a
Killing vector field. It turns out that such quaternionic Kähler manifolds are com-
pletely characterised by solutions to an integrable system known as the continuous
Toda system in dimension 3.

Theorem 2.3.1 ([Prz91], [Tod95]). Any quaternionic Kähler manifold of dimension 4 with
nonzero scalar curvature and at least one U(1) isometry is locally isometric to an open set
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in Rą0 ˆR ˆ C, coordinatised by (ρ, τ, ζ), and equipped with a metric g admitting the
following Ansatz:

g =
1

4ρ2

(
P dρ2 + 2Peu|dζ|2 +

1
P
(dτ + Θ)2

)
, (2.75)

where P and u are Bτ-invariant smooth functions, and Θ is a Bτ-invariant 1-form satisfying

BζBζu = ´
1
2
B2

ρ(e
u), P =

2
ν
(ρ Bρu´ 2) ą 0

dΘ = i
((
Bζ P dζ ´ Bζ P dζ

)
^ dρ´ Bρ(Peu)dζ ^ dζ

)
,

(2.76)

with ν a nonzero constant. Conversely, any metric that locally admits the above Ansatz
admits a quaternionic Kähler structure with nonzero scalar curvature.

Proof. The proof that every quaternionic Kähler manifold M of dimension 4 with
nonzero scalar curvature and one U(1) isometry locally admits this Ansatz is omit-
ted. As for the converse, we prove it by computing the curvature of the bundle of
anti-self-dual 2-forms Λ2

´T˚M.
As earlier, let us set ζ = x + iy and choose the following orthonormal frame ϑa

for the cotangent bundle:

ϑ1 =

?
P

2ρ
dρ, ϑ2 =

eu/2
?

P
?

2 ρ
dx, ϑ3 =

eu/2
?

P
?

2 ρ
dy, ϑ4 =

1
2ρ
?

P
(dτ + Θ). (2.77)

Then we can choose the orthonormal frame for Λ2
´T˚M to be

ω1 = ϑ2 ^ ϑ3 ´ ϑ1 ^ ϑ4, ω2 = ϑ3 ^ ϑ1 ´ ϑ2 ^ ϑ4, ω3 = ϑ1 ^ ϑ2 ´ ϑ3 ^ ϑ4. (2.78)

The associated connection 1-forms αij are then given by

α23 =
1
2
(Byu dx´ Bxu dy) +

ν

4ρ
(dτ + Θ),

α31 =
eu/2
?

2 ρ

(
ρ Bρu´

ν

2
P´ 4

)
dy = ´

2 eu/2
?

2 ρ
dy,

α12 = ´
eu/2
?

2 ρ

(
ρ Bρu´

ν

2
P´ 4

)
dx =

2 eu/2
?

2 ρ
dx.

(2.79)

One may now readily check that the curvature βij satisfies the quaternionic Kähler
condition:

βij = dαij +
ÿ

k

αik ^ αkj = ν
ÿ

k

εijkωk, (2.80)

where εijk is the Levi-Civita symbol.

Remark 2.3.2. This representation of quaternionic Kähler metrics in terms of a Toda
potential u (which fixes P and Θ up to a locally exact term that may be absorbed into
dτ) is far from unique. In fact, we can easily see that the equations (2.76) admit the
following gauge symmetry:

u(ρ, ζ, ζ) ÞÑ u(ρ, h(ζ), h(ζ))´ ln
∣∣∣∣dh
dζ

∣∣∣∣2 , (2.81)
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where h is a holomorphic function whose derivative is nowhere vanishing on the
domain of definition.

We now compute the quaternionic moment map µZ and the tensor fields fQ, ωQ, gQ
built out of it for the Przanowski–Tod Ansatz.

Example 2.3.3. The Hermitian structures Ji associated to the ωi given in (2.78) are
again invariant under Z = Bτ, so we can again use (2.44) to obtain

µZ =
1

4ρ
J1, ‖µZ‖ = 1

4ρ
. (2.82)

Using this, we can directly read off fQ and gQ as follows:

fQ = ´
1

Pρ
´

ν

4ρ

(2.76)
= ´

Bρu
2P

,

gQ = ´
K fQ

‖µZ‖2 g|HQZ =
8K
P

ρ2(Bρu) g

= 2K(Bρu)
(

dρ2 + 2eu|dζ|2 +
1

P2 (dτ + Θ)2
)

.

(2.83)

As for the 2-form ωQ, in anticipation of future use, it will be convenient to just leave
it as

ωQ
(2.54)
= ´d

(
1

Pρ
(dτ + Θ) +

1
2
(Byu dx´ Bxu dy) +

ν

4ρ
(dτ + Θ)

)
(2.76)
= ´

1
2

d
(

1
P
(Bρu)(dτ + Θ) + Byu dx´ Bxu dy

)
.

(2.84)

2.3.2 Explicit solutions of cohomogeneity one

Following Ketov in [Ket01], we now use the Przanowski–Tod Ansatz to obtain ex-
plicit examples of quaternionic Kähler manifolds of dimension 4.

Example 2.3.4. A natural class of examples of Toda potentials u to consider are po-
tentials that depend only on ρ. The continuous Toda equation in dimension 3, i.e.

BζBζu = ´
1
2
B2

ρ(e
u), (2.85)

then implies that eu is at most a linear polynomial in ρ. The most general solution is
therefore given by

eu = bρ + c. (2.86)

However, since we can always absorb an overall nonzero factor into a gauge shift,
there are essentially two cases:

eu = 1, or eu = ρ + c. (2.87)

In the first case, we have the Poincaré half-space model of the real hyperbolic 4-
space, which is a symmetric space as well:

g = ´
1

νρ2

(
dρ2 + 4|dζ|2 +

(ν

4
dτ
)2
)

. (2.88)
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Meanwhile, in the second case, we have the following family of metrics:

g1c = ´
1

2νρ2

(
ρ + 2c
ρ + c

dρ2 + 2(ρ + 2c)|dζ|2 +
ρ + c
ρ + 2c

(
´

ν

2
dτ + Im(ζ dζ)

)2
)

.

(2.89)
The prime is included for notational consistency with Chapter 5. Note that we re-
trieve the CH2 metric (2.29) when ν = ´2 and c = 0. The parameter ν may be
absorbed into a rescaling of τ and thus contributes only to an overall factor in front
on the metric. The parameter c meanwhile gives what is referred to in physics liter-
ature as the 1-loop deformation g1cUH of the universal hypermultiplet.

Example 2.3.5. Another natural class of metrics arise from separable exact solutions
to the Toda equation i.e. solutions of the form

u(ρ, ζ, ζ) = F(ρ) + G(ζ, ζ), (2.90)

where F and G satisfy

BζBζ G = ´aeG, B2
ρeF = 2a ‰ 0. (2.91)

The equation for F implies that eF is a quadratic polynomial in ρ with leading coef-
ficient a. That is, its general solutions are given by

eF = aρ2 + bρ + c. (2.92)

Note that the left-hand side is always positive, so a has to be positive as well. Mean-
while, the equation for G is just the 2d Liouville equation whose general solutions
are known to be of the form

eG =
4

(1 + 2a|h(ζ)|2)2

∣∣∣∣dh
dζ

∣∣∣∣2 , (2.93)

where h is some holomorphic function which is nonvanishing in the domain of defi-
nition. The freedom to choose h may be absorbed into a gauge transformation (2.81).
In particular, we may set h(ζ) = 1

2 ζ without any loss of generality. This gives us the
following exact solution for u:

eu = eFeG =
aρ2 + bρ + c
(1 + a

2 |ζ|
2)2 . (2.94)

The quaternionic Kähler metric this then yields is

ga,b,c = ´
1

2νρ2

(
bρ + 2c

aρ2 + bρ + c
dρ2 +

2(bρ + 2c)|dζ|2

(1 + a
2 |ζ|

2)2

+
aρ2 + bρ + c

bρ + 2c

(
´

ν

2
dτ +

b Im(ζ dζ)

1 + a
2 |ζ|

2

)2
 .

(2.95)

It has been known in the physics community that the cohomogeneity of the met-
ric g1c in (2.89) is at most 1 and that of the metric ga,b,c in (2.95) is at most 2. Here, we
show that both their cohomogeneities happen to be exactly 1 when a, b, c ą 0.

In addition to this, we also retrieve the Pedersen family of quaternionic Kähler
metrics γm on the product manifold (0, 1) ˆ S3, given in equation (1.6) of [Ped86],
from ga,b,c. In Theorem 12 of [CS17], we had shown that the Pedersen family is
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indeed different from the 1-loop deformation g1cUH of the universal hypermultiplet.
The proof of Proposition 2.3.7 thus clarifies how the two families are related.

Proposition 2.3.6. Given a constant c ą 0, the full isometry group of the 1-loop deformation
g1cUH of the universal hypermultplet metric given in (2.89) is the semidirect product of a
Heisenberg group with a rotation group

Heis3(R)¸O(2) (2.96)

consisting of isometries of one of the following two forms:

(ρ, ζ, τ) ÞÑ

(
ρ, eiθ(ζ + ζ1), τ + τ1 +

2
ν

Im(ζ1ζ)

)
,

(ρ, ζ, τ) ÞÑ

(
ρ, e´iθ(ζ + ζ

1
),´τ´ τ1 ´

2
ν

Im(ζ1ζ)

)
,

(2.97)

where τ1, θ P R and ζ1 P C are arbitrary constants. In particular, g1c is of cohomogeneity 1.

Proof. The curvature norm of the metric g, which may be computed using the results
of [CS17] to be

tr(R2) = 6ν2

(
1 +

(
ρ

ρ + 2c

)6
)

, (2.98)

is an injective function of ρ, and so any isometry of g must necessarily preserve
constant ρ hypersurfaces. Moreover, it must preserve the unit normal field of these
hypersurfaces, which is

?
´2ν ρ

d

ρ + c
ρ + 2c

Bρ. (2.99)

This implies that an isometry of g1c must necessarily be of the form

(ρ, ζ, τ) ÞÑ (ρ, (φ(ζ, τ)), (2.100)

for some automorphism φ of CˆR.
This already significantly constrains the form of any possible isometry of g1c.

In order to constrain this even further, we adopt the following strategy. First we
describe the full Killing algebra of g1c and then we’ll use the fact that any isometry
should induce an automorphism of the Killing algebra.

Note that (2.100) in particular implies that any Killing field Z of g must be of the
form

Z = A2(ζ, τ)Z2 + A3(ζ, τ)Z3 + A4(ζ, τ)Z4, (2.101)

where the Aa are some functions of ζ = x + iy and τ, and the Za are minor modifi-
cations of the Za defined in (2.43), namely

Z2 =
1
2

(
Bx ´

2y
ν
Bτ

)
, Z3 =

1
2

(
By +

2x
ν
Bτ

)
, Z4 = Bτ. (2.102)

We can deduce the following from the above form of the Killing field:

´2νρ2LZg1c = 2(ρ + 2c)LZ(|dζ|2) +
ρ + c
ρ + 2c

LZ

((
´

ν

2
dτ + Im(ζ dζ)

)2
)

. (2.103)
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Since this must hold for all ρ ą 0, it can be concluded that the Lie derivatives vanish
separately:

LZ(|dζ|2) = LZ

((
´

ν

2
dτ + Im(ζ dζ)

)2
)
= 0. (2.104)

Substituting (2.101) into the above and using the fact that Z2, Z3, Z4 are themselves
Killing fields satisfying the above, we get the following system of differential equa-
tions for the functions Aa:

dA2 dx + dA3 dy = 0, (2.105a)

y dA2 ´ x dA3 ´
ν

2
dA4 = 0. (2.105b)

The only way (2.105a) can hold is if A2 is a function solely of y, A3 is a function solely
of x and they satisfy

By A2 = ´Bx A3. (2.106)

Since this is an equality of a function of y and a function of x, it follows that they are
both equal to some constant k, which in particular means that A2 and A3 are both
affine linear. As we already know Z2, Z3, Z4 to be Killing fields, we are only inter-
ested in the functions A2, A3, A4 up to a constant term. So, wihout loss of generality,
we can take A2 and A3 to be linear and given by

A2 = ky, A3 = ´kx. (2.107)

Substituting this into (2.105b), we get

d
(

k
2
(x2 + y2)´

ν

2
A4

)
= 0. (2.108)

This means that the function under the exterior derivative must be constant. Again,
since we are interested in A4 only up to a constant term, we may take this to be zero.
This gives us

A4 = ´
k
ν
(x2 + y2) = ´

k
ν
|ζ|2. (2.109)

Thus any Killing field Z of g1c is necessarily an R-linear combination of Z2, Z3, Z4,
and

Z5 := y Z2 ´ x Z3 ´
1
ν
|ζ|2Z4 =

1
2
(y Bx ´ x By). (2.110)

This determines the full Killing algebra of g1c.
As argued earlier, any isometry must induce an automorphism of the Killing

algebra, which in particular has to send the centre to itself. Here, the centre is just
spanned by Z4 = Bτ, so φ in (2.100) must necessarily be of the form

φ(ζ, τ) = (φ1(ζ), φ2(ζ, τ)). (2.111)

As in the case of Killing fields, φ must separately satisfy

φ˚|dζ|2
(2.111)
= φ˚1 |dζ|2 = |dζ|2, (2.112a)

φ˚
(
´

ν

2
dτ + Im(ζ dζ)

)2
=
(
´

ν

2
dτ + Im(ζ dζ)

)2
. (2.112b)

where φ˚ denotes the linear map on tensor fields induced by the diffeomorphism
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c
a

FIGURE 1: Pedersen metrics (light green) versus 1-loop deformed uni-
versal hypermultiplet (red).

φ via Lie dragging. Note that (2.112a) just means that φ1 is a Euclidean motion
(inclusive of reflections) and so entails one of the following two possibilities:

φ1(ζ) = eiθ(ζ + ζ1), (2.113a)

φ1(ζ) = e´iθ(ζ + ζ
1
), (2.113b)

where θ P R and ζ1 P C are arbitrary constants. Equation (2.112b) also entails two
possibilities:

φ˚
(
´

ν

2
dτ + Im(ζ dζ)

)
= ˘

(
´

ν

2
dτ + Im(ζ dζ)

)
. (2.114)

These can be written out more explictly as

ν

2
d(φ2(ζ, τ)´ τ) = Im

(
φ1(ζ)d(φ1(ζ))´ ζ dζ

)
, (2.115a)

ν

2
d(φ2(ζ, τ) + τ) = Im

(
φ1(ζ)d(φ1(ζ)) + ζ dζ

)
. (2.115b)

Since the left-hand sides are exact, so must be the right-hand sides. Therefore,
(2.115a) is compatible only with (2.113a), and likewise, (2.115b) is compatible only
with (2.113b). These two choices gives us two forms of isometries in (2.97).

Proposition 2.3.7. Given constants a, b, c ą 0, the metric ga,b,c given in (2.95) is of coho-
mogeneity 1, and when 4ac ą b2, isometric to a metric in the Pedersen family

γm =
1

ν(1´ $2)2

(
1 + m2$2

1 + m2$4 d$2 + $2(1 + m2$2)(ς2
1 + ς2

2) +
$2(1 + m2$4)

1 + m2$2 ς2
3

)
,

(2.116)

restricted to an open everywhere dense subset of (0, 1)ˆ S3, where ς1, ς2, ς3 are a choice of
SU(2)-invariant 1-forms on the 3-sphere S3 – SU(2) satisfying

dς1 = ς2 ^ ς3. (2.117)
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Proof. That the cohomogeneity of the metric is a least 1 when b ą 0 can be seen from
the fact that its curvature norm, computed using SageManifolds to be

tr(R2) = 6ν2

(
1 + b2((b2 ´ 2ac)2 + 4a2c2)

(
ρ

ρ + 2c

)6
)

, (2.118)

is an injective function of ρ ą 0 whenever

b2((b2 ´ 2ac)2 + 4a2c2) ‰ 0. (2.119)

But for this to vanish, we either need b to vanish or for b2 ´ 2ac and ac to simultane-
ously vanish, which again necessarily implies the vanishing of b.

Meanwhile, that the cohomogoneity is exactly 1 when a, b ą 0 may be seen from
the fact that the constant ρ submanifolds are (at least locally) transitively acted on
by isometries

(ρ, τ, ζ) ÞÑ

(
ρ, τ + τ1 +

4b
νa

Im
(

ln
(c

a
2

vζ + w
))

,
wζ ´

a a
2 v

a a
2 vζ + w

)
, (2.120)

where v, w P C and satisfy |v|2 + |w|2 = 1. Geometrically, we can interpret ζ as the
stereographic coordinate on a Riemann sphere with (v, w) parametrising rotations
of the sphere.

Next we turn to the demonstrating the isometry with the Pedersen family γm.
This is in fact given by the following change of coordinates:

ρ =
b

2a

(
1
$2 ´ 1

)
, ζ =

c

2
a

ξ, τ =
2b
a

θ. (2.121)

Note that this is invertible when 0 ă $ ă 1, with the inverse coordinate transforma-
tion given by

$ =

d

b
2aρ + b

, ξ =

c

a
2

ζ, θ =
a

2b
τ. (2.122)

Under this coordinate transformation, the metric in (2.95) becomes

g =
1

ν(1´ $2)2

(
1 + k$2

1 + k$4 d$2 + $2(1 + k$2)(ς2
1 + ς2

2) +
$2(1 + k$4)

1 + k$2 ς2
3

)
, (2.123)

where k is given by

k =
4ac
b2 ´ 1, (2.124)

and ς1, ς2, ς3 are 1-forms given by

ς1 =
Re
(
eiθdξ

)
1 + |ξ|2

, ς2 =
Im
(
eiθdξ

)
1 + |ξ|2

, ς3 =
1
2

dθ +
Im(ξ dξ)

1 + |ξ|2
. (2.125)

These constitute a choice of SU(2)-invariant 1-forms on the unit 3-sphere S3 parametrised
by the coordinates (ξ, θ) P CˆR/2πZ as follows:(

eiθξ

1 + |ξ|2
,

eiθ

1 + |ξ|2

)
P S3 Ă C2. (2.126)
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When k ě 0, this family is precisely the Pedersen family of metrics with k = m2.

Remark 2.3.8. The distinction between the 1-loop-deformed universal hypermultiplet
metric and the Pedersen family may be more easily visualised by setting b = 1 so
that (2.124) becomes

k = 4ac´ 1. (2.127)

In order for the resulting metric (2.95) to be Pedersen, k must be nonnegative and
so 4ac must be at least 1. By contrast, we obtain the 1-loop-deformed universal
hypermultiplet if we set a = 0. This is depicted in Figure 1.
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Chapter 3

The twist construction

In this chapter, we review the twist construction due to Swann, and derive some
of its basic properties, especially how it interacts with various derivative operators
such as the exterior derivative, the Lie derivative, and the Levi-Civita connection.

The approach to the twist construction undertaken here is rather different from
that of Swann. While Swann considered a U(1)-principal bundle P fibred over both
the given manifold M and its twist M̃, we define the twist directly on local patches
of M. In the process, we introduce some additional local auxiliary data, but later
prove in Proposition 3.3.1 that for tensor fields invariant with respect to the vector
field Z that is part of the twist data, the choice of the auxiliary data doesn’t matter.
The main advantage this approach offers is that it allows us to

(a) avoid having to lift tensor fields on M to P,

(b) bypass several technical difficulties associated with ensuring properness of group
actions on P,

(c) use tensor fields which are not Z-invariant to verify local properties that the
twists of certain tensor fields need to satisfy.

As a result of this, we give much more direct proofs of certain results originally ob-
tained by Swann in [Swa10], such as Propositions 3.1.13, 3.2.1, and 3.2.2. We are also
able to derive some new results, such as Proposition 3.2.4, which, along with Corol-
lary 3.2.6 (proved in a different way in collaboration with Danu Thung in [CST20b]),
allows us to transport Hamiltonian Killing fields through the twist, and Proposition
3.2.8, which relates the Levi-Civita connection of the twist of a metric to the Levi-
Civita connection of the given metric.

Finally, in Definition 3.3.4, we introduce a global version of the twist as a map
sending Z-invariant tensor fields on some manifold M to tensor fields on another
manifold M̃. As a necessary existence criterion, we retrieve (a slight generalisation
of) the U(1)-principal bundle P in Swann’s construction as a submanifold of Mˆ M̃
in Theorem 3.3.9 and show that the existence of such a double surjection is sufficient
in Theorem 3.3.10. We further illustrate the obstruction that the irrationality of ω
poses to the existence of a global twist map through Example 3.3.11.

3.1 The local twist map

The twist construction was introduced by Swann in [Swa10] in order to unify and
generalise several constructions involving manifolds endowed with hypercomplex
structures inspired by the celebrated T-duality in physics. The construction is essen-
tially a correspondence of manifolds equipped with certain twist data.
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Definition 3.1.1 (Twist data). A manifold M is said to be equipped with twist data
(Z, ω, f ) where Z is a nowhere vanishing vector field, ω is a closed 2-form, and
f : M Ñ R is a nowhere vanishing smooth Z-invariant function satisfying

ιZω = ´d f . (3.1)

Definition 3.1.2 (Twist automorphism). A twist automorphism φ of a manifold equipped
with twist data (Z, ω, f ) is a diffeomorphism φ : M Ñ M preserving all the twist
data:

φ˚Z = Z, φ˚ω = ω, φ˚ f = f . (3.2)

The group of twist automorphisms shall be denoted Aut(Z, ω, f ).

Example 3.1.3. From Lemma 2.2.7 we know that a quaternionic Kähler manifold
with a nowhere vanishing Killing field Z with nowhere vanishing quaternionic mo-
ment map µZ such that fQ as defined in (2.57) is nowhere vanishing, admits twist
data (Z, ωQ, fQ), where ωQ is as defined in (2.47).

In Swann’s formulation, the above data, along with the hypothesis that ω be-
longs to an integral cohomology class, was sufficient to construct the twist. In our
approach we need some extra data that in general is only locally defined. We shall
later show that this extra data, although necessary to explicitly construct the twist,
is ultimately superfluous up to local diffeomorphisms.

Definition 3.1.4 (Auxiliary local twist data). Auxiliary local twist data (U, η) associ-
ated to twist data (Z, ω, f ) on a manifold M consists of an open set U Ď M on which
ω is exact, and a choice of local 1-form η P Γ(T˚U) such that the function f ´ η(Z)
is nowhere vanishing on U and

ω|U = dη. (3.3)

Moreover, the full tuple (U, Z, ω, f , η) consisting of the twist data and auxiliary local
twist data shall be referred to as just local twist data.

Example 3.1.5. Let (Z, ω, f ) be twist data on some manifold M such that Z acts
properly on M. Then let πB : M Ñ B denote the quotient by the Z-action and let
τ P R/Z be the fibre coordinate so that Z = Bτ and

ω =: d f ^ dτ + π˚B(ω
B). (3.4)

Note that ωB is closed. We choose an open set U = π´1
B (UB) such that UB is con-

tractible. In particular, the restriction ωB|UB is exact. Let ωB|UB = dηB, and let

η = ( f + 1)dτ + π˚B(η
B). (3.5)

Then dη = ω|U and f ´ η(Z) = ´1. This therefore gives us auxiliary local twist data
(U, η).

Example 3.1.6. In general, local oriented orthonormal frames for the quaternionic
bundle Q on a quaternionic Kähler manifold M is guaranteed to exist only over
contractible open sets of M. Let U be such a set. If we choose a frame (J11 = JZ, J12, J13)
over U as in the proof of Lemma 2.2.7, then (2.54) provides a potential candidate for
the auxiliary 1-form ηQ:

ηQ = ´
ιZg
‖µZ‖ ´ α123. (3.6)
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For this to actually qualify, we need to ensure that

fQ ´ ηQ(Z) = ´ν‖µZ‖+ α123(Z)
(2.41)
= ´xJ12, (∇Z ´LZ)J13y+ xJ

1
2,∇Z J13y

= xJ12, LZ J13y
(3.7)

is nowhere vanishing. But from Lemma 2.2.11, we know that this can be chosen to
be any (nonzero) constant κ.

Note that J11 is globally well-defined while α123 = xJ12,∇g J13y (and hence ηQ) re-
mains preserved under a constant rotation

(J12, J13) ÞÑ (cos(a)J12 + sin(a)J13,´ sin(a)J12 + cos(a)J13). (3.8)

When the Z-action is proper, this observation can be used to define local twist data
on Z-invariant open sets U even when they are not contractible (which is indeed the
case when the Z-action is a U(1)-action) with the help of a contractible open cover
of U.

Using this extra data, we can now define a local linear map acting on tensor fields

S P Γ(T˚Ub˛ b TUb‚) =: Γ(T‚,˛U). (3.9)

Definition 3.1.7 (Local twist map). The local twist map twZ, f ,η with respect to local
twist data (U, Z, ω, f , η) is a graded C8(U)-linear map

twZ, f ,η : Γ(T‚,˛U)Ñ Γ(T‚,˛U) (3.10)

of tensor fields, compatible with tensor products and contractions, whose action on
an arbitrary function h and 1-form α is given by

twZ, f ,η(h) = h, twZ, f ,η(α) = α´
α(Z)

f
η. (3.11)

Remark 3.1.8. As it stands, the above definition obscures why we need f ´ η(Z) to
be nowhere vanishing, but this requirement is crucial for the local twist map to be
well-defined. In order to see this, we work out the local twist of an arbitrary vector
field u. Let us choose an arbitrary 1-form α. Then, compatiblity with contraction
means that

α(u) = twZ, f ,η(α)(twZ, f ,η(u))

= α(twZ, f ,η(u))´
1
f

α(Z)η(twZ, f ,η(u))

= α

(
twZ, f ,η(u)´

1
f

η(twZ, f ,η(u))Z
)

.

(3.12)

Since α was arbitrarily chosen, it follows that

u = twZ, f ,η(u)´
1
f

η(twZ, f ,η(u))Z. (3.13)

Plugging both sides of the above equation into the 1-form η, we find that

η(u) =
f ´ η(Z)

f
η(twZ, f ,η(u)). (3.14)
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Thus, if f ´ η(Z) vanished at some point, then u would be forced to lie in the kernel
of η at that point. This contradicts the fact that u is arbitrary and so it follows that
f ´ η(Z) must be nowhere vanishing. Given this, we may substitute

η(twZ, f ,η(u)) =
f

f ´ η(Z)
η(u) (3.15)

into (3.13) and rearrange to obtain the following expression for the action of the local
twist map on u:

twZ, f ,η(u) = u +
η(u)

f ´ η(Z)
Z. (3.16)

Remark 3.1.9. Since the local twist map is linear and compatible with tensor products,
it preserves symmetries of tensor fields. In particular, the local twists of a k-form α
and a symmetric bilinear form field g, given by

twZ, f ,η(α) = α´
1
f

η ^ ιZα,

twZ, f ,η(g) = g´
2
f

η ιZg +
g(Z, Z)

f 2 η2

= g´
(ιZg)2

g(Z, Z)
+

g(Z, Z)
f 2

(
η ´

f
g(Z, Z)

ιZg
)2

= g´
1

g(Z, Z)
((ιZg)2 ´ (twZ, f ,η(ιZg))2).

(3.17)

are also a k-form and a symmetric bilinear form field, respectively.
Moreover, since the local twist is compatible with contractions, the local twist

of a nondegenerate symmetric bilinear form is again nondegenerate with the same
signature and the local twist of endomorphism fields Ai, given by

twZ, f ,η(Ai) = Ai +
1

f ´ η(Z)
[η b Z, Ai]

+
1

f ( f ´ η(Z))
(η(Z)Ai ´ tr((η b Z) ˝ Ai)id) ˝ (η b Z),

(3.18)

satisfy any algebraic relations that Ai does. In particular, the local twist of the iden-
tity endomorphism field is the identity endomorphism field itself and that of local
AQH structures Ji with respect to some metric g are again local AQH structures
twZ, f ,η(Ji) with respect to twZ, f ,η(g).

Note however that if Ji are quaternionic Kähler structures with respect to g, the
local twists twZ, f ,η(Ji) will not be quaternionic Kähler structures with respect to
twZ, f ,η(g). This is because the quaternionic Kähler property is a differential crite-
rion and not an algebraic one.

Example 3.1.10 (Trivial twist). The tuple (U, ω, Z, f , η) with ω = η = 0 and f a
nonzero constant constitute valid local twist data. The local twist with respect to it
is just the identity map.
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Example 3.1.11. The local twist data associated with the quaternionic Kähler metric
(2.29) on CH2, equipped with the Killing field Z = Z4 = Bτ, may be taken to be

fQ = ´
g(Z, Z)
‖µZ‖ ´ ν‖µZ‖ = ´ (4ρ2)´1

(4ρ)´1 +
2

4ρ
= ´

1
2ρ

,

ηQ = ´
ιZg
‖µZ‖ ´ α123 = ´

(2ρ)´1

(4ρ)´1 ϑ4 + ϑ4 + κ dτ = ´ϑ4 + κ dτ,

ωQ = dηQ = ´dϑ4 =
1
ρ

dx^ dy +
1

2ρ2 dρ^ (dτ + y dx´ x dy)

= 2(ϑ2 ^ ϑ3 + ϑ1 ^ ϑ4).

(3.19)

In particular, we have

twZ, fQ,ηQ(ιZg) = ιZg´
g(Z, Z)

fQ
ηQ

=
1

2ρ
ϑ4 +

(4ρ2)´1

(2ρ)´1 (´ϑ4 + κ dτ) =
κ

2ρ
dτ,

twZ, fQ,ηQ(g) = g´
1

g(Z, Z)
((ιZg)2 ´ (twZ, f ,η(ιZg))2)

=
1

4ρ2 (dρ2 + 2ρ|dζ|2) + κ2dτ2.

(3.20)

We can now check that

twZ, fQ,ηQ(J1) = dxb By ´ dyb Bx ´
1

2κρ
dρb Bτ + 2κρ dτb Bρ,

twZ, fQ,ηQ(J2) =
a

2ρ dyb Bρ ´
1

a

2ρ
dρb By ´

1
κ
a

2ρ
dxb Bτ + κ

a

2ρ dτb Bx,

twZ, fQ,ηQ(J2) =
1

a

2ρ
dρb Bx ´

a

2ρ dxb Bρ ´
1

κ
a

2ρ
dyb Bτ + κ

a

2ρ dτb By,

(3.21)

form an AQH structure with respect to twZ, fQ,ηQ(g). This structure however is not
quaternionic Kähler.

Example 3.1.12. The local twist of the standard elementary quaternionic deforma-
tion gQ with respect to the quaternionic twist data (Z, ωQ, fQ) is given by

twZ, fQ,ηQ(gQ) = gQ ´
1

gQ(Z, Z)
((ιZgQ)

2 ´ (twZ, f ,η(ιZgQ))
2)

(2.61)
= gQ +

K fQ

‖µZ‖2
1

g(Z, Z)
((ιZg)2 ´ (twZ, f ,η(ιZg))2).

(3.22)

It makes sense to apply the local twist map to the twist data on an open set U
itself. These can in fact be used to obtain a second tuple of local twist data on the
same domain U such that the local twist with respect to this second tuple of twist
data is inverse to that with respect to the first! Thus, the local twist map may be
regarded as an involution of (local) twist data.
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Proposition 3.1.13. If (U, Z, ω, f , η) is local twist data on some manifold M, then so is its
“dual”

(U, Z̃, ω̃, f̃ , η̃) :=
(

U,´
1
f

twZ, f ,η(Z),
1
f

twZ, f ,η(ω),
1
f

,
η

f

)
. (3.23)

Moreover, the local twist map with respect to local twist data (U, Z̃, ω̃, f̃ , η̃) satisfies

twZ̃, f̃ ,η̃ ˝ twZ, f ,η = twZ, f ,η ˝ twZ̃, f̃ ,η̃ = idT‚,˛U ,

(U, Z, ω, f , η) =

(
U,´

1
f̃

twZ̃, f̃ ,η̃(Z̃),
1
f̃

twZ̃, f̃ ,η̃(ω̃),
1
f̃

,
η̃

f̃

)
.

(3.24)

Proof. That f̃ and Z̃ are nowhere vanishing is clear. To check if f̃ ´ η̃(Z̃) is also
nowhere vanishing, we first work out the explicit expression for Z̃ as follows:

Z̃ = ´
1
f

twZ, f ,η(Z)
(3.16)
= ´

1
f

(
Z +

η(Z)
f ´ η(Z)

Z
)
= ´

1
f ´ η(Z)

Z, (3.25)

Now we may check that

f̃ ´ η̃(Z̃)
(3.25)
=

1
f
+

1
f ( f ´ η(Z))

η(Z) =
1

f ´ η(Z)
. (3.26)

Next we work out an explicit expression for ω̃:

ω̃ =
1
f

twZ, f ,η(ω)
(3.17)
=

1
f

(
ω´

1
f

ηιZω

)
=

1
f

dη ´
1
f 2 d f ^ η = d

(
η

f

)
= dη̃.

(3.27)

From the above we see that ω̃ is closed and that η̃ is an auxiliary 1-form for ω̃. The
last thing to check is that the vector field Z̃ is Hamiltonian with respect to ω̃ with
Hamiltonian function f̃ . For this we make use of the fact that the local twist map
preserves contractions to see that

ιZ̃ω̃ = ´
1
f 2 twZ, f ,η(ω)(twZ, f ,η(Z), ¨) = ´

1
f 2 twZ, f ,η(ιZω)

= ´
1
f 2

(
ιZω´

ω(Z, Z)
f 2 η

)
=

d f
f 2 = ´d

(
1
f

)
= ´d f̃ .

(3.28)

Now that we have verified that (U, Z̃, ω̃, f̃ , η̃) satisfies all the defining poperties of
local twist data, we describe the local twist map with respect to it in terms of the
local twist data (U, Z, ω, f , η). It suffices to do this just for a 1-form α:

twZ̃, f̃ ,η̃(α) = α´
α(Z̃)

f̃
η̃ = α +

α(Z)
f ´ η(Z)

η. (3.29)

Straightforward substitution then gives us

twZ̃, f̃ ,η̃ ˝ twZ, f ,η(α) = twZ, f ,η ˝ twZ̃, f̃ ,η̃(α) = α. (3.30)
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If twZ̃, f̃ ,η̃ and twZ, f ,η restricted to 1-forms are inverses of each other, then they must
be inverses for all tensor fields. In particular,(

U,´
1
f̃

twZ̃, f̃ ,η̃(Z̃),
1
f̃

twZ̃, f̃ ,η̃(ω̃),
1
f̃

,
η̃

f̃

)
=

(
U,

1
f̃ f

twZ̃, f̃ ,η̃ ˝ twZ, f ,η(Z),
1
f̃ f

twZ̃, f̃ ,η̃ ˝ twZ, f ,η(ω),
1
f̃

,
η

f̃ f

)
= (U, Z, ω, f , η).

(3.31)

3.2 Derivatives under the local twist

3.2.1 Exterior derivative

In Remark 3.1.9, it was mentioned that the local twist preserves algebraic relations
but not differential ones. Since we are eventually interested in describing what hap-
pens to the quaternionic Kähler condition under the twist, we need to first investi-
gate what happens to derivatives, such as the exterior derivative, the Lie derivative,
and the Levi-Civita connection with respect to some metric. We take these up one
by one, beginning with the exterior derivative.

Proposition 3.2.1. Any k-form α on a manifold M equipped with local twist data (U, Z, ω, f , η)
satisfies over U the following equation:

d ˝ twZ, f ,η(α) = twZ, f ,η

(
dα´

1
f

ω^ ιZα

)
+

1
f

η ^LZα. (3.32)

Proof. This follows from a direct computation:

d ˝ twZ, f ,η(α) = d
(

α´
1
f

η ^ ιZα

)
= dα +

1
f 2 d f ^ η ^ ιZα´

1
f

dη ^ ιZα +
1
f

η ^ d ˝ ιZα

= dα´
1
f 2 ιZω^ η ^ ιZα´

1
f

ω^ ιZα +
1
f

η ^ d ˝ ιZα

= dα´
1
f

ω^ ιZα +
1
f 2 η ^ ιZω^ ιZα

´
1
f

η ^ ιZdα +
1
f

η ^LZα

= twZ, f ,η

(
dα´

1
f

ω^ ιZα

)
+

1
f

η ^LZα.

(3.33)

3.2.2 Lie derivatives

As the Cartan formula relates exterior derivatives to Lie derivatives, we can boot-
strap our way to a relation between local twists and the Lie derivative using the
above result.
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Proposition 3.2.2. Any vector fields u, v and k-form α on a manifold M equipped with local
twist data (U, Z, ω, f , η) satisfy over U the following equations:

LtwZ, f ,η(u) ˝ twZ, f ,η(α) = twZ, f ,η

(
Luα´

1
f

ιuω^ ιZα +
η(u)

f ´ η(Z)
LZα

)
+

1
f

η ^ ιLZuα, (3.34a)

LtwZ, f ,η(u) ˝ twZ, f ,η(v) = twZ, f ,η

(
Luv +

1
f

ω(u, v)Z

+
η(u)

f ´ η(Z)
LZv´

η(v)
f ´ η(Z)

LZu
)

. (3.34b)

Proof. In order to show (3.34a), we use the Cartan formula to rewrite the left-hand
side as

LtwZ, f ,η(u) ˝ twZ, f ,η(α) = d ˝ ιtwZ, f ,η(u) ˝ twZ, f ,η(α) + ιtwZ, f ,η(u) ˝ d ˝ twZ, f ,η(α)

= d ˝ twZ, f ,η(ιuα) + ιtwZ, f ,η(u) ˝ d ˝ twZ, f ,η(α).
(3.35)

Using (3.32), collecting terms under the local twist, and simplifying, we get

LtwZ, f ,η(u) ˝ twZ, f ,η(α) = twZ, f ,η

(
Luα´

1
f

ιuω^ ιZα

)
+

1
f

η ^ ιLZuα

+
1
f
(η ^ ιu(LZα) + ιtwZ, f ,η(u)(η ^LZα)).

(3.36)

Equation (3.34a) then follows from the observation that

η ^ ιu(LZα) + ιtwZ, f ,η(u)(η ^LZα)

= η(u)LZα´ ιu(η ^LZα) + ιtwZ, f ,η(u)(η ^LZα)

(3.16)
= η(u)LZα +

η(u)
f ´ η(Z)

ιZ(η ^LZα)

=
f η(u)

f ´ η(Z)

(
LZα´

1
f

η ^ ιZ(LZα)

)
(3.17)
=

f η(u)
f ´ η(Z)

twZ, f ,η(LZα).

(3.37)

As for showing (3.34b), we plug its left-hand side into the local twist of an arbitrary
1-form α and rewrite it as

twZ, f ,η(α)(LtwZ, f ,η(u) ˝ twZ, f ,η(v))

= d(α(v))(twZ, f ,η(u))´ (LtwZ, f ,η(u) ˝ twZ, f ,η(α))(twZ, f ,η(v)).
(3.38)

Then we may use (3.16) and (3.34a) followed by collecting terms together under α to
see that

twZ, f ,η(α)(LtwZ, f ,η(u) ˝ twZ, f ,η(v))

= α

(
Luv +

1
f

ω(u, v)Z +
η(u)

f ´ η(Z)
LZv´

η(v)
f ´ η(Z)

LZu
)

,
(3.39)

from which (3.34b) follows by compatibility of the local twist with contraction.

The above proposition has an important consequence.
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Corollary 3.2.3. Any tensor field S on a manifold M equipped with local twist data (U, Z, ω, f , η)
and dual twist data (U, Z̃, ω̃, f̃ , η̃) satisfies over U the following equation:

LZ̃ ˝ twZ, f ,η(S) = ´
1

f ´ η(Z)
twZ, f ,η(LZS). (3.40)

In particular, the local twist map sends Z-invariant tensor fields and Z-invariant tensor
distributions to Z̃-invariant tensor fields and Z̃-invariant tensor distributions respectively.

Proof. Substituting u = ´ 1
f Z into (3.34a) and simplifying gives us for any k-form α

LZ̃ ˝ twZ, f ,η(α) = L
´ 1

f twZ, f ,η(Z) ˝ twZ, f ,η(α) = ´
1

f ´ η(Z)
twZ, f ,η(LZα). (3.41)

In particular, the above holds for 1-forms and 0-forms i.e. functions. Since any tensor
field may be defined in terms of these via contractions, tensor products, and R-linear
combinations, and since the Lie derivative distributes over these via linearity and the
Leibniz rule, it follows that the above holds for an arbitrary tensor field S.

In fact, this corollary admits a useful generalisation.

Proposition 3.2.4. Given a manifold equipped with local twist data (U, Z, ω, f , η), if a
vector field v is Hamiltonian with respect to ω with Z-invariant Hamiltonian function fv,
then

ṽ := twZ, f ,η(v) + ( fv + 1)Z̃ = twZ, f ,η

(
v´

fv + 1
f

Z
)

(3.42)

is Hamiltonian with respect to ω̃ with Hamiltonian function

f̃ṽ :=
fv + 1

f
´ 1 (3.43)

and satisfies for any tensor field S over U, the following equation:

Lṽ ˝ twZ, f ,η(S) = twZ, f ,η

(
LvS´

fv ´ η(v) + 1
f ´ η(Z)

LZS
)

. (3.44)

In particular, the local twist map sends (Z, v)-invariant tensor fields to (Z̃, ṽ)-invariant
tensor fields.

Proof. To check that ṽ is indeed Hamiltonian with respect to ω̃ with Hamiltonian
function f̃ṽ, we compute

ιṽω̃ =
1
f

twZ, f ,η(ω)

(
twZ, f ,η

(
v´

fv + 1
f

Z
)

, ¨
)

=
1
f

twZ, f ,η

(
ιvω´

fv + 1
f

ιZω

)
= ´twZ, f ,η

(
f d fv ´ ( fv + 1)d f

f 2

)
= ´twZ, f ,η

(
d
(

fv + 1
f

´ 1
))

(3.32)
= ´d

(
fv + 1

f
´ 1
)
+ η ^LZ

(
fv + 1

f
´ 1
)

= ´d
(

fv + 1
f

´ 1
)
= ´d f̃ṽ.

(3.45)
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Meanwhile to show (3.44), we substitute into (3.34a)

u = v´
fv + 1

f
Z. (3.46)

Using the fact that if v has a Z-invariant Hamiltonian function with respect to a
Z-invariant form ω, then v itself is Z-invariant, we obtain for any k-form α the fol-
lowing equation upon simplification:

Lṽ ˝ twZ, f ,η(α) = twZ, f ,η

(
Lvα´

fv ´ η(v) + 1
f ´ η(Z)

LZα

)
. (3.47)

Then the same argument as in the proof of Corollary 3.2.3 implies the above holds
for all tensor fields S.

Remark 3.2.5. Note that (v, ω, fv) Ø (ṽ, ω̃, f̃ṽ) is an involution and generalises the
involution (Z, ω, f )Ø (Z̃, ω̃, f̃ ) of twist data dual to each other.

The reason this result is useful is that if we already know that a given Z-invariant
metric g admits some Killing fields va with specified Z-invariant Hamiltonians fva ,
then we automatically obtain Killing fields ṽa for the local twist twZ, f ,η(g). In fact,
we can directly read off the structure constants of the Lie algebra of such Killing
fields using the following corollary.

Corollary 3.2.6. Given a manifold equipped with local twist data (U, Z, ω, f , η), and vec-
tor fields v1, v2, v3 Hamiltonian with respect to ω with Z-invariant Hamiltonian functions
fv1 , fv2 , fv3 respectively such that

[v1, v2] := Lv1 v2 = v3, (3.48)

then the vector fields
ṽa = twZ, f ,η(va) + ( fva + 1)Z̃, (3.49)

satisfy the following equation:

[ṽ1, ṽ2] := Lṽ1 ṽ2 = ṽ3 + (ω(v1, v2)´ fv3 ´ 1)Z̃. (3.50)

Proof. We make the following substitutions into (3.44):

v = v1, S = v2 ´
fv2 + 1

f
Z. (3.51)

Then using the assumed Z-invariance of fv2 and hence v2, we obtain

Lṽ1 ˝ twZ, f ,η(v2) = twZ, f ,η ˝Lv1

(
v2 ´

fv2 + 1
f

Z
)

= twZ, f ,η

(
Lv1 v2 ´ v1

(
fv2 + 1

f

)
Z
)

.
(3.52)

Equation (3.50) then follows from the observation that

v1( f ) = d f (v1) = ´ω(Z, v1) = d f1(Z) = 0,
v1( fv1) = d fv2(v1) = ω(v1, v2).

(3.53)
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Example 3.2.7. From Example 2.2.6 and the proof of Proposition 2.3.6, we know that
the following vector fields are Killing with respect to the metric (2.29) on CH2:

Z1 = ρ Bρ +
1
2
(x Bx + y By) + τ Bτ, Z2 =

1
2
(Bx + y Bτ), Z3 =

1
2
(By ´ x Bτ),

Z4 = Bτ, Z5 =
1
2
(y Bx ´ x By).

(3.54)

Of these, all the Killing fields other than Z1 Lie-commute with Z = Z4 and are
Hamiltonian with respect to ωQ:

ιZ2 ωQ = ´d
(
´

y
2ρ

)
, ιZ3 ωQ = ´d

(
x

2ρ

)
,

ιZ4 ωQ = ´d
(
´

1
2ρ

)
, ιZ5 ωQ = ´d

(
´

x2 + y2

4ρ

)
.

(3.55)

It will be convenient to make the following choice of Hamiltonian functions:

fZ1 = ´
y

2ρ
´ 1, fZ3 =

x
2ρ
´ 1, fZ4 = ´

1
2ρ

, fZ5 = ´
x2 + y2

4ρ
´ 1. (3.56)

Note that any R-linear combination

u = c2Z2 + c3Z3 + c4Z4 + c5Z5 (3.57)

of these vector fields is also going to be an ωQ-Hamiltonian Killing field commuting
with Z. We choose the Hamiltonian function fu of u so that fu + 1, rather than fu
itself, is linear in the coefficients ca. This is to ensure that ũ vanishes when u vanishes.
Hence, we choose

fu = ´1 + c2( fZ2 + 1) + c3( fZ3 + 1) + c4( fZ4 + 1) + c5( fZ5 + 1). (3.58)

If we now choose ηQ as in (3.19), i.e.

ηQ = ´
1

2ρ
(dτ + y dx´ x dy) + κ dτ, (3.59)

so that the vector fields Z̃a are given by

Z̃2 = Z2 +
1
κ
( fZ2 ´ ηQ(Z2) + 1)Z = Z2 ´

y
2

Z =
1
2
Bx,

Z̃3 = Z3 +
1
κ
( fZ3 ´ ηQ(Z3) + 1)Z = Z3 +

x
2

Z =
1
2
By,

Z̃4 = Z4 +
1
κ
( fZ4 ´ ηQ(Z3) + 1)Z =

1
κ

Z =
1
κ
Bτ,

Z̃5 = Z5 +
1
κ
( fZ5 ´ ηQ(Z5) + 1)Z = Z5 =

1
2
(y Bx ´ x By),

(3.60)

then ũ is given by

ũ = u +
1
κ
( fu ´ ηQ(u) + 1)Z =

5
ÿ

a=2

caZ̃a

=
1
2
(c2 + c5y) Bx +

1
2
(c3 ´ c5x) By +

c4

κ
Bτ.

(3.61)
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It’s easy to see that this is a Killing field of the metric

twZ, fQ,ηQ(g) =
1

4ρ2 (dρ2 + 2ρ(dx2 + dy2)) + κ2dτ2. (3.62)

Moreover, we note that

LZ̃2
Z̃3 = 0 = Z̃4 + (ωQ(Z2, Z3)´ fZ4 ´ 1)Z̃,

LZ̃5
Z̃2 = Z̃3 = Z̃3 + (ωQ(Z5, Z2)´ fZ3 ´ 1)Z̃,

LZ̃5
Z̃3 = ´Z̃2 = ´Z̃2 + (ωQ(Z5, Z3) + fZ2 ´ 1)Z̃.

(3.63)

3.2.3 Levi-Civita connection

Finally, we end this section by deriving an expression for how the Levi-Civita con-
nection transforms under the local twist. This is accomplished using the Koszul
formula, which relates the Levi-Civita connection to Lie derivatives.

Proposition 3.2.8. Any vector fields u, v and metric g on a manifold M equipped with local
twist data (U, Z, ω, f , η) satisfy over U the following equation:

∇twZ, f ,η(g)
twZ, f ,η(u)

˝ twZ, f ,η(v) = twZ, f ,η

(
∇g

uv + Sω
u v + SZ

u v +
η(u)

f ´ η(Z)
LZv

)
, (3.64)

where ∇twZ, f ,η(g) and ∇g are Levi-Civita connections associated to the metrics twZ, f ,η(g)
and g, and

Sω P Γ(T1,2M) := Γ(T˚Mb2 b TM), SZ P Γ(T1,2U) := Γ(T˚Ub2 b TU) (3.65)

are tensor fields given by

2 f g(Sω
u v, w) = ω(u, v)g(Z, w)´ω(v, w)g(Z, u)´ω(u, w)g(Z, v),

2( f ´ η(Z))g(SZ
u v, w) = η(u)(LZg)(v, w) + η(v)(LZg)(u, w)´ η(w)(LZg)(u, v).

(3.66)

Proof. We introduce the shorthands g1, u1, v1, w1 for the local twists of g, u, v, w, with
w an arbitrary vector field. Then plugging in the left-hand side of (3.64) and w1 into
g1, we may use the Koszul formula:

2g1(∇g1

u1v
1, w1) = u1(g1(v1, w1)) + v1(g1(u1, w1))´w(g1(u1, v1))

+ g1(Lu1v1, w1)´ g1(Lu1w1, v1)´ g1(Lv1w1, u1).
(3.67)

By (3.16), we know that

u1(g1(v1, w1)) = u1(g(v, w)) = u(g(v, w)) +
η(u)

f ´ η(Z)
Z(g(v, w))

= u(g(v, w)) +
η(u)

f ´ η(Z)
(g(LZv, w) + g(LZw, v) + (LZg)(v, w)).

(3.68)
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Likewise, (3.34b) tells us that

g1(Lu1v1, w1) = g(Luv, w) +
1
f

ω(u, v)g(Z, w)

+
1

f ´ η(Z)
(η(u)g(LZv, w)´ η(v)g(LZu, w)).

(3.69)

Permuting u, v, w and u1, v1, w1 in the above expressions and summing them up with
signs in accordance with the Koszul formula, we get

g1(∇g1

u1v
1, w1) = g

(
∇g

uv + Sω
u v + SZ

u v +
η(u)

f ´ η(Z)
LZv, w

)
, (3.70)

from which (3.64) follows by compatibility of the local twist with contractions.

3.3 Global aspects of the twist construction

3.3.1 Auxiliary data are indeed auxiliary

So far we have been dealing with local twist maps over open sets on which closed
twist 2-form ω is exact. In order to develop a global version of the local twist map
applicable to domains on which auxiliary 1-forms η may not exist, we must first
investigate the dependence of the local twist map on η.

As it turns out, if we restrict to Z-invariant tensor fields or to Z-invariant tensor
subbundles, then local twists with respect to two different choices of auxiliary 1-
forms η0 and η1 may be identified up to local diffeomorphisms.

Proposition 3.3.1. Given two tuples of auxiliary local twist data (U, η0) and (U, η1) asso-
ciated to twist data (Z, ω, f ) such that f ´ η0(Z) and f ´ η1(Z) have the same sign and an
arbitrary point p0 P U, there exist neighbourhoods V0, V1 Ď U of p0 and a diffeomorphism
φ : V0 Ñ V1 such that φ(p0) = p0 and

φ˚twZ, f ,η0(S) = twZ, f ,η1(S), (3.71)

for all Z-invariant tensor fields S.

Proof. Note that it is enough to show this for an arbitrary Z-invariant k-form α since
any other tensor field may be defined using 0-forms and 1-forms through contrac-
tion, tensor products, and linearity, all operations compatible with diffeomorphisms.
We shall accomplish this using Moser’s trick.

Consider a smooth 1-parameter family of 1-forms

ηt = (1´ t)η0 + tη1 (3.72)

interpolating between η0 and η1 as t varies over the closed interval [0, 1]. Then the
function

f ´ ηt(Z) = (1´ t)( f ´ η0(Z)) + t( f ´ η1(Z)) (3.73)

has the same sign as f ´ η0(Z) and f ´ η1(Z) and so is nowhere vanishing, while

dηt = (1´ t)dη0 + t dη1 = ω. (3.74)
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So, (U, ηt) constitutes local data for every t P [0, 1] and we may take the local twist
with respect to it. Given an arbitrary Z-invariant k-form α, we introduce the short-
hands

Z̃t = ´
1
f

twZ, f ,ηt(Z) = ´
1

f ´ ηt(Z)
Z,

α1t = twZ, f ,ηt(α) = α´
1
f

ηt ^ ιZα.
(3.75)

Note that η1 ´ η0 is a closed 1-form on U and so by Poincaré’s lemma, we can find
a function h on a contractible neighbourhood V of p0 which vanishes at the point p0
and satisfies

η1|V ´ η0|V = dh. (3.76)

Thus we have the following chains of equalities by virtue of Corollary 3.2.3:

LhZ̃t
α1t = hLZ̃t

α1t + dh^ ιZ̃t
α1t

= 0´
1
f

dh^ twZ, f ,ηt(ιZα)

= ´
1
f

dh^ ιZα =
dα1t
dt

.

(3.77)

If we now have a 1-parameter family of diffeomorphisms φt : V0 Ñ Vt, with V0, V1 Ď

V, which satisfies

φ0 = idV0 ,
dφs

ds

ˇ

ˇ

ˇ

ˇ

s=t
(φ´1

t (p)) = h(p)Z̃t,p, (3.78)

for all p P Vt and all t P [´ε, 1 + ε] for some small ε ą 0, then the chain rule tells us
that

d
dt

(φ´1
t )˚α1t = (φ´1

t )˚
(
´LhZ̃t

α1t +
dα1t
dt

)
(3.77)
= 0. (3.79)

In particular, this would mean that

(φ´1
1 )˚α11 = (φ´1

0 )˚α10 = α0, (3.80)

which may be rearranged into
φ˚1 α10 = α11. (3.81)

Since h vanishes at the point p0, it follows that φt(p) = p for all t P [´ε, 1 + ε] and
that we may indeed find sufficiently small neighbourhoods Vt Ď U of p0 for which a
solution to (3.78) exists for all t P [´ε, 1 + ε]. So, φ = φ1 solves (3.71) for k-forms and
hence for all tensor fields.

Remark 3.3.2. Since Z-invariant tensor subbundles are locally spanned by Z-invariant
tensor fields, it follows that

φ˚twZ, f ,η0(S ) = twZ, f ,η1(S ), (3.82)

for all Z-invariant tensor subbundles S .
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Example 3.3.3. Continuing with Example 3.1.5, let dηB
0 = dηB

1 = ωB on UB. Then
there exists a function h on UB (and hence by pullback on U) such that

ηB
0 ´ ηB

1 = dh. (3.83)

Then for α a Z-invariant form on M, we have on U

twZ, f ,η0(α) = φ˚twZ, f ,η1(α), (3.84)

where the diffeomorphism φ sends (τ, pB) to (τ + h(pB), pB) for all pB P UB. Note
that since f ´ η(Z) = ´1, (3.25) implies Z̃ = Z = Bτ.

What this suggests is that in general, one should expect that only twists of Z-
invariant tensor fields and Z-invariant tensor subbundles can be patched together
from local data to have some globally well-defined meaning. The transition func-
tions on the overlap of various local patches UΛ on which auxiliary local twist data
(UΛ, ηΛ) are defined are modified by diffeomorphisms such as φ as constructed in
the above proof. So, in general, a global twist map shouldn’t be expected to be be-
tween tensor fields or tensor subbundles on the same manifold M.

3.3.2 Global twists

The idea of gluing together local twists in order to get a consistent map of invariant
tensor fields on two different manifolds is made precise by the following definition.

Definition 3.3.4 (Global twist map). Given manifolds M and M̃ equipped with twist
data (Z, ω, f ) and (Z̃, ω̃, f̃ ), a global twist map T is an R-linear map

T : Γ(T‚,˛M)Z Ñ Γ(T‚,˛M̃)Z̃ (3.85)

sending Z-invariant tensor fields on M to Z̃-invariant tensor fields on M̃, in particu-
lar (

´
1
f

Z,
1
f

ω,
1
f

)
ÞÑ (Z̃, ω̃, f̃ ), (3.86)

such that there exist

• open covers tUΛu of M and tŨΛu of M̃ and surjective local diffeomorphisms
tψΛ : UΛ Ñ ŨΛu, all indexed by the same set tΛu,

• local twist data (UΛ, Z, ω, f , ηΛ) satisfying for any Z-invariant tensor field S

ψ˚ΛT(S)|ŨΛ
= twZ, f ,ηΛ(S|UΛ). (3.87)

Furthermore, if such a map T exists, (M̃, Z̃, ω̃, f̃ ) is said to be a twist of (M, Z, ω, f ).

Remark 3.3.5. Any Z-invariant tensor subbundle is generated by (compactly sup-
ported) Z-invariant tensor fields. So, if we have a global twist map T sending Z-
invariant tensor fields on M to Z̃-invariant tensor fields on M̃, we automatically
have a map, identified with T itself, sending Z-invariant tensor subbundles on M to
Z̃-invariant tensor subbundles on M̃.

Example 3.3.6. We specialise Example 3.3.3 to the case where the Z-action is a U(1)-
action and ω is integral. Let UB

Λ be a contractible open cover of B and let hΛΣ be
functions on the (contractible) overlaps UB

Λ XUB
Σ such that

ηB
Λ ´ ηB

Σ = dhΛΣ. (3.88)



64 Chapter 3. The twist construction

Then for α a Z-invariant form on M, we have on UΛ XUΣ

twZ, f ,ηΛ(α) = φ˚ΛΣtwZ, f ,ηΣ(α), (3.89)

where φΛΣ sends (τ, pB) to (τ + hΛΣ(pB), pB). Since Z = Bτ is Hamiltonian, the
integrality of ω is equivalent to the integrality of ωB. This in turn is equivalent to
saying that we can choose the sets UB

Λ and the functions hΣΛ so that on the triple
overlaps UB

Λ XUB
Σ XUB

Π, we have the cocycle condition

hΣΠ ´ hΛΠ + hΛΣ ” 0 (mod 1). (3.90)

Phrased differently, this means that if we regard M and M̃ as U(1)-bundles on B, then
their first Chern classes are related by c1(M̃) = c1(M) + [ωB], where [ωB] denotes
the (integral) cohomology class of ωB.

The definition of twists M̃ of a manifold M and of global twist maps T between
tensor fields on M and M̃ does not make any guarantees about existence or unique-
ness. It’s not too hard to see that global twist maps, if they exist at all, are generally
not unique. This is because the composition of any global twist map between tensor
fields on M and M̃ with the linear action induced by either a twist automorphism of
M or of M̃ is again going to be a global twist map. As for existence, the construction
in Examples 3.1.5, 3.3.3, 3.3.6 can always be carried out whenever the twist vector
field Z induces a U(1)-action and the twist form ω is integral. So in these cases, a
twist certainly exists.

A necessary criterion of existence is given by Theorem 3.3.9 below, which also
establishes the relationship of our formulation of the twist with that of Swann. But
first, we need the following lemma and an easy corollary thereof.

Lemma 3.3.7. Let (M̃, Z̃, ω̃, f̃ ) be a twist of (M, Z, ω, f ) realised by a global twist map
T and let p P M and p̃ P M̃ be points such that for all Z-invariant functions h on M,
we have h(p) = T(h)( p̃). Then for any Z-invariant function h0 on M that is identically
zero in some open neighbourhood V of p, the function T(h0) is identically zero in some open
neighbourhood Ṽ of p̃ that is independent of h0.

Proof. Assume without loss of generality that V is Z-invariant. Then there exists a
Z-invariant function h1 such that h1(p) ‰ 0 and whose support is contained in V.
Thus h0h1 is identically zero on M, and so T(h0)T(h1) = T(h0h1) is identically zero
on M̃.

However, T(h1)( p̃) = h1(p) ‰ 0 by hypothesis. Since T(h1) is continuous, there
exists a neighbourhood Ṽ of p̃ on which T(h1) is nowhere vanishing. But since
T(h0)T(h1) is identically zero on Ṽ, so must be T(h0). Note that Ṽ is independent of
h0.

Corollary 3.3.8. Let (M̃, Z̃, ω̃, f̃ ) be a twist of (M, Z, ω, f ) realised by a global twist map
T and let p P M and p̃ P M̃ be points such that for all Z-invariant functions h on M, we
have h(p) = T(h)( p̃). Then if two Z-invariant functions h, h1 on M coincide in some open
neighbourhood V of p, the functions T(h), T(h1) coincide in some open neighbourhood Ṽ of
p̃ that is independent of h, h1.

Theorem 3.3.9. Let M be a manifold of dimension n equipped with twist data (Z, ω, f )
such that every point p P M is contained in a hypersurface transversal to Z which intersects
any Z-flowline in at most one point. Let (M̃, Z̃, ω̃, f̃ ) be a twist of (M, Z, ω, f ) realised by



3.3. Global aspects of the twist construction 65

a global twist map T. Then there exists a double surjection

P

M M̃

π π̃ (3.91)

where P is a manifold of dimension n + 1 equipped with a 1-form η̂ such that

dη̂ = π˚(ω), (3.92)

and for any Z-invariant vector field u on M with η̂-horiziontal lift û, we have

π̃(û) = T(u), (3.93)

where T(u) is understood as a section of the pullback bundle π̃´1TM̃ constant along the
map π̃.

Proof. Define P to be the set of pairs of points (p, p̃) P M ˆ M̃ such that for all Z-
invariant functions h on M, we have

h(p) = T(h)( p̃). (3.94)

We shall show that P has all the required properties.
Given a point (p, p̃) P P, we can by hypothesis find a hypersurface N1 containing

p and transversal to Z such that any Z-flowline intersects it at most once. Let N
be an open set of N1 containing p and let ha|N be n´ 1 coordinate functions on N.
These can be extended to n´ 1 functions ha|N1 with compact support on N1. Then
we define the value of the function ha at any other point p1 P M to be equal to the
value of the function ha|N1 at p2 if the Z-flowline through p1 intersects N1 in some
point p2 and equal to zero if the Z-flowline through p1 does not intersect N1. This
extends the coordinate functions ha|N on N to n´ 1 Z-invariant functions ha on M.

Without loss of generality, we may assume ha yields a diffeomorphism φ : N Ñ

Rn´1. Given any Z-invariant function h on M, this yields a map Fh : Rn´1 Ñ R

given by
Fh = h|N ˝ φ´1. (3.95)

Construct a new Z-invariant function h1 = Fh(ha) := Fh(h1, h2, . . .) on M that re-
stricts to h on N. If we let VN be the (Z-invariant) open neighbourhood of p in M
given by the union of all the Z-translates of N, h and h1 agree on VN . By Corollary
3.3.8, the functions T(h), T(h1) agree on some open neighbourhood ṼN of p̃ that is
independent of h, h1.

Restrictions of the global twist map T are local twists. This may be used to locally
verify that

T(Fh(ha)) = Fh(T(ha)). (3.96)

So if a point (p1, p̃1) P VN ˆ ṼN satisfies ha(p1) = T(ha)( p̃1) for all the ha, then it
satisfies h1(p1) = T(h1)( p̃1). Thus for any (p1, p̃1) P VN ˆ ṼN , we have ha(p1) =
T(ha)( p̃1) if and only if h(p1) = T(h)( p̃1) for all h (i.e. if and only if (p1, p̃1) P P).

This allows us to realise the intersection of P with the open neighbourhood VN ˆ

ṼN of an arbitrary point (p, p̃) P P as a level set of a map from VN ˆ ṼN Ď Mˆ M̃ to
Rn´1 given by

(p1, p̃1) ÞÑ ha(p1)´ T(ha)( p̃1). (3.97)



66 Chapter 3. The twist construction

Since the functions ha restrict to a coordinate chart containing p on N, it follows that
the differential of the above map is surjective. Hence, we conclude using the implicit
function theorem that P is a submanifold of Mˆ M̃ of codimension n´ 1. From the
local realisation of the twist, we know that M̃ has the same dimension as M i.e. n.
So, P is a manifold of dimension

2n´ (n´ 1) = n + 1 (3.98)

which inherits from the canonical projections prM and prM̃ on Mˆ M̃, the maps π
and π̃ to M and M̃ respectively.

In particular, if two points p, p1 are related by the flow along Z, then (p, p̃) lies in
P if and only if (p1, p̃) does so as well. Likewise, since functions on M̃ of the form
T( f ) are Z̃-invariant, if two points p̃, p̃1 are related by the flow along Z̃, then (p, p̃)
lies in P if and only if (p, p̃1) does so as well.

All this tells us so far is that the maps π and π̃ are submersions. To see that they
are indeed surjections, we make use of the fact that the local diffeomorphisms ψΛ
are surjective. Note that the graphs of the maps ψΛ are contained in P. So, given
a point p P UΛ, we have (p, ψΛ(p)) in the preimage π´1(p) of p. Likewise, given
p̃ P ŨΛ, there exists some p such that ψΛ(p) = p̃ and we have (p, p̃) in the preimage
π̃´1( p̃) of p̃.

The space of tangent vector fields on P regarded as a C8(P)-module is spanned
by vector fields of the form

u‘ u1 = u‘ (T(u) + aZ̃), (3.99)

where u is a Z-invariant vector field on M, a is a constant, and we think of TP as
being a subbundle of the pullback of the bundle

T(Mˆ M̃) – pr´1
M TM‘ pr´1

M̃ TM (3.100)

along the inclusion map from P into M ˆ M̃. Note that we have slightly abused
notation to let u and u1 denote sections of the pullback bundles pr´1

M TM and pr´1
M̃ TM

constant along prM and prM̃ respectively. Since such vector fields span the space of
all tangent vector fields on P, in order to define the 1-form η̂, it’s enough to specify
how it acts on sections of the form (3.99):

η̂(u‘ (T(u) + aZ̃)) = a. (3.101)

In particular the η̂-horizontal lift û of any Z-invariant vector field u is given by

û = u‘ T(u), (3.102)

from which (3.93) immediately follows.
Meanwhile, to deduce (3.92), we make use of the following consequence of the

naturality of Lie-commutators. If u, v are vector fields on M and u1, v1 vector fields
on M̃, then we have

Lu‘ u1(v‘ v1) = Luv‘Lu1v1. (3.103)

In conjunction with (3.50), this implies that if u, v, w are Z-invariant vector fields on
M satisfying

Luv = w, (3.104)
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then their η̂-horizontal lifts û, v̂, ŵ satisfy

Lûv̂ = Luv‘LT(u) ˝ T(v) = w‘ (T(w)´ω(u, v)Z̃)

= ŵ´ 0‘ω(u, v)Z̃,
L0‘ Z̃v̂ = LZ̃ ˝ T(v) = 0.

(3.105)

This in turn implies the following:

dη̂(û, v̂) = û(η̂(v̂))´ v̂(η̂(û))´ η̂(Lûv̂) = ω(u, v),
dη̂(0‘ Z̃, v̂) = (0‘ Z̃)(η̂(v̂))´ v̂(η̂(0‘ Z̃))´ η̂(L0‘ Z̃v̂) = 0.

(3.106)

It follows that dη̂ = π˚(ω) since vector fields of the form û and 0‘ Z̃ span Γ(TP).

We have essentially retrieved Swann’s construction of the twist map in [Swa10].
From the above proof, we see that if Z and Z̃ induced U(1)-actions on M and M̃, then
P would be a U(1)-principal bundle over both M and M̃, with η̂ being a connection
1-form for π : P Ñ M with curvature ω.

We can go the other way as well and show that the existence of a double surjec-
tion is also a sufficient criterion for the existence of global twists.

Theorem 3.3.10. Let M be a manifold of dimension n equipped with twist data (Z, ω, f )
and let

P

M M̃

π π̃ (3.107)

be a double surjection, with P being a manifold of dimension n + 1 equipped with a 1-form
η̂ such that

dη̂ = π˚(ω). (3.108)

Let XP, Ẑ, ZP be vector fields on P satisfying

π˚(XP) = 0, π̃˚(ZP) = 0, π˚(Ẑ) = Z,

η̂(XP) = 1, η̂(Ẑ) = 0, ZP = Ẑ + f XP.
(3.109)

Let T be the map sending Z-invariant tensor fields on M to tensor fields on M̃ induced by
pulling back functions on M along π and taking the η̂-horizontal lift of vector fields on M
and pushing them down onto M̃ along π̃. Then(

T
(
´

1
f

Z
)

, T
(

1
f

ω

)
, T
(

1
f

))
(3.110)

is twist data on M̃ and T is a global twist map.

Proof. Let h be a Z-invariant function and α be a Z-invariant 1-form on M. Then
the pullbacks π˚(h) and π̃˚(T(h)) on P are equal while the pullbacks π˚(α) and
π̃˚(T(α)) on P agree on η̂-horizontal vector fields. So if û is the η̂-horizontal lift of a
vector field u on M, we have

π̃˚(T(α))(û) = π˚(α)(û) = α(u),

π̃˚(T(α))(XP) =
1
f

π̃˚(T(α))(ZP)´
1
f

π̃˚(T(α))(Ẑ) = ´
1
f

α(Z).
(3.111)
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Note that the choice of auxiliary local twist data (U, η) on M gives a 1-form θ :=
η̂ ´ π˚(η) on P|U satisfying

dθ = 0, θ(XP) = η̂(XP) = 1, θ(ZP) = η̂(ZP)´ η(Z) = f ´ η(Z). (3.112)

The closed 1-form θ defines integral hypersurfaces in P and the nonvanishing of
θ(XP) = 1 and θ(ZP) = f ´ η(Z) corresponds to the fact that the integral hypersur-
faces are transversal to both π and π̃. We may identify one such hypersurface UP
with U = π(UP). This gives us a surjective local diffeomorphism ψ : U Ñ π̃(UP) =:
Ũ.

The tangent vectors to UP are elements of the kernel of θ. We may check

θ(û + η(u)XP) = η(u)η̂(XP)´ π˚(η)(û) = η(u)´ η(u) = 0. (3.113)

The vector fields û + η(u)XP are thus tangent to UP and may be identified with u on
U. To obtain ψ˚T(h) and ψ˚T(α), we simply pull back π̃˚(T(h)) and π̃˚(T(α)) along
the map ι : U – UP ãÑ P given by the inclusion under the above identification:

ψ˚T(h) = ι˚ ˝ π̃˚(T(h)) = ι˚ ˝ π˚(h) = h = twZ, f ,η(h),

ψ˚T(α)(u) = ι˚ ˝ π̃˚(T(α))(u) = π̃˚(T(α))(û + η(u)XP)

(3.111)
= α(u)´

1
f

α(Z)η(u) = (twZ, f ,η(α))(u).

(3.114)

Compatibility with tensor products and contractions then tells us that T restricts to
local twist maps for all tensor fields. Proposition 3.1.13 may then be used to locally
verify that

(Z̃, ω̃, f̃ ) :=
(

T
(
´

1
f

Z
)

, T
(

1
f

ω

)
, T
(

1
f

))
(3.115)

constitutes twist data.
The only thing remaining to check in order to conclude that T is indeed a global

twist map is to show that there exist tuples of local twist data (UΛ, ηΛ) such that
tUΛu and tŨΛ := π̃(UΛ,P)u constitute open covers of M and M̃ respectively. For
this, we note that for any arbitrary point (p, p̃) P P, we can find a sufficiently small
hypersurface UP containing (p, p̃) which is transversal to both π and π̃ such that
π|UP is a diffeomorphism onto its image U in M. There is then a unique (closed)
XP-invariant 1-form which vanishes on UP such that θ(XP) = 1. Then η̂ ´ θ is an
XP-invariant horizontal 1-form and so it is the pullback π˚(η) of some 1-form η on
U such that dη = ω|U and f ´ η(Z) = θ(ZP) is nowhere vanishing.

Thus, our construction of the twist and that of Swann are essentially equivalent.
That said, there is a slight increase of generality in that the requirement of integrality
of the twist form ω in Swann’s construction may be relaxed to rationality. This is
illustrated in the following example.

Example 3.3.11. Let M = Rą0 ˆRˆ T4 be coordinatised by (r, τ, x1, y1, x2, y2) sub-
ject to the identifications

(x1, y1, x2, y2) „ (x1 + 1, y1, x2, y2) „ (x1, y1 + 1, x2, y2)

„ (x1, y1, x2 + 1, y2) „ (x1, y1, x2, y2 + 1).
(3.116)
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Then we have twist data (Z, ω, f ) on it given by

Z = Bτ, ω = dr^ dτ + dx1 ^ dy1 + λ dx2 ^ dy2, f = r. (3.117)

where λ is some real parameter that shall be used to control whether ω is rational
or not. Working with an atlas is pretty cumbersome, so we will instead go to the
universal cover M of M (which happens to be contractible in this case), while keep-
ing track of the identifications (3.116). On M, we introduce for every pair (a, b) of
integers, the auxiliary 1-form

ηa,b = (r + 1)dτ + (x1 + a)dy1 + λ(x2 + b)dy2. (3.118)

Note that these all satisfy
f ´ ηa,b(Z) = ´1, (3.119)

which is nowhere vanishing. As a result

Z̃ = ´
Z

f ´ ηa,b(Z)
= Z = Bτ. (3.120)

The various ηa,b differ from η0,0 by the exterior derivative of the function

ha,b = ay1 + λby2. (3.121)

From the proof of Proposition 3.3.1, we know that the local twists with respect to ηa,b
differ from that with respect to η0,0 by a diffeomorphism φ1 given by the differential
equation

φ0 = idM,
dφs

ds

ˇ

ˇ

ˇ

ˇ

s=t
(φ´1

t (¨)) = ha,b(¨)Bτ. (3.122)

The solution to this is

φ1(r, τ, x1, y1, x2, y2) = (r, τ + ay1 + λby2, x1, y1, x2, y2). (3.123)

Note that making the identifications (3.116) forces us to make the following identifi-
cations in addition:

τ „ τ + a + λb, (3.124)

where (a, b) is an arbitrary pair of integers. If λ is rational with standard form p/q,
then the set of integer linear combinations of 1 and λ is q´1Z. Otherwise, the set is
dense in R. Thus, it is only when λ (and hence ω) is rational that the local twist map
on M descends to a well-defined global twist map sending Bτ-invariant tensor fields
on M to Bτ-invariant tensor fields on a manifold M̃ obtained from M by making the
identifications

(τ, x1, y1, x2, y2) „ (τ´ y1, x1 + 1, y1, x2, y2) „ (τ, x1, y1 + 1, x2, y2)

„ (τ´ λy2, x1, y1, x2 + 1, y2) „ (τ, x1, y1, x2, y2 + 1).
(3.125)
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Chapter 4

To locally hyperkähler manifolds
and back again

In this chapter, we describe Haydys’ QK/HK correspondence in terms of the twist
(Theorem 4.1.11). Note that though the correspondence itself is not new, the origi-
nal formulation in [Hay08] was different and made use of Swann bundles and the
hyperkähler quotient. We then identify in Propositions 4.2.7 and 4.2.10 the precise
conditions for which this is inverse to the twist description of the opposite HK/QK
correspondence due to Macia and Swann [MS14]. Finally, as a generalisation of
the results in [Cor+17], we use the various twist formulae developed in Chapter
3 to derive identities relating the Levi-Civita connection and Riemann curvature of
a quaternionic Kähler manifold to that of the locally hyperkähler manifold associ-
ated to it via the QK/HK correspondence (Proposition 4.2.8 and Theorem 4.2.17).
We then use this to show that the 1-loop-deformed Ferrara–Sabharwal metrics with
quadratic prepotential have cohomogeneity exactly 1 (Theorem 4.2.21).

All the results in this chapter with the exception of Proposition 4.2.5 due to Macia
and Swann [MS14] are original. Proposition 4.2.8 and and Theorems 4.2.17 and 4.2.21
have been proved in collaboration with Danu Thung [CST20b; CST20a].

4.1 Locally hyperkähler structures on quaternionic twists

4.1.1 Locally hyperkähler manifolds and rotating Killing fields

In Definition 2.1.3 of quaternionic Kähler manifolds, we explicitly excluded Ricci-
flat manifolds. Since Theorem 2.1.12 requires only the existence of a parallel quater-
nionic bundle, it continues to hold for Ricci-flat manifolds which satisfy all the other
defining properties of quaternionic Kähler manifolds. In particular, this implies that
the quaternionic bundle is flat and admits local parallel sections.

Definition 4.1.1 (Locally hyperkähler manifolds). A locally hyperkähler (HK) man-
ifold (M̃, g̃, H) is an AQH manifold (M̃, g̃, H) such that the quaternionic bundle H
admits a local oriented orthonormal frame (I1, I2, I3) of Kähler structures i.e. Hermi-
tian structures parallel with respect to the Levi-Civita connection ∇g̃ associated to
g̃.

Remark 4.1.2. To show that a (local) almost Hermitian structure I is Kähler, it is not
enough to show that associated 2-form g̃(I¨, ¨) is closed. One would also have to
show that I is integrable. However, when we have three such local almost Hermitian
structures I1, I2, I3, Hitchin shows in Lemma 6.8 of [Hit87], that the integrability of Ii
automatically follows from the closedness of all three 2-forms vi = g̃(Ij¨, ¨).
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Example 4.1.3 (Complex cotangent spaces). Let N be an open subset of Cn, coordi-
natised by (z0, z1, . . . , zn´1) and equipped with the pseudo-Riemannian metric

gN = ´|dz0|
2 +

n´1
ÿ

a=1

|dzi|
2. (4.1)

Then the metric induced on the cotangent bundle

M̃ := T˚N – N ˆCn, (4.2)

coordinatised by (z0, . . . , zn´1, w0, . . . , wn´1), i.e.

g̃ = ´(|dz0|
2 + |dw0|

2) +
n´1
ÿ

a=1

(|dza|
2 + |dwa|

2), (4.3)

admits a natural locally hyperkähler structure given by

I1 = i

(
dz0 ^g̃ Bz0 + dw0 ^g̃ Bw0 +

n´1
ÿ

a=1

(dza ^g̃ Bza + dwa ^g̃ Bwa)

)
,

I2 = i

(
´dz0 ^g̃ Bw0 + dz0 ^g̃ Bw0 +

n´1
ÿ

a=1

(dza ^g̃ Bwa ´ dza ^g̃ Bwa)

)
,

I3 = I1 ˝ I2 = ´dz0 ^g̃ Bw0 ´ dz0 ^g̃ Bw0 +
n´1
ÿ

a=1

(dza ^g̃ Bwa + dza ^g̃ Bwa).

(4.4)

The corresponding Kähler forms are then given by

v1 =
i
2

(
´dz0 ^ dz0 ´ dw0 ^ dw0 +

n´1
ÿ

a=1

(dza ^ dza + dwa ^ dwa)

)
,

v2 =
i
2

(
dz0 ^ dw0 ´ dz0 ^ dw0 +

n´1
ÿ

a=1

(dza ^ dwa ´ dza ^ dwa)

)
,

v3 =
1
2

(
dz0 ^ dw0 + dz0 ^ dw0 +

n´1
ÿ

a=1

(dza ^ dwa + dza ^ dwa)

)
.

(4.5)

Unsurprisingly, the data of locally hyperkähler manifolds behave much more
rigidly than that of quaternionic Kähler manifolds. While in the case of quaternionic
Kähler manifolds (M, g, Q) equipped with a Killing field Z, one can, by virtue of the
quaternionic moment map construction and Lemma 2.2.11, generically find a local
oriented orthonormal frame (J1, J2, J3) for Q such that

LZ J1 = 0, LZ J2 = J3, LZ J3 = ´J2, (4.6)

it is not clear if a similar statement can be made about locally hyperkähler manifolds.
This is certainly because the quaternionic moment map construction breaks down in
case of locally hyperkähler manifolds, but also because in case of locally hyperkähler
manifolds, we are not interested in some arbitrary local oriented orthonormal frame
for H but a local oriented orthonormal Kähler frame. This motivates the following
definition.
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Definition 4.1.4 (Rotating Killing field). A rotating Killing field Z̃ of a locally hy-
perkähler manifold (M̃, g̃, H) is a Killing field such that there exists a local oriented
orthonormal Kähler frame (I1, I2, I3) of H such that

LZ I1 = 0, LZ I2 = I3, LZ I3 = ´I2. (4.7)

Remark 4.1.5. Note that the definition implies that I1 is a global section of H.

Example 4.1.6. The locally hyperkähler manifold M̃ in Example 4.1.3 admits the
following rotating Killing field:

Z̃ = ´i

(
z0Bz0 ´ z0Bz0 +

n´1
ÿ

a=1

(zaBza ´ zaBza)

)
. (4.8)

In fact, it’s possible to give a more intrinsic characterisation of rotating Killing
fields, one that doesn’t refer to any particular choice of frames.

Proposition 4.1.7. A Killing field Z̃ of a locally hyperkähler manifold (M̃, g̃, H) is rotating
if and only if there exists a global endomorphism field IH commuting with H such that

I1 := IH ´ 2∇g̃Z̃ (4.9)

is a Kähler section of H.

Proof. Recall the general identity for an arbitrary 1-form α, vector fields u, v, and
torsion-free connection ∇ that

(∇α)(u, v)´ (∇α)(v, u) = dα(u, v). (4.10)

Specialising to the case of the 1-forms ιZ̃vi and Levi-Civita connection ∇g̃ on a lo-
cally hyperkähler manifold, where (v1, v2, v3) is a local oriented orthonormal frame
of Kähler forms, we obtain

vi(∇
g̃
uZ̃, v)´vi(∇

g̃
vZ̃, u) = d ˝ ιZ̃vi = LZ̃vi. (4.11)

Next we use the Killing equation for Z̃, namely

g̃(∇g̃
uZ̃, v) = ´g̃(∇g̃

vZ̃, u), (4.12)

to rewrite the left-hand side of (4.11) as

vi(∇
g̃
uZ̃, v)´vi(∇

g̃
vZ̃, u) = g̃(Ii∇

g̃
uZ̃, v)´ g̃(Ii∇

g̃
vZ̃, u)

= g̃(Ii∇
g̃
uZ̃, v) + g̃(∇g̃

vZ̃, Iiu)
(4.12)
= g̃(Ii∇

g̃
uZ̃, v)´ g̃(∇g̃

Iiu
Z̃, v)

= ´g̃([∇g̃Z̃, Ii]u, v).

(4.13)
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Now if we assume that Z̃ is a rotating Killing field so that the right-hand side of
(4.11) becomes

LZ̃v1 = 0 =
1
2

g̃([I1, I1]u, v),

LZ̃v2 = v3 =
1
2

g̃([I1, I2]u, v),

LZ̃v3 = ´v2 =
1
2

g̃([I1, I3]u, v),

(4.14)

then we may rearrange terms to get the required endomorphism field IH:

g̃([IH, Ii]u, v) := g̃([I1 + 2∇g̃Z̃, Ii]u, v) = 0. (4.15)

Conversely, if we were given IH, then we could extend the I1 specified by (4.9) to a
local oriented orthonormal frame (I1, I2, I3) of H. Then the same argument as above
tells us that

LZ̃v1 = ´g̃([∇g̃Z̃, I1]u, v) =
1
2

g̃([I1, I1]u, v) = 0,

LZ̃v2 = ´g̃([∇g̃Z̃, I2]u, v) =
1
2

g̃([I1, I2]u, v) = v3,

LZ̃v3 = ´g̃([∇g̃Z̃, I3]u, v) =
1
2

g̃([I1, I3]u, v) = ´v2.

(4.16)

Corollary 4.1.8. Given a locally hyperkähler manifold (M̃, g̃, H) with (I1, I2, I3) a local
oriented orthonormal Kähler frame for H, and a rotating Killing field Z̃ preserving I1, with
associated endomorphism field IH = I1 + 2∇g̃Z, the tensor fields g̃(IH ˝ Ii¨, ¨) are symmetric
bilinear.

Proof. Note that the Killing equation implies that IH is skew-self-adjoint. Therefore
we have for all vector fields u, v on M, the following chain of equalities:

g̃(IH ˝ Iiu, v) = ´g̃(Iiu, IHv) = g̃(u, Ii ˝ IHv) = g̃(u, IH ˝ Iiv) = g̃(IH ˝ Iiv, u). (4.17)

Remark 4.1.9. Making the replacement v ÞÑ Iiv in the above tells us that g̃ ˝ IH is a
2-form which is of type (1, 1) with respect to all three local complex structures Ii.
This was proved in a different way by Hitchin in Proposition 1 of [Hit13].

Example 4.1.10. The endomorphism field IH associated with the rotating Killing
field Z̃ in Example 4.1.6 is given by

IH = I1 + 2∇g̃Z̃ = I1 ´ 2i

(
dz0 ^g̃ Bz0 +

n´1
ÿ

a=1

dza ^g̃ Bza

)

= i

(
´dz0 ^g̃ Bz0 + dw0 ^g̃ Bw0 +

n´1
ÿ

a=1

(´dza ^g̃ Bza + dwa ^g̃ Bwa)

)
.

(4.18)
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Thus we may compute

g̃(I1 ˝ IH¨, ¨) = g̃(IH ˝ I1¨, ¨) = ´|dz0|
2 + |dw0|

2 +
n´1
ÿ

a=1

(|dza|
2 ´ |dwa|

2),

g̃(I2 ˝ IH¨, ¨) = g̃(IH ˝ I2¨, ¨) = 2 Re

(
dz0 dw0 +

n´1
ÿ

a=1

dza dwa

)
,

g̃(I3 ˝ IH¨, ¨) = g̃(IH ˝ I3¨, ¨) = 2 Im

(
dz0 dw0 +

n´1
ÿ

a=1

dza dwa

)
.

(4.19)

4.1.2 The QK/HK correspondence

It has been known for a while owing to the work of both mathematicians (e.g.
[Hay08; Hit13; ACM13; MS14; Ale+15]) and physicists (e.g. [RVV06; APP11]) that
one can associate to any quaternionic Kähler manifold (M, g, Q) with a nowhere
vanishing Killing field Z a locally hyperkähler manifold M̃, g̃, H) with a rotating
Killing field Z̃. It turns out that this correspondence can be realised in terms of the
twist construction in the case where the quaternionic moment map µZ is nowhere
vanishing.

Theorem 4.1.11. Let (M, g, Q) be a quaternionic Kähler manifold equipped with a Killing
field Z with nowhere vanishing quaternionic moment map µZ with normalisation JZ and
well-defined quaternionic twist data (Z, ωQ, fQ) and let (M̃, Z̃, ω̃H, f̃H) be its twist with a
global twist map

T : Γ(T‚,˛M)Z Ñ Γ(T‚,˛M̃)Z̃. (4.20)

Then the tuple
(M̃, g̃, H) := (M̃, T(gQ), T(Q)), (4.21)

where gQ is the standard quaternionic elementary deformation, is locally hyperkähler with Z̃
a rotating Killing field which is Hamiltonian with respect to T(gQ(JZ¨, ¨)).

Proof. Since being quaternionic Kähler or locally hyperkähler with rotating Killing
field are local properties, it’s enough to work with local twist data (U, Z, ωQ, fQ, ηQ)
on the quaternionic Kähler manifold (M, g, Q) given by the choice of local oriented
orthonormal frame (J11 = JZ, J12, J13) of Q. In fact, in a slight abuse of notation, we will
identify U with the relevant open set Ũ in M̃ and, as a consequence, all the relevant
tensor fields and distributions on U and Ũ.

By Lemma 2.2.11, we know that we can always choose J12 and J13 so that

LZ J12 = J13, LZ J13 = ´J12. (4.22)

Let us then make such a choice. Note that this implies that

fQ ´ ηQ(Z) = xJ12, LZ J13y = ´1. (4.23)

By Lemma 2.2.10, we know that (M, gQ, Q) is almost quaternionic Hermitian and
therefore, so must be

(U, g̃, H) = (U, twZ, fQ,ηQ(gQ), twZ, fQ,ηQ(Q)). (4.24)
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Let (I1, I2, I3) be the local twist of (J11, J12, J13). By Corollary 3.2.3, we have that

LZ̃ Ii = ´
1

fQ ´ ηQ(Z)
twZ, fQ,ηQ(LZ J1i ) = twZ, fQ,ηQ(LZ J1i ). (4.25)

So in order to prove (M̃, g̃, H) is locally hyperkähler with rotating Killing field Z̃,
it suffices to show that these Ii are Kähler structures, or equivalently, the 2-forms
vi = g(Ii¨, ¨) are closed. To this end, we introduce the following 2-forms:

σ1 := gQ(J11¨, ¨)
(2.58)
= ´K

(
1
‖µZ‖ ωQ + d

(
ιZg
‖µZ‖2

))
(2.60)
=

K
‖µZ‖3 (ν‖µZ‖2ω11 ´ ιZω11 ^ ιZg + ιZω12 ^ ιZω13),

σ2 := gQ(J12¨, ¨)
(2.60)
=

K
‖µZ‖3 (ν‖µZ‖2ω12 ´ ιZω12 ^ ιZg + ιZω13 ^ ιZω11),

σ3 := gQ(J13¨, ¨)
(2.60)
=

K
‖µZ‖3 (ν‖µZ‖2ω13 ´ ιZω13 ^ ιZg + ιZω11 ^ ιZω12).

(4.26)

We have argued earlier that it’s enough to show that all three 2-forms

v1 = twZ,ωQ, fQ(σ1), v2 = twZ,ωQ, fQ(σ2), v3 = twZ,ωQ, fQ(σ3) (4.27)

are closed. First of all, we note that

ιZσ1 =
K
‖µZ‖3 (ν‖µZ‖2ιZω11 + g(Z, Z)ιZω11) = ´

K fQ

‖µZ‖2 ιZω11,

ιZσ2 =
K
‖µZ‖3 (ν‖µZ‖2ιZω12 + g(Z, Z)ιZω12) = ´

K fQ

‖µZ‖2 ιZω12.
(4.28)

To show that v1 is closed, we invoke (3.32) to see that

dv1 = d ˝ twZ,ωQ, fQ(σ1) = twZ,ωQ, fQ

(
dσ1 ´

1
fQ

ωQ ^ ιZσ1

)
= K twZ,ωQ, fQ

(
1

‖µZ‖2 d‖µZ‖^ωQ +
1

‖µZ‖2 (ιZω1)^ωQ

)
(2.49)
= 0.

(4.29)

In order to prove that v2 is closed, we first rewrite σ2 as follows:

σ2 =
K
‖µZ‖3 (ν‖µZ‖2ω12 ´ ιZω12 ^ ιZg + ιZω13 ^ ιZω11)

(2.53)
=

K
‖µZ‖3 (‖µZ‖2(dα131 + α132 ^ α121)´ ιZω12 ^ ιZg + ιZω13 ^ ιZω11)

(2.49)
=

K
‖µZ‖3 (‖µZ‖2dα131 ´ ‖µZ‖α132 ^ ιZω12 ´ ιZω12 ^ ιZg + ‖µZ‖α131 ^ d‖µZ‖)

= K d
(

α131
‖µZ‖

)
´

K
‖µZ‖2 ηQ ^ ιZω12 = K d

(
α131
‖µZ‖

)
+

1
fQ

ηQ ^ ιZσ2.

(4.30)

Thus we find that its local twist

v2 = twZ,ωQ, fQ(σ2) = σ2 ´
1
fQ

ηQ ^ ιZσ2 = K d
(

α131
‖µZ‖

)
(4.31)
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is in fact closed. An analogous computation tells us that

v3 = twZ,ωQ, fQ(σ3) = σ3 ´
1
fQ

ηQ ^ ιZσ3 = K d
(

α112
‖µZ‖

)
(4.32)

is also closed.
The only thing remaining to be proved is that Z̃ is Hamiltonian with respect to

v1. This follows from a short computation:

ιZ̃v1 = ´
1
fQ

twZ,ωQ, fQ(σ1)(twZ,ωQ, fQ(Z), ¨)

= ´
1
fQ

twZ,ωQ, fQ(ιZσ1) =
K
‖µZ‖2 twZ,ωQ, fQ(ιZω11)

(2.49)
= ´

K
‖µZ‖2 twZ,ωQ, fQ ˝ d‖µZ‖ (3.32)

= ´d
(
´

K
‖µZ‖

)
.

(4.33)

Example 4.1.12. We specialise Example 3.1.12 to the Przanowski–Tod Ansatz, whose
quaternionic twist data and standard elementary deformation we had previously
computed in Example 2.3.3 to be

fQ = ´
1

Pρ
´

ν

4ρ
= ´

Bρu
2P

,

ωQ = ´
1
2

d
(

1
P
(Bρu)(dτ + Θ) + Byu dx´ Bxu dy

)
gQ = 2K(Bρu)

(
dρ2 + 2eu|dζ|2 +

1
P2 (dτ + Θ)2

)
.

(4.34)

To do this, we make the following choice of an oriented orthonormal frame for the
quaternionic bundle Q:

J11 = J1, J12 = cos(τ)J2 + sin(τ)J3, J13 = ´ sin(τ)J2 + cos(τ)J3, (4.35)

where Ji are the Hermitian structures associated to the ωi given in (2.78). The con-
nection 1-form α23 transforms under this change of basis as

α123 = α23 ´ dτ. (4.36)

Thus, the auxiliary 1-form ηQ is given by

ηQ = ´
1
2

(
1
P
(Bρu)(dτ + Θ) + Byu dx´ Bxu dy

)
+ dτ, (4.37)

and we may read off

twZ, fQ,ηQ(ιZg) = ιZg´
g(Z, Z)

fQ
ηQ =

1
2ρ2Bρu

(
dτ´

1
2
(Byu dx´ Bxu dy)

)
. (4.38)
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The metric we hence obtain upon applying the QK/HK correspondence is

g̃ = gQ +
K fQ

‖µZ‖2
1

g(Z, Z)
((ιZg)2 ´ (twZ, f ,η(ιZg))2)

= 2K(Bρu)(dρ2 + 2eu|dζ|2) +
8K
Bρu

(
dτ´

1
2
(Byu dx´ Bxu dy)

)2

.
(4.39)

This is the well-known Boyer–Finley Ansatz for self-dual Ricci-flat (and so, locally
hyperkähler) metrics in dimension 4 with a rotating Killing field

Z̃ = ´
1

fQ ´ ηQ(Z)
Z = Z = Bτ, (4.40)

introduced in [BF82]. The correspondence between the Przanowski–Tod Ansatz and
the Boyer–Finley Ansatz has also been pointed out in Section 2.3.2 of [APP11].

Example 4.1.13. Substituting, as in Example 2.3.4, the solution

u = ln(ρ + c) (4.41)

of the SU(8) Toda equation into the Boyer–Finley Ansatz, we get

g̃ = 2K
(

dρ2

ρ + c
+ 2|dζ|2 + 4(ρ + c)dτ2

)
(4.42)

and carrying out a change of coordinates

ρ = r2 ´ c, ζ =
?

2 w (4.43)

where r ą
?

c, we get
g̃ = 8K(dr2 + r2dτ2 + |dw|2). (4.44)

This describes a flat metric on the universal cover of

(R2zB2?
c[0])ˆC, (4.45)

where B2?
c[0] denotes the closed ball of radius

?
c about the origin in R2.

4.2 Inverting the QK/HK correspondence

4.2.1 The HK/QK correspondence

Although the the twist realisation of the QK/HK correspondence is an original re-
sult, the opposite correspondence associating a quaternionic Kähler (M, g, Q) with
Killing fields Z to locally hyperkähler manifolds (M̃, g̃, H) with rotating Killing
field Z̃—originally discovered by Haydys [Hay08] and generalised by Alekseevsky,
Cortés and Mohaupt [ACM13]—was described in terms of a twist by Macia and
Swann. As in the case of quaternionic Kähler manifolds, this involves first taking an
elementary deformation.

Definition 4.2.1 (Standard hyperkähler elementary deformation). The standard hy-
perkähler elementary deformation g̃H of a locally hyperkähler manifold (M̃, g̃, H)
with a rotating Killing field Z̃ given to be Hamiltonian with respect to the Kähler
form

v1 = g̃(I1, ¨, ¨) P Γ(H5̃) (4.46)
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that it preserves, is a metric defined for fixed constant nonzero parameters K̃ and k̃
by

g̃H =
K̃
f̃1

g̃|HH Z̃K +
K̃
k̃

f̃H

f̃ 2
1

g̃|HH Z̃, (4.47)

where HHZ is the subspace spanned by Z̃, I1Z̃, I2Z̃, I3Z̃, while HHZK is the subspace
g̃-orthogonal to it, and f̃1 and f̃H are nowhere vanishing functions satisfying

ιZ̃v1 = ´d f̃1, f̃H = k̃( f̃1 + g̃(Z̃, Z̃)). (4.48)

Example 4.2.2. Continuing with Example 4.1.6, we have

ιZ̃ g̃ = Im

(
´z0dz0 +

n´1
ÿ

a=1

zadza

)
, ιZ̃v1 = Re

(
´z0dz0 +

n´1
ÿ

a=1

zadza

)
,

ιZ̃v2 = Re

(
z0dw0 +

n´1
ÿ

a=1

zadwa

)
, ιZ̃v3 = Im

(
z0dw0 +

n´1
ÿ

a=1

zadwa

)
.

(4.49)

From this we may read off f̃1 and f̃H to be of the form

f̃1 =
1
2

(
|z0|

2 ´

n´1
ÿ

a=1

|za|
2 ´ c

)
= ´

1
2
(g̃(Z̃, Z̃) + c),

f̃H =
k̃
2

(
´|z0|

2 +
n´1
ÿ

a=1

|za|
2 ´ c

)
=

k̃
2
(g̃(Z̃, Z̃)´ c),

(4.50)

where c is some choice of a constant. In order to ensure that f̃1 and f̃H are nowhere
vanishing, we choose N to be

N =

#

(z0, . . . , zn´1) P Cn
ˇ

ˇ

ˇ

ˇ

|z0|
2 ´

n´1
ÿ

a=1

|za|
2 ą c

+

, (4.51)

and c to be positive. Once this is taken care of, we have the following well-defined
expression for the standard hyperkähler elementary deformation:

g̃H =
K̃
f̃1

g̃|HH Z̃K +
K̃
k̃

f̃H

f̃ 2
1

g̃|HH Z̃ =
K̃
f̃1

g̃ +
K̃
f̃ 2
1

(
(ιZ̃ g̃)2 +

3
ÿ

i=1

(ιZ̃vi)
2

)

= 2K̃

(
´|dz0|

2 +
řn´1

a=1 |dza|
2

|z0|2 ´
řn´1

b=1 |zb|
2 ´ c

+ 2

ˇ

ˇ

ˇ
´z0dz0 +

řn´1
a=1 zadza

ˇ

ˇ

ˇ

2
+
ˇ

ˇ

ˇ
z0dw0 +

řn´1
a=1 zadwa

ˇ

ˇ

ˇ

2

(
|z0|2 ´

řn´1
b=1 |zb|

2 ´ c
)2

 .

(4.52)

Proposition 4.2.3. Let (M̃, g̃, H) be a locally hyperkähler manifold equipped with a rotating
Killing field Z̃ given to be Hamiltonian with respect to the Kähler form

v1 = g̃(I1¨, ¨) P Γ(H5̃) (4.53)
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that it preserves, with nowhere vanishing Z-invariant Hamiltonian function f̃1, and let

IH = I1 + 2∇g̃Z̃ (4.54)

be the endomorphism field associated with the rotating Killing field Z. Then

(Z̃, ω̃H, f̃H) := (Z̃, k̃ g̃ ˝ IH, k̃( f̃1 + g̃(Z̃, Z̃))) (4.55)

constitute twist data on M̃.

Proof. Firstly, we check that

ιZ̃ω̃H = k̃ g̃(IHZ̃, ¨) = k̃ g̃(I1Z̃, ¨) + k̃ g̃(2∇g̃
Z̃Z̃, ¨)

(4.12)
= k̃ ιZ̃v´ 2k̃ g̃(∇g̃Z̃, Z̃) = ´k̃ d( f1 + g(Z, Z)) = ´d f̃H.

(4.56)

Next, we use (4.11) in conjunction with the Killing equation (4.12) to see

2g̃(∇g̃Z̃, ¨) = d ˝ ιZ̃ g̃. (4.57)

It follows that
ω̃H = k̃(v1 + d ˝ ιZ̃ g̃) (4.58)

is closed.

We will henceforth refer to this twist data as hyperkähler twist data.

Example 4.2.4. In the case of Example 4.1.3, the hyperkähler twist data is given by

Z̃ = ´i

(
z0Bz0 ´ z0Bz0 +

n´1
ÿ

a=1

(zaBza ´ zaBza)

)
,

ω̃H =
ik̃
2

(
dz0 ^ dz0 ´ dw0 ^ dw0 +

n´1
ÿ

a=1

(´dza ^ dza + dwa ^ dwa)

)
,

f̃H =
k̃
2

(
´|z0|

2 +
n´1
ÿ

a=1

|za|
2 ´ c

)
=

k̃
2
(g̃(Z̃, Z̃)´ c).

(4.59)

Let Ũ be a contractible open set over whch the function ln(z0/z0) is well-defined,
for instance

Ũ = M̃ztz0 P Rď0u. (4.60)

Then we can take the auxiliary local twist data to be (Ũ, η̃H), where

η̃H = ´
k̃
2

Im

(
z0dz0 ´w0dw0 +

n´1
ÿ

a=1

(´zadza + wadwa)´

(
c´

1
4K̃

)
dz0

z0

)

=
k̃
2

(
ιZ̃ g̃ + Im

(
w0dw0 ´

n´1
ÿ

a=1

wadwa +

(
c´

1
4K̃

)
dz0

z0

))
.

(4.61)
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g gQ

g̃H g̃

standard quaternionic elementary deformation

QK/HK

twisttwist

standard hyperkähler elementary deformation

HK/QK

FIGURE 1: The QK/HK and HK/QK correspondences.

We have in particular

twZ̃, f̃H,η̃H
(ιZ̃ g̃) = ιZ̃ g̃´

g̃(Z̃, Z̃)
f̃H

η̃H

= ιZ̃ g̃´
g̃(Z̃, Z̃)

g̃(Z̃, Z̃)´ c

(
ιZ̃ g̃ + Im

(
w0dw0 ´

n´1
ÿ

a=1

wadwa +

(
c´

1
4K̃

)
d ln(z0)

))
,

= ´
k̃

2 f̃H

(
c ιZ̃ g̃ + g̃(Z̃, Z̃) Im

(
w0dw0 ´

n´1
ÿ

a=1

wadwa +

(
c´

1
4K̃

)
d ln(z0)

))
.

(4.62)

We state without proof Macia and Swann’s theorem regarding the HK/QK cor-
respondence cast into our notation and conventions. The two correspondences are
summarised in Figure 1.

Theorem 4.2.5 ([MS14] Theorem 1). Let (M̃, g̃, H) be a locally hyperkähler manifold
equipped with a rotating Killing field Z̃ given to be Hamiltonian with respect to the Käh-
ler form v1 that it preserves, with a choice of nowhere vanishing Hamiltonian function f1,
giving rise to hyperkähler twist data (Z̃, ω̃H, f̃H). Let (M, Z, ωQ, fQ) be its twist with a
global twist map

T̃ : Γ(T‚,˛M̃)Z̃ Ñ Γ(T‚,˛M)Z. (4.63)

Then the tuple
(M, g, Q) := (M, T̃(g̃H), T̃(H)), (4.64)

where gH is the standard hyperkähler elementary deformation, is quaternionic Kähler with
Killing field Z̃. Moreover, these are the only combinations of elementary deformations by
Killing fields Z̃ and twists of of locally hyperkähler metrics with respect to twist data of the
form (Z̃, ω̃, f̃ ) that produce quaternionic Kähler metrics.

Example 4.2.6 (Ferrara–Sabharwal metrics). Now we apply the HK/QK correspon-
dence to the complex cotangent spaces of Example 4.1.3. It will be convenient to
carry out the following change of coordinates:

z0 =

d

ρ + c
1´

řn´1
b=1 |Xb|

2
e´iτ, za = Xa

d

ρ + c
1´

řn´1
b=1 |Xb|

2
e´iτ, w0 =

ζ0
?

2
, wa =

ζa
?

2
,

(4.65)

where a runs from 1 to n´ 1 and

ρ ą 0,
n´1
ÿ

a=1

|Xa|
2 ă 1, ´π ă τ ă π. (4.66)
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This has as inverse the following change of coordinates:

Xa =
za

z0
, ρ = |z0|

2 ´

n´1
ÿ

b=1

|zb|
2 ´ c, τ =

i
2

ln
(

z0

z0

)
, ζ0 =

?
2 w0, ζa =

?
2 wa.

(4.67)

In these new coordinates, we have

Z̃ = Bτ, f̃1 =
ρ

2
, f̃H = ´

k̃
2
(ρ + 2c), g̃(Z̃, Z̃) = ´(ρ + c),

ιZ̃ g̃ = ´(ρ + c)

(
dτ´

n´1
ÿ

a=1

Im(XadXa)

1´
řn´1

b=1 |Xb|
2

)
,

twZ̃, f̃H,η̃H
(ιZ̃ g̃) = ´

1
2

ρ + c
ρ + 2c

(
dτ

2K̃
´

n´1
ÿ

a=1

2c Im(XadXa)

1´
řn´1

b=1 |Xb|
2
+ Im

(
ζ0dζ0 ´

n´1
ÿ

a=1

ζadζa

))
.

(4.68)

Meanwhile, the standard hyperkähler elementary deformation g̃H becomes

gH = 2K̃

 1
4ρ2

ρ + 2c
ρ + c

dρ2 +
ρ + c

ρ

n´1
ÿ

a=1

|dXa|
2

1´
řn´1

b=1 |Xb|
2
+

ˇ

ˇ

ˇ

řn´1
a=1 XadXa

ˇ

ˇ

ˇ

2

(
1´

řn´1
b=1 |Xb|

2
)2


+

1
2ρ

(
´|dζ0|

2 +
n´1
ÿ

a=1

|dζa|
2

)
+

ρ + c
ρ2

ˇ

ˇ

ˇ
dζ0 +

řn´1
a=1 Xadζa

ˇ

ˇ

ˇ

2

1´
řn´1

b=1 |Xb|
2

+
1
ρ2 (ρ + c)(ρ + 2c)

(
dτ´

n´1
ÿ

a=1

Im(XadXa)

1´
řn´1

b=1 |Xb|
2

)2
 .

(4.69)

Its local twist g is given by

g = g̃H ´
1

g̃H(Z̃, Z̃)

(
(ιZ̃ g̃H)

2 ´ (twZ̃, f̃H,η̃H
(ιZ̃ g̃H))

2
)

= g̃H ´
K̃
k̃

f̃H

f̃ 2
1

1
g̃(Z̃, Z̃)

(
(ιZ̃ g̃)2 ´ (twZ̃, f̃H,η̃H

(ιZ̃ g̃))2
)

= g̃H ´ 2K̃
ρ + 2c

ρ2(ρ + c)

(
(ιZ̃ g̃)2 ´ (twZ̃, f̃H,η̃H

(ιZ̃ g̃))2
)

.

(4.70)
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Now, substituting (4.68) and (4.69) into the above yields

g = 2K̃

 1
4ρ2

ρ + 2c
ρ + c

dρ2 +
ρ + c

ρ

n´1
ÿ

a=1

|dXa|
2

1´
řn´1

b=1 |Xb|
2
+

ˇ

ˇ

ˇ

řn´1
a=1 XadXa

ˇ

ˇ

ˇ

2

(
1´

řn´1
b=1 |Xb|

2
)2


+

1
2ρ

(
´|dζ0|

2 +
n´1
ÿ

a=1

|dζa|
2

)
+

ρ + c
ρ2

ˇ

ˇ

ˇ
dζ0 +

řn´1
a=1 Xadζa

ˇ

ˇ

ˇ

2

1´
řn´1

b=1 |Xb|
2

+
1

4ρ2
ρ + c
ρ + 2c

(
dτ

2K̃
´

n´1
ÿ

a=1

2c Im(XadXa)

1´
řn´1

b=1 |Xb|
2
+ Im

(
ζ0dζ0 ´

n´1
ÿ

a=1

ζadζa

))2
 .

(4.71)

These are the 1-loop-deformed quadratic prepotential Ferrara–Sabharwal quaternionic Käh-
ler metrics g1cFS first introduced in [FS90] in the context of the moduli space of vacua
of Type II superstring theory and described more explicitly in the context of the
HK/QK correspondence in Corollary 15 of [CDS17]. Note that when n = 1, we re-
trieve the 1-loop deformation g1cUH of the universal hypermultiplet, as discussed in
Example 2.3.4, with ν = ´K̃´1.

Both the QK/HK as well as the HK/QK correspondence entail certain degrees
of freedom. For the QK/HK correspondence, this is the constant parameter K; for
the the HK/QK correspondence, these are the Hamiltonian function f̃1 (to which
we can add a constant), and the constant parameters K̃ and k̃. For a certain choice
of the Hamiltonian f̃1 and the parameters K̃ and k̃, the two correspondences are
the inverses of each other. We’ll show that the HK/QK correspondence is locally
left-inverse to the QK/HK correspondence now and postpone a proof that it’s also
locally right-inverse to the next subsection.

Proposition 4.2.7. Let (M, g, Q) be a quaternionic Kähler manifold of reduced scalar cur-
vature ν equipped with a Killing field Z with nowhere vanishing quaternionic moment map
‖µZ‖, let (M̃, g̃, H) be a locally hyperkähler manifold with a rotating Killing field Z̃ that
is the image of (M, g, Q) under the QK/HK correspondence. Then the image of (M̃, g̃, H)
under the HK/QK correspondence is locally isometric to (M, g, Q), for the choices

f̃1 = T
(
´

K
‖µZ‖

)
, K̃ = ´

1
ν

, k̃ =
1

Kν
, (4.72)

where T is a global twist map realising the QK/HK correspondence and f̃1 is a choice of
Hamiltonian function for Z̃ with respect to the Kähler form v1 preserved by it.

Proof. Again, we work locally within a contractible open set U Ď M which we iden-
tify with the corresponding open set Ũ Ď M̃.

By (4.33), we know that

f̃1 = ´
K
‖µZ‖ (4.73)

is a valid choice of Hamiltonian function for Z̃ with respect to v1. Using this, we
check that f̃H as defined in (4.55) can be written in terms of the quaternionic Kähler
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data as

f̃H = k̃( f̃1 + g̃(Z̃, Z̃)) = k̃

(
´

K
‖µZ‖ +

1
f 2
Q

gQ(Z, Z)

)
(2.61)
= k̃

(
´

K
‖µZ‖ ´

K
‖µZ‖2

g(Z, Z)
fQ

)
(2.57)
= ´

k̃K
‖µZ‖

(
1´

g(Z, Z)
g(Z, Z) + ν‖µZ‖2

)
(2.57)
=

k̃Kν

fQ
=

1
fQ

.

(4.74)

Likewise we may check that ω̃H as defined in (4.55) may be written in terms of the
quaternionic Kähler data as

ω̃H = k̃(v1 + d ˝ ιZ̃ g̃)

= k̃
(

twZ, fQ,ηQ(σ1) + d
(
´

1
fQ

twZ, fQ,ηQ(ιZgQ)

))
(2.61)
= k̃

(
twZ, fQ,ηQ(σ1) + d

(
K
‖µZ‖2 twZ, fQ,ηQ(ιZg)

))
(3.32)
= k̃ twZ, fQ,ηQ

(
σ1 + K d

(
ιZg
‖µZ‖2

)
´

K
‖µZ‖2

g(Z, Z)
fQ

ωQ

)
(4.26)
= k̃ twZ, fQ,ηQ

((
´

K
‖µZ‖ ´

K
‖µZ‖2

g(Z, Z)
fQ

)
ωQ

)
=

k̃Kν

fQ
twZ, fQ,ηQ(ωQ) =

1
fQ

twZ, fQ,ηQ(ωQ).

(4.75)

Thus, the twist data (Z̃, ω̃H, f̃H) is dual to (Z, ωQ, fQ). Hence, if we choose an auxil-
iary 1-form

η̃H =
1
fQ

twZ, fQ,ηQ(ηQ) (4.76)

for the twist data (Z̃, ω̃H, f̃H), then the local twists of H and g̃H with respect to it are

twZ̃, f̃H,η̃H
(H) = twZ̃, f̃H,η̃H

˝ twZ, fQ,ηQ(Q) = Q,

twZ̃, f̃H,η̃H
(g̃H) = twZ̃, f̃H,η̃H

(
K̃
f̃1

g̃|HH Z̃K +
K̃
k̃

fH

f̃ 2
1

g̃|HH Z̃

)

=
K̃
f̃1

gQ|HQZK +
K̃
k̃

fH

f̃ 2
1

gQ|HQZ

=
‖µZ‖

Kν
gQ|HQZK ´

‖µZ‖2

K fQ
gQ|HQZ = g.

(4.77)

4.2.2 Levi-Civita connection under HK/QK

We will now use earlier results regarding how the Levi-Civita connection behaves
under the twist to say something about how it behaves under the HK/QK corre-
spondence.

Proposition 4.2.8. Let (M̃, g̃, H) be a locally hyperkähler manifold equipped with a rotating
Killing field Z̃ which preserves a Kähler structure I1 in a local oriented orthonormal frame
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(I1, I2, I3) of H and is Hamiltonian with respect to v1 = g̃(I1¨, ¨) with nowhere vanishing
Hamiltonian function f̃1. Let (Z̃, ω̃H, f̃H) be the associated hyperkähler twist data and let
(M, g, Q) be a quaternionic Kähler manifold that is its image under the HK/QK correspon-
dence. Then the Levi-Civita connections ∇g and ∇g̃ are related via

∇g
T̃(u) ˝ T̃(v) = T̃

(
∇g̃

uv + SHQ
u v

)
, (4.78)

where u and v are arbitrary Z̃-invariant vector fields on M̃, T̃ is the global twist map realis-
ing the HK/QK correspondence and SHQ P Γ(T1,2M̃) is a tensor field given by

SHQ
u v =

1
2

3
ÿ

α=0

(
1
f̃H

ω̃H(Iαu, v)IαZ̃´
1
f̃1
(λα(u)Iα ˝ I1v + λα(v)Iα ˝ I1u)

)
, (4.79)

with I0 = idTM and λα = g̃(IαZ̃, ¨).

Proof. We begin by noting that the difference

Sg̃H,g = ∇g̃H ´∇g̃ (4.80)

between the Levi-Civita connections associated to two different metrics is a tensor
field given by

g̃H(S
g̃H,g̃
u v, w) = (∇g̃

u g̃H)(v, w) + (∇g̃
v g̃H)(u, w)´ (∇g̃

w g̃H)(u, v). (4.81)

We have due to (3.64) the following equation for any Z-invariant vector fields u, v, w
on M̃ and their global twists u1, v1, w1 on M:

∇g
u1v

1 = T̃(∇g̃H
u v + Sω̃H

u v) = T̃(∇g̃
uv + SHQ

u v), (4.82)

where SHQ is the combination

SHQ = Sg̃H,g̃ + Sω̃H . (4.83)

An expression for SHQ in terms of the hyperkähler data may be obtained by combin-
ing (3.66) and (4.81):

2 f̃ 2
1

K̃
g̃H(SHQ

u v, t) =

(
f̃ 2
1

K̃ f̃H
ιZ̃ g̃H b ω̃H ´

f̃ 2
1

K̃
∇g̃ g̃H

)
((t, u, v)´ (u, v, t)´ (v, u, t))

=

(
1
k̃

ιZ̃ g̃b ω̃H ´
f̃ 2
1

K̃
∇g̃ g̃H

)
((t, u, v)´ (u, v, t)´ (v, u, t)).

(4.84)

Introducing the shorthand

g̃λ :=
3
ÿ

α=0

λ2
α = (ιZ̃ g̃)2 +

3
ÿ

i=1

ιZ̃vi, (4.85)
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we may write(
1
k̃

ιZ̃ g̃b ω̃H ´
f̃ 2
1

K̃
∇g̃ g̃H

)
(u, v, t)

=

(
λ0 bv1 ´ λ1 bv0 ´

2
f̃1

λ1 b g̃λ

)
(u, v, t)

+ 2 λ0(u)v0(∇g̃
vZ̃, t)´

3
ÿ

α=0

(λα(t)vα(∇g̃
uZ̃, v) + λα(v)vα(∇g̃

uZ̃, t)).

(4.86)

Then substituting the above into (4.84) and using the identity (4.11) to simplify, we
obtain

2 f̃ 2
1

K̃
g̃H(SHQ

u v, t)

=

(
3
ÿ

α=0

λα b g̃(Iα ˝ IH¨, ¨)´
2
f̃1

λ1 b g̃λ

)
(t, u, v)

´

(
3
ÿ

α=0

λα b g̃(Iα ˝ I1¨, ¨)´
2
f̃1

λ1 b g̃λ

)
((u, v, t) + (v, u, t))

= g̃

(
3
ÿ

α=0

(
g̃(Iα ˝ IHu, v)IαZ̃´

2
f̃1

λα(u)λα(v)I1Z̃´ λα(u)Iα ˝ I1v´ λα(v)Iα ˝ I1u

+
2
f̃1
(λ1(u)λα(v) + λ1(v)λα(u))IαZ̃

)
, t
)

.

(4.87)

Thus, introducing an endomorphism field

A =
K̃
f̃1

g̃´1
H ˝ g̃ = idTM ´

k̃
f̃H

3
ÿ

β=0

λβ b IβZ̃, (4.88)

allows us to isolate SHQ as follows:

SHQ
u v =

1
2 f̃1

3
ÿ

α=0

A
(

g̃(Iα ˝ IHu, v)IαZ̃´
2
f̃1

λα(u)λα(v)I1Z̃´ λα(u)Iα ˝ I1v

´ λα(v)Iα ˝ I1u +
2
f̃1
(λ1(u)λα(v) + λ1(v)λα(u))IαZ̃

)
=

k̃
2 f̃H

3
ÿ

α=0

g̃(Iα ˝ IHu, v)IαZ̃´
1

2 f̃1

3
ÿ

α=0

(λα(u)Iα ˝ I1v + λα(v)Iα ˝ I1u)

+
k̃

f̃1 f̃H

3
ÿ

α=0

(λ1(u)λα(v)IαZ̃ + λα(u)λ1(v)IαZ̃´ λα(u)λα(v)I1Z̃)

+
k̃

2 f̃1 f̃H

3
ÿ

α,β=0

(λβ(u)λα(Iβ ˝ I1v) + λβ(v)λα(Iβ ˝ I1u))IαZ̃.

(4.89)

Note that in order to obtain the above expression, we’ve had to switch the indices
α, β in the double summation. Furthermore, making the replacement Iβ ÞÑ Iβ ˝ I1 in
the double sum (which leaves it unchanged) and using the fact that I´1

i = ´Ii for
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i P t1, 2, 3u but I´1
0 = I0 allows us to simplify the above to

SHQ
u v =

k̃
2 f̃H

3
ÿ

α=0

g̃(Iα ˝ IHu, v)IαZ̃´
1

2 f̃1

3
ÿ

α=0

(λα(u)Iα ˝ I1v + λα(v)Iα ˝ I1u)

´
k̃

f̃1 f̃H

3
ÿ

α=0

λα(u)λα(v)I1Z̃ +
k̃

2 f̃1 f̃H

3
ÿ

α,β=0

(g̃(Iβ ˝ I1Z̃, u)g̃(Iβ ˝ Iα ˝ I1Z̃, v)

+ g̃(Iβ ˝ I1Z̃, v)g̃(Iβ ˝ Iα ˝ I1Z̃, u))Iα ˝ I1Z̃.
(4.90)

A final simplification follows from the observation that the double summation is
manifestly symmetric in u and v for α = 0 and antisymmetric for α ‰ 0, as the
replacement Iβ ÞÑ Iβ ˝ Iα shows. This gives us the desired expression for SHQ.

Remark 4.2.9. With the choice of auxiliary local twist data (Ũ, η̃H), this statement
may be easily generalised to vector fields u, v which aren’t Z-invariant:

∇g
u1v

1 = twZ̃, f̃H,η̃H

(
∇g̃

uv + SHQ
u v +

η̃H(u)
f̃H ´ η̃H(Z̃)

LZ̃v
)

, (4.91)

where u1 and v1 are the local twists of u and v. In particular, if Ji are the local twists
of the local Kähler structures Ii (of which only I1 is Z̃-invariant), we have

∇g
u1 Ji = twZ̃, f̃H,η̃H

(
∇g̃

u Ii +
[
SHQ

u , Ii

]
+

η̃H(u)
f̃H ´ η̃H(Z̃)

LZ̃ Ii

)
= twZ̃, f̃H,η̃H

([
SHQ

u , Ii

]
+

η̃H(u)
f̃H ´ η̃H(Z̃)

LZ̃ Ii

)
.

(4.92)

By making the replacement Iα ÞÑ Ii ˝ Iα, we see that

1
2

3
ÿ

α=0

(
1
f̃H

ω̃H(Iαu, Iiv)IαZ̃´
1
f̃1

g̃(IαZ̃, Iiv)Iα ˝ I1u
)

=
1
2

3
ÿ

α=0

Ii

(
1
f̃H

ω̃H(Iαu, v)IαZ̃´
1
f̃1

g̃(IαZ̃, v)Iα ˝ I1u
)

.

(4.93)

This implies that the commutators of SHQ with the Kähler structures Ii are given by

[
SHQ

u , Ii

]
= ´

1
2 f̃1

3
ÿ

α=0

λα(u)[Iα ˝ I1, Ii]. (4.94)

Written out more explicitly, this becomes[
SHQ

u , I1

]
=

1
f̃1
(λ2(u)I2 + λ3(u)I3),[

SHQ
u , I2

]
= ´

1
f̃1
(λ0(u)I3 + λ2(u)I1),[

SHQ
u , I3

]
=

1
f̃1
(λ0(u)I2 ´ λ3(u)I1),

(4.95)
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which gives us

∇g J1 = twZ̃, f̃H,η̃H

(
1
f̃1
(λ2 b I2 + λ3 b I3)

)
,

∇g J2 = twZ̃, f̃H,η̃H

(
´

1
f̃1
(λ0 b I3 + λ2 b I1) +

1
f̃H ´ η̃H(Z̃)

η̃H b I3

)
,

∇g J3 = twZ̃, f̃H,η̃H

(
1
f̃1
(λ0 b I2 ´ λ3 b I1)´

1
f̃H ´ η̃H(Z̃)

η̃H b I2

)
.

(4.96)

Now we’re in a position to show that the HK/QK correspondence is also locally
right-inverse to the QK/HK correspondence.

Proposition 4.2.10. Let (M̃, g̃, H) be a locally hyperkähler manifold equipped with a rotat-
ing Killing field Z̃ which preserves the Kähler structure I1 in a local oriented orthonormal
Kähler frame (I1, I2, I3) of H and is Hamiltonian with respect to v1 = g̃(I1¨, ¨) with nowhere
vanishing Hamiltonian function f̃1. Let (Z̃, ω̃H, f̃H) be the associated hyperkähler twist data
and let (M, g, Q) be a quaternionic Kähler manifold equipped with a Killing field Z that is
its image under the HK/QK correspondence. Then the image of (M, g, Q) under the QK/HK
correspondence is locally isometric to (M̃, g̃, H) for the choice

K = ´
K̃
k̃

. (4.97)

Proof. As in the case of Proposition 4.2.7, we work locally within a contractible open
set Ũ Ď M̃ which we identify with the corresponding open set U Ď M.

First of all, we show using (4.96) that the local twist

´
K
f̃1

J1 = twZ̃, f̃H,η̃H

(
K̃

k̃ f̃1
I1

)
(4.98)

with respect to any auxiliary 1-form η̃H is the quaternionic moment map of (M, g, Q).
Introduce the shorthand u1 for the local twist of a vector field u. Then, we have

∇g
u1

(
´

K
f̃1

J1

)
=

K̃
k̃

twZ̃, f̃H,η̃H

(
´

d f̃1(u)
f̃ 2
1

I1 +
1
f̃ 2
1
(λ2 b I2 + λ3 b I3)

)

=
K̃
k̃

twZ̃, f̃H,η̃H

(
1
f̃ 2
1

3
ÿ

i=1

λi(u)Ii

)
=

K̃
k̃

twZ̃, f̃H,η̃H

(
1
f̃ 2
1

3
ÿ

i=1

g̃(IiZ̃, u)Ii

)

= ´twZ̃, f̃H,η̃H

(
3
ÿ

i=1

g̃H

(
´

1
f̃H

IiZ̃, u
)

Ii

)
= ´

3
ÿ

i=1

g(JiZ, u1)Ji.

(4.99)
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This is the defining property of the quaternionic moment map written in terms of
local frame (J1, J2, J2). Therefore, we can now obtain

fQ = ´
g(Z, Z)
‖µZ‖ ´ ν‖µZ‖ = f̃1

K f̃ 2
H

g̃H(Z̃, Z̃) +
Kν

f̃1

= ´
1

f̃1 f̃H
g̃(Z̃, Z̃) +

1
k̃ f̃1

=
1
f̃H

,

ιZg
‖µZ‖ = ´

1
f̃H‖µZ‖

twZ̃, f̃H,η̃H
(ιZ̃ g̃H) = ´

1
f̃1

twZ̃, f̃H,η̃H
(λ0),

ιZωi

‖µZ‖ = ´
1
f̃1

twZ̃, f̃H,η̃H
(λi),

ηQ = ´

(
ιZg
‖µZ‖ + xJ2,∇g J3y

)
(4.96)
= ´

ιZg
‖µZ‖ ´ twZ̃, f̃H,η̃H

(
λ0

f̃1
´

η̃H

f̃H ´ η̃H(Z̃)

)
= twZ̃, f̃H,η̃H

(
η̃H

f̃H ´ η̃H(Z̃)

)
=

η̃H

f̃H
.

(4.100)

Thus, the local twist data (U, Z, ωQ, fQ, ηQ) is indeed dual to (Ũ, Z̃, ω̃H, f̃H, η̃Q), lead-
ing to the following conclusion:

twZ,ωQ, fQ(Q) = twZ,ωQ, fQ ˝ twZ̃,ω̃H, f̃H
(H) = H,

twZ,ωQ, fQ(gQ) = twZ,ωQ, fQ

(
Kν

‖µZ‖ g|HQZK ´
K fQ

‖µZ‖2 g|HQZ

)
=

Kν

‖µZ‖ g̃H|HH Z̃K ´
K fQ

‖µZ‖2 g̃H|HH Z̃

=
f̃1

K̃
g̃H|HH Z̃K +

k̃
K̃

f̃ 2
1

fH
g̃H|HH Z̃ = g̃.

(4.101)

Remark 4.2.11. Now that we know that the HK/QK correspondence is a two-sided
inverse of the QK/HK correspondence (for appropriate choices of the parameters
involved), we shall refer to the tuple of HK/QK data (M̃, g̃, H, Z̃, I1, f̃1, ω̃H, f̃H, g̃H)
as being the hyperkähler dual of the tuple of QK/HK data (M, g, Q, Z, ωQ, fQ, gQ), and
the QK/HK data (M, g, Q, Z, ωQ, fQ, gQ) as being the quaternionic dual of the HK/QK
data (M̃, g̃, H, Z̃, I1, f̃1, ω̃H, f̃H, g̃H).

4.2.3 Riemann curvature under HK/QK

In order to state an analogous result describing how the Riemann curvature behaves
under the HK/QK corespondence, we need to set up some notation.

Definition 4.2.12 (Kulkarni–Nomizu product). The Kulkarni–Nomizu product ? of
two (0, 2)-tensor fields g, h P Γ(T0,2M) on a manifold M is given by

(g ? h)(s, t, u, v) = g(s, u)h(t, v)´ g(s, v)h(t, u)
´ g(t, u)h(s, v) + g(t, v)h(s, u),

(4.102)

where s, t, u, v are arbitrary vector fields on M.
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Definition 4.2.13 (Riemann product). The Riemann product : of two 2-forms α, β P
Ω2M on a manifold M is given by

α : β = α ? β + 2 αb β + 2 βb α. (4.103)

The point of introducing these products is that they can be used to construct
tensor fields which have the same symmetries as the (lowered) Riemann curvature.

Definition 4.2.14 (Abstract curvature tensor field). A (0, 4)-tensor field C P Γ(T0,4M
on a manifold M is said to be an abstract curvature tensor field if it satisfies for all
vector fields s, t, u, v on M the following equations:

C(s, t, u, v) = ´C(t, s, u, v) = ´C(s, t, v, u),
C(s, t, u, v) + C(t, u, s, v) + C(u, s, t, v) = 0.

(4.104)

Lemma 4.2.15. For any two symmetric bilinear forms g, h and any two 2-forms α, β, the
tensor fields g ? h and α : β are abstract curvature tensor fields.

Example 4.2.16. The Riemann curvature RHPn of the quaternionic Kähler metric g
on the quaternionic projective space HPn is given in terms of a local oriented or-
thonormal frame (J1, J2, J3) of its quaternionic bundle Q by

g ˝ RHPn = ´
1
8

(
g ? g +

3
ÿ

i=1

(g ˝ Ji): (g ˝ Ji)

)
. (4.105)

The minus sign may seem strange when compared to other references which make
use of the abstract index notation, but this is just a consequence of taking the (low-
ered) Riemann curvature in the abstract index notation to be

Rabcd = g(Rg(ec, ed)eb, ea) = ´g(Rg(ea, eb)ec, ed). (4.106)

In terms of these products we can thus express the lowered Riemann curvature
g ˝ Rg of a quaternionic manifold as the twist of the sum of the lowered Riemann
curvature g̃H ˝ Rg̃H of its hyperkähler dual and certain tensor fields algebraically
constructed out of g̃H and ω̃H that are manifestly abstract curvature tensor fields.

Theorem 4.2.17. Let (M̃, g̃, H, Z̃, I1, f̃1, ω̃H, f̃H, g̃H) be HK/QK data with quaternionic
dual (M, g, Q, Z, ωQ, fQ, gQ), and let T̃ be the global twist map realising the HK/QK corre-
spondence. Then the Riemann curvatures Rg and Rg̃ of the metrics g and g̃ satisfy

g ˝ Rg = T̃

(
K̃
f̃1

g̃ ˝ Rg̃ +
1

8K̃

(
g̃H ? g̃H +

3
ÿ

i=1

(g̃H ˝ Ii): (g̃H ˝ Ii)

)

´
K̃
8k̃

1
f̃1 f̃H

(
ω̃H : ω̃H +

3
ÿ

i=1

(ω̃H ˝ Ii)? (ω̃H ˝ Ii)

))
,

(4.107)

where (I1, I2, I3) is a local oriented orthonormal Kähler frame of H.

Proof. Since the Riemann curvature Rh with respect to any metric h is given by

Rh(u, v)t = [∇h
u,∇h

v]t´∇h
Luvt, (4.108)
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we have as a consequence of (4.78) and (3.34b)

Rg(u1, v1)t1 = T̃
(

R∇
g̃+SHQ

(u, v)t´
1
f̃H

ω̃H(u, v)
(
∇g̃

Z̃t + SHQ
Z̃ t

))
. (4.109)

Here u, v, t are Z̃-invariant vector fields on M̃, with global twists u1, v1, t1 on M, and
R∇

g̃+SHQ
is the curvature of the connection ∇g̃ + SHQ, given by

R∇
g̃+SHQ

(u, v)t =
[
∇g̃

u + SHQ
u ,∇g̃

v + SHQ
v

]
t´∇g̃

Luvt´ SHQ
Luvt

= Rg̃(u, v)t +
[
∇g̃

u, SHQ
v

]
t´
[
∇g̃

v, SHQ
u

]
t

+
[
SHQ

u , SHQ
v

]
t´ SHQ

∇g̃
uv

t + SHQ
∇g̃

vu
t

= Rg̃(u, v)t +
(
∇g̃

uSHQ
)
(v, t)´

(
∇g̃

vSHQ
)
(u, t) +

[
SHQ

u , SHQ
v

]
t,

(4.110)

where we have used the fact that∇g̃ is torsion-free. Moreover, since t is Z̃-invariant,
we have

∇g̃
Z̃t = LZ̃t +∇g̃

t Z̃ = ∇g̃
t Z̃. (4.111)

Putting (4.110) and (4.111) together, we get

Rg(u1, v1)t1 = T̃
(

Rg̃(u, v)t +
(
∇g̃

uSHQ
)
(v, t)´

(
∇g̃

vSHQ
)
(u, t)

+
[
SHQ

u , SHQ
v

]
t´

1
f̃H

ω̃H(u, v)
(
∇g̃

t Z̃ + SHQ
Z̃ t

))
.

(4.112)

Substituting (4.79) into the above, making use of the identity

(∇g̃
u IH)v´ (∇g̃

v IH)u = Rg̃(u, v)Z̃, (4.113)

and carrying out simplifications (deferred to Section 4.A in the appendix) then yields

Rg(u1, v1)t1

= T̃
(

Rg̃(u, v)t

´
1

2 f̃ 2
H

(
1
2

3
ÿ

α,β=0

(ω̃H(IαZ̃, u)ωH(Iβv, t)´ωH(IαZ̃, v)ω̃H(Iβu, t))Iα ˝ IβZ̃

+
3
ÿ

α=0

ω̃H(u, v)ω̃H(IαZ̃, t)IαZ̃

)

+
1

2 f̃H

(
1
2

3
ÿ

α=0

(
ω̃H(Iαv, t)Iα ˝ IHu´ ω̃H(Iαu, t)Iα ˝ IHv + 4g̃(Iα ˝ Rg̃(u, v)Z̃, t)IαZ̃

)
´ ω̃H(u, v)IHt

)

+
1
4

3
ÿ

α=0

(
g̃H(Iαu, t)Iαv´ g̃H(Iαv, t)Iαu +

(
g̃H(Iαu, v)´ gH(Iαv, u)

)
Iαt
))

.

(4.114)

Recall that any complex structure Kähler with respect to some metric h necessarily
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commutes with the Riemann curvature Rh(u, v) for any any vector fields u and v and
that Rh(u, v) is skew-self-adjoint with respect to h. In this case, I1, I2, I3 are all Kähler
with respect to g̃, and so commute with Rg̃, as does I0 on account of just being the
identity endomorphism field. Thus, we have

g̃(Iα ˝ Rg̃(u, v)Z̃, t) = g̃(Rg̃(u, v) ˝ IαZ̃, t) = ´g̃(IαZ̃, Rg̃(u, v)t). (4.115)

As a result, we may now succinctly write (4.114) using the endomorphism field A
introduced in (4.88) as

Rg(u1, v1)t1

= T̃
(

A ˝ Rg̃(u, v)t´
1

2 f̃H
ω̃H(u, v)A ˝ IHt

+
1

4 f̃H

3
ÿ

α=0

(
ω̃H(Iαv, t)A ˝ IH ˝ Iαu´ ω̃H(Iαu, t)A ˝ IH ˝ Iαv

)
+

1
4

3
ÿ

α=0

(
g̃H(Iαu, t)Iαv´ g̃H(Iαv, t)Iαu +

(
g̃H(Iαu, v)´ g̃H(Iαv, u)

)
Iαt
))

.

(4.116)

Note that we have made use of the fact that A commutes with all the Iα, a conse-
quence of the fact that I1, I2, I3 are Hermitian with respect to both g̃ and g̃H. Addi-
tionally, because we have

g̃H(A¨, ¨) =
K̃
f̃1

g̃(¨, ¨), (4.117)

we may contract (4.116) with ιs g̃H under the twist, where s is some Z̃-invariant vector
field on M̃ with global twist s1 on M, to obtain

g(Rg(u1, v1)t1, s1)

=
K̃
f̃1

g̃(Rg̃(u, v)t, s)´
1

2 f̃H

K̃
f̃1

ω̃H(u, v)g̃(IHt, s)

+
1

4 f̃H

K̃
f̃1

3
ÿ

α=0

(
ω̃H(Iαv, t)g̃(IH ˝ Iαu, s)´ ω̃H(Iαu, t)g̃(IH ˝ Iαv, s)

)
+

1
4K̃

3
ÿ

α=0

(
g̃H(Iαu, t)g̃H(Iαv, s)´ g̃H(Iαv, t)g̃H(Iαu, s)

+
(

g̃H(Iαu, v)´ g̃H(Iαv, u)
)

g̃H(Iαt, s)
)

=
K̃
f̃1

g̃(Rg̃(u, v)t, s)´
K̃
2k̃

1
f̃1 f̃H

ω̃H(u, v)ω̃H(t, s)

+
K̃
4k̃

1
f̃1 f̃H

3
ÿ

α=0

(
ω̃H(Iαv, t)ω̃H(Iαu, s)´ ω̃H(Iαu, t)ω̃H(Iαv, s)

)
+

1
4K̃

3
ÿ

α=0

(
g̃H(Iαu, t)g̃H(Iαv, s)´ g̃H(Iαv, t)g̃H(Iαu, s)

+
(

g̃H(Iαu, v)´ g̃H(Iαv, u)
)

g̃H(Iαt, s)
)

.

(4.118)

This may be rewritten in terms of the products ? and : to yield (4.107).
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Remark 4.2.18. The HK/QK Levi-Civita connection formula (4.78) and HK/QK cur-
vature formula (4.107) are generalisations of the Levi-Civita and curvature formulae
for a special class of quaternionic Kähler manifolds known as q-map spaces derived
by Cortés, Dyckmanns, Jüngling, and Lindemann in Sections 2.5 and 2.6 of [Cor+17].

Remark 4.2.19. The HK/QK curvature formula (4.107) is also a refinement of Alek-
seevsky’s decomposition of the curvature of quaternionic Kähler metrics, quoted in
Theorem 2.1.12, in the following sense. The HPn part arises from

T̃

(
1

8K̃

(
g̃H ? g̃H +

3
ÿ

i=1

(g̃H ˝ Ii): (g̃H ˝ Ii)

))

=
1

8K̃

(
g ? g +

3
ÿ

i=1

(g ˝ Ji): (g ˝ Ji)

)
= ν g ˝ RHPn .

(4.119)

Meanwhile, the quaternionic Weyl curvature Wg
Q arises from

T̃

(
K̃
f̃1

g̃ ˝ Rg̃ ´
K̃
8k̃

1
f̃1 f̃H

(
ω̃H : ω̃H +

3
ÿ

i=1

(ω̃H ˝ Ii)? (ω̃H ˝ Ii)

))
. (4.120)

The quaternionic Weyl curvature is by definition a tensor field with all the sym-
metries of the Riemann or Weyl curvature which additionally commutes with the
quaternionic bundle Q. In the lowered form, this amounts to requiring g ˝Wg

Q to be
an abstract curvature tensor field satisfying

g ˝Wg
Q(s, t, Jju, Jjv) = g ˝Wg

Q(s, t, u, v), (4.121)

where (J1, J2, J3) is any local oriented orthonormal frame for Q. That it is an abstract
curvature tensor field is manifest. Meanwhile, (4.121) follows from the proposition
below.

Proposition 4.2.20. The tensor field

W :=T̃

(
K̃
f̃1

g̃ ˝ Rg̃ ´
K̃
8k̃

1
f̃1 f̃H

(
ω̃H : ω̃H +

3
ÿ

i=1

(ω̃H ˝ Ii)? (ω̃H ˝ Ii)

))
(4.122)

satisfies for any local oriented orthonormal frame (J1, J2, J3) of Q

W(s, t, Jju, Jjv) = W(s, t, u, v). (4.123)

Proof. Let W = T̃(W1). Then it suffices to show that W1 satisfies

W1(s, t, Iju, Ijv) = W1(s, t, u, v) (4.124)

for local Kähler structures I1, I2, I3. But this is indeed the case as can be seen from the
fact that Rg̃ is the curvature of a locally hyperkähler metric and so commutes with
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the local Kähler structures and the following short computation:(
ω̃H : ω̃H +

3
ÿ

i=1

(ω̃H ˝ Ii)? (ω̃H ˝ Ii)

)
(s, t, Iju, Ijv)

= 4 ω̃H(s, t)ω̃H(Iju, Ijv) + 2
3
ÿ

α=0

(ω̃H(Iαs, Iju)ω̃H(Iαt, Ijv)´ ω̃H(Iαs, Ijv)ω̃H(Iαt, Iju))

= 4 ω̃H(s, t)ω̃H(u, v) + 2
3
ÿ

α=0

(ω̃H(Iαs, u)ω̃H(Iαt, v)´ ω̃H(Iαs, v)ω̃H(Iαt, u))

=

(
ω̃H : ω̃H +

3
ÿ

i=1

(ω̃H ˝ Ii)? (ω̃H ˝ Ii)

)
(s, t, u, v),

(4.125)

where the penultimate step follows from making a replacement Iα ÞÑ Ij ˝ Iα in
the sum and then using the fact that IH commutes with Ij, so that ω̃H(Iju, Ijv) =
ω̃H(u, v).

The Riemann curvature and associated curvature invariants are in general much
harder to compute in case of a quaternionic Kähler manifold than a locally hyperkäh-
ler manifold. The above relation therefore simplifies such computation and makes
computing, say, the curvature norm of the quadratic prepotential Ferrara–Sabharwal
metrics tractable. As a result, we can establish the following fact.

Theorem 4.2.21. The 1-loop-deformed quadratic prepotential Ferrara–Sabharwal metrics
have cohomogeneity 1.

Proof. We shall first show that the cohomogeneity of the 1-loop-deformed quadratic
prepotential Ferrara–Sabharwal metrics g1cFS =: g is at least 1 by computing the cur-
vature norm, given by

tr(R2) =
1
4

ÿ

a,b,c,d

g(Rg(E1a, E1b)E1c, E1d)
2, (4.126)

where the vector fields E1a constitute an orthonormal frame with respect to the Rie-
mannian metric g. We have already seen in Example 4.2.6 that these metrics arise as
images of the flat metric

g̃ = ´(|dz0|
2 + |dw0|

2) +
n´1
ÿ

a=1

(|dza|
2 + |dwa|

2), (4.127)

on complex cotagent spaces of dimension real 4n, under the HK/QK correspon-
dence. Therefore, by (4.107), the curvature norm is given by

tr(R2) =
1
4

ÿ

a,b,c,d

C(Ea, Eb, Ec, Ed)
2, (4.128)
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where C is a (0, 4)-tensor given by

C =
1

8K̃

(
g̃H ? g̃H +

3
ÿ

i=1

(g̃H ˝ Ii): (g̃H ˝ Ii)

)

´
K̃
8k̃

1
f̃1 f̃H

(
ω̃H : ω̃H +

3
ÿ

i=1

(ω̃H ˝ Ii)? (ω̃H ˝ Ii)

)
,

(4.129)

and the vector fields Ea constitute an orthonormal frame with respect to g̃H. Note
that Ea do not need to be the twists of E1a, or even Z-invariant for that matter. A
straightforward computation (deferred to Section 4.B in the appendix) now gives us

tr(R2)

=
1

K̃2

n(5n + 1) + 3

(
k̃3 f̃ 3

1

f̃ 3
H
+ (n´ 1)k̃

f̃1

f̃H

)2

+ 3

(
k̃6 f̃ 6

1

f̃ 6
H
+ (n´ 1)k̃2 f̃ 2

1

f̃ 2
H

)
= ν2

(
n(5n + 1) + 3

(
ρ3

(ρ + 2c)3 +
(n´ 1)ρ
(ρ + 2c)

)2

+ 3
(

ρ6

(ρ + 2c)6 +
(n´ 1)ρ2

(ρ + 2c)2

))
.

(4.130)

We can write the map ρ ÞÑ tr(R2) as a composition of two maps, both Rą0 Ñ Rą0,
given by

ρ ÞÑ
ρ

ρ + 2c
=: Y, Y ÞÑ ν2(n(5n + 1) + 3(Y3 + (n´ 1)Y)2 + 3(Y6 + (n´ 1)Y2).

(4.131)
The first map is clearly injective when c ą 0. As for the second map, suppose there
existed Y1 and Y2 such that

ν2(n(5n + 1) + 3(Y3
1 + (n´ 1)Y1)

2 + 3(Y6
1 + (n´ 1)Y2

1 )

= ν2(n(5n + 1) + 3(Y3
2 + (n´ 1)Y2)

2 + 3(Y6
2 + (n´ 1)Y2

2 ).
(4.132)

This can be rearranged into

(Y1 ´Y2)(Y1 + Y2)((Y2
1 + Y2

2 + n´ 1)2 + Y4
1 + Y4

2 + n´ 1) = 0. (4.133)

The only way the left-hand side can vanish for n ě 1 and Y1 and Y2 both positive
is if we had Y1 = Y2. So, the second map and hence the composition ρ ÞÑ tr(R2)
is injective. Since the curvature norm must be preserved by any isometry, it follows
that any isometry of g necessarily sends any given constant ρ hypersurface to itself.
In other words, g has cohomogeneity at least 1.

To prove that it has cohomogeneity at most and hence equal to 1, we make use of
the involution v Ø ṽ in (3.42) to construct Killing fields of g from ω̃H-Hamiltonian
Killing fields of g̃H which Lie-commute with Z̃. Killing fields of g̃H which Lie-
commute with Z̃ may be obtained by considering Killing fields of g̃ which preserve
f̃1, v1, v2, v3 separately. (This is a sufficient condition, but not a necessary one, as
the example of Z̃ shows.)

More concretely, we consider the following vector fields:

ũ+
a = Re(zaBz0 + z0Bza ´w0Bwa ´waBwo), ṽ+0 = Re(Bw0), ṽ+a = Re(Bwa),

ũ´a = Im(zaBz0 + z0Bza ´w0Bwa ´waBwo), ṽ´0 = Im(Bw0), ṽ´a = Im(Bwa),
(4.134)



96 Chapter 4. To locally hyperkähler manifolds and back again

with a ranging from 1 to n´ 1. These Lie-commute with Z̃, preserve v1, v2, v3, and
are ω̃H-Hamiltonian. We make the following choice of Hamiltonian functions:

f̃ũ+
a
=

k̃
2

Re(´i(zaz0 ´waw0))´ 1, f̃ṽ+0
=

k̃
2

Re(iw0)´ 1, f̃ṽ+a =
k̃
2

Re(´iwa)´ 1,

f̃ũ´a
=

k̃
2

Im(´i(zaz0 ´waw0))´ 1, f̃ṽ´0
=

k̃
2

Im(iw0)´ 1, f̃ṽ´a
=

k̃
2

Im(´iwa)´ 1.

(4.135)

With the choice of η̃H as in (4.61), the involution v Ø ṽ is given by

v = twZ̃, f̃H,η̃H
(ṽ) + ( f̃ṽ + 1)Z = ṽ´

f̃ṽ ´ η̃H(ṽ) + 1
f̃H ´ η̃H(Z̃)

Z̃

= ṽ +
8K̃
k̃

( f̃ṽ ´ η̃H(ṽ) + 1)Z̃.

(4.136)

Therefore, we obtain

u+
a = ũ+

a +

(
2K̃c´

1
2

)
Re
(

iza

z0

)
Z̃,

v+0 = ṽ+0 + 2K̃ Re(iw0)Z̃, v+a = ṽ+a ´ 2K̃ Re(iwa)Z̃,

u´a = ũ´a +

(
2K̃c´

1
2

)
Re
(

iza

z0

)
Z̃,

v´0 = ṽ´0 + 2K̃ Re(iw0)Z̃, v´a = ṽ´a ´ 2K̃ Re(iwa)Z̃.

(4.137)

Carrying out the change of coordinates given in (4.65), we finally get

u+
a = Re

(
´

n´1
ÿ

b=1

XaXbBXb + BXa
´ ζ0Bζa ´ ζaBζ0

+ 2iK̃cXaBτ

)
,

v+0 =
?

2 Re(Bζ0 + iK̃ζ0Bτ), v+a =
?

2 Re(Bζa ´ iK̃ζaBτ),

u´a = Im

(
´

n´1
ÿ

b=1

XaXbBXb + BXa
´ ζ0Bζa ´ ζaBζ0

+ 2iK̃cXaBτ

)
,

v´0 =
?

2 Im(Bζ0 + iK̃ζ0Bτ), v´a =
?

2 Im(Bζa ´ iK̃ζaBτ).

(4.138)

These are Killing with respect to g. The diffeomorphisms generated by them and
Bτ act transitively on the constant ρ hypersurfaces. Hence, the 1-loop-deformed
quadratic prepotential Ferrara–Sabharwal metrics have cohomogeneity exactly 1.

Remark 4.2.22. Note that (4.130) reduces to the curvature norm for the universal hy-
permultiplet in (2.98) for n = 1.
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Appendix

This appendix includes details of the computation of the curvature formula in (4.107)
and the curvature norm in (4.130) that were skipped over earlier in this chapter.
These computations have been carried out in collaboration with Danu Thung [CST20b;
CST20a].

4.A HK/QK curvature formula

In this section, we’ll show how to obtain (4.114) from (4.112). We’ll divide the com-
putation into several lemmata describing the various pieces on the right-hand side
of (4.112).

Lemma 4.A.1. The antisymmetrised covariant derivative of SHQ is given by(
∇g̃

uSHQ
)
(v, t)´

(
∇g̃

vSHQ
)
(u, t)

=
1
2

3
ÿ

α=0

(
1
f̃ 2
H

ω̃H(Z̃, u)ωµ(IHv, t)IαZ̃ +
1
f̃ 2
1

λ1(u)
(

g̃(Iα ˝ I1Z, v)Iαt + g̃(Iα ˝ I1Z̃, t)Iαv
)

´
1
f̃ 2
H

ω̃H(Z̃, v)ω̃H(Iαu, t)IαZ̃´
1
f̃ 2
1

λ1(v)
(

g̃(Iα ˝ I1Z̃, u)Iαt + g̃(Iα ˝ I1Z̃, t)Iαu
)

+
1

2 f̃H

(
ω̃H(Iαv, t)Iα ˝ (IH ´ I1)u´ ω̃H(Iαu, t)Iα ˝ (IH ´ I1)v

)
+

1
2 f̃1

((
ω̃H(Iα ˝ I1u, t) + g̃(Iαu, t)

)
Iαv´

(
ω̃H(Iα ˝ I1v, t) + g̃(Iαv, t)

)
Iαu
)

+
1

2 f̃1

(
g̃(Iαu, v)´ g̃(Iαv, u)

)
Iαt

)
´

1
2 f̃1

ω̃H(u, v)I1t +
2k̃
f̃H

g̃(Iα ˝ Rg̃(u, v)Z̃, t)IαZ̃.

(4.139)

Proof. We begin by computing the covariant derivative(
∇g̃

uSHQ
)
(v, t)

=
1
2

3
ÿ

α=0

(
´

d f̃H(u)
f̃ 2
H

ω̃H(Iαv, t)IαZ̃ +
2k̃
f̃H

g̃(Iα ˝ (∇g̃)2
u,vZ̃), t)IαZ̃

+
1
f̃H

ω̃H(Iαv, t)Iα ˝∇g̃
uZ̃ +

d f̃1(u)
f̃ 2
1

(λα(v)Iα ˝ I1t + λα(t)Iα ˝ I1v)

´
1
f̃1
(g̃(Iα ˝∇g̃

uZ̃, v)Iα ˝ I1t + g̃(Iα ˝∇g̃
uZ̃, t)Iα ˝ I1v)

)
.

(4.140)
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Using the definitions of f̃1, f̃H, IH and replacing Iα by Iα ˝ I1 in some of the terms, we
can rewrite this as(
∇g̃

uSHQ
)
(v, t)

=
1
2

3
ÿ

α=0

(
1
f̃ 2
H

ω̃H(Z̃, u)ω̃H(Iαv, t)IαZ̃ +
2k̃
f̃H

g̃(Iα ˝ (∇g̃)2
u,vZ̃), t)IαZ̃

+
1

2 f̃H
ω̃H(Iαv, t)Iα ˝ (IH ´ I1)u +

1
f̃ 2
1

λ1(v)(g̃(Iα ˝ I1Z̃, v)Iαt + g̃(Iα ˝ I1Z̃, t)Iαv)

+
1

2 f̃1
(g̃(Iα ˝ I1 ˝ (IH ´ I1)u, v)Iαt + g̃(Iα ˝ I1 ˝ (IH ´ I1)u, t)Iαv)

)
=

1
2

3
ÿ

α=0

(
1
f̃ 2
H

ω̃H(Z̃, u)ω̃H(Iαv, t)IαZ̃ +
2k̃
f̃H

g̃(Iα ˝ (∇g̃)2
u,vZ̃), t)IαZ̃

+
1

2 f̃H
ω̃H(Iαv, t)Iα ˝ (IH ´ I1)u +

1
f̃ 2
1

λ1(v)(g̃(Iα ˝ I1Z̃, v)Iαt + g̃(Iα ˝ I1Z̃, t)Iαv)

+
1

2 f̃1
((ω̃H(Iα ˝ I1u, v) + g̃(Iαu, v))Iαt + (ω̃H(Iα ˝ I1u, t) + g̃(Iαu, t))Iαv)

)
.

(4.141)

Now, we can use the fact that ω̃H ˝ Iα ˝ I1 is antisymmetric when α = 1 and symmet-
ric otherwise to conclude that antisymmetrising u and v in (4.141) gives (4.139).

Lemma 4.A.2. The commutator of SHQ with itself is given by[
SHQ

u , SHQ
v

]
t

=
1
4

3
ÿ

α,β=0

(
1
f̃ 2
H

(
ω̃H(Iµu, Z̃)ω̃H(Iβv, t)´ ω̃H(Iαv, Z̃)ω̃H(Iβu, t)

)
Iβ ˝ IαZ̃

+
1
f̃ 2
1

((
g̃(Iα ˝ I1Z̃, u)g̃(Iβ ˝ I1Z, v)´ g(Iα ˝ I1Z̃, v)g̃(Iβ ˝ I1Z̃, u)

)
Iα ˝ Iβt

+ g̃(Iα ˝ I1Z̃, v)g(Iβ ˝ I1Z̃, t)Iβ ˝ Iαu´ g̃(Iα ˝ I1Z̃, u)g̃(Iβ ˝ I1Z̃, t)Iβ ˝ Iαv
))

+
1

4 f̃1 f̃H

3
ÿ

α=0

(
2ω̃H(u, v)g̃(Iα ˝ I1Z̃, t)IαZ̃

´

(
1
k̃

f̃H ´ f̃1

) (
ωH(Iαv, t)Iα ˝ I1u´ωH(Iαu, t)Iα ˝ I1v

))
.

(4.142)
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Proof. First we compute the composition of SHQ with itself to be

SHQ
u ˝ SHQ

v t

=
1
2

3
ÿ

α=0

(
1
f̃H

ω̃H(Iαu, SHQ
v t)IαZ̃ +

1
f̃1

(
g̃(Iα ˝ I1Z̃, u)Iα ˝ SHQ

v t + g̃(Iα ˝ I1Z̃, SHQ
v t)Iαu

))
=

1
4

ÿ

α,β=0

(
1
f̃ 2
H

ω̃H(Iαu, IβZ̃)ω̃(Iβv, t)IαZ̃

+
1

f̃1 f̃H

((
ω̃H(Iαu, Iβt)g̃(Iβ ˝ I1Z̃, v) + ω̃H(Iαu, Iβv)g(Iβ ˝ I1Z̃, t)

)
IαZ̃

+ g̃(Iα ˝ I1Z̃, u)ω̃H(Iαv, t)Iα ˝ IβZ̃ + g̃(Iα ˝ I1Z̃, IβZ̃)ω̃H(Iβv, t)Iαu
)

+
1
f̃ 2
1

(
g̃(Iα ˝ I1Z̃, u)

(
g̃(Iβ ˝ I1Z̃, v)Iα ˝ Iβt + g̃(Iβ ˝ I1Z̃, t)Iα ˝ Iβv

)
+
(

g̃(Iα ˝ I1Z̃, Iβt)g̃(Iβ ˝ I1Z̃, v) + g̃(Iα ˝ I1Z̃, Iβv)g̃(Iβ ˝ I1Z̃, t)
)

Iαu
))

.

(4.143)

Making the replacement Iα ÞÑ Iβ ˝ Iα in some of the terms and swapping the labels α
and β in others, we obtain

SHQ
u ˝ SHQ

v t

=
1
4

ÿ

α,β=0

(
1
f̃ 2
H

ω̃H(Iαu, Z̃)ω̃(Iβv, t)Iβ ˝ IαZ̃

+
1

f̃1 f̃H

((
ω̃H(Iαu, t)g̃(Iβ ˝ I1Z̃, v) + ω̃H(Iαu, v)g(Iβ ˝ I1Z̃, t)

)
Iβ ˝ IαZ̃

+ g̃(Iα ˝ I1Z̃, u)ω̃H(Iαv, t)Iα ˝ IβZ̃ + g̃(Iα ˝ I1Z̃, IβZ̃)ω̃H(Iβv, t)Iαu
)

+
1
f̃ 2
1

(
g̃(Iβ ˝ I1Z̃, u)

(
g̃(Iα ˝ I1Z̃, v)Iβ ˝ Iαt + g̃(Iα ˝ I1Z̃, t)Iβ ˝ Iαv

)
+
(

g̃(Iα ˝ I1Z̃, t)g̃(Iβ ˝ I1Z̃, v) + g̃(Iα ˝ I1Z̃, v)g̃(Iβ ˝ I1Z̃, t)
)

Iβ ˝ Iαu
))

.

(4.144)

Note that g̃(Iα ˝ I1Z̃, IβZ̃) vanishes unless α = 1. Moreover, certain pairs of terms are
symmetric in u and v, as is ωH(Iαu, v) whenever α ‰ 0. These terms drop out under
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antisymmetrisation, leaving us with[
SHQ

u , SHQ
v

]
t

=
1
4

3
ÿ

α,β=0

(
1
f̃ 2
H

(
ω̃H(Iµu, Z̃)ω̃H(Iβv, t)´ ω̃H(Iαv, Z̃)ω̃H(Iβu, t)

)
Iβ ˝ IαZ̃

+
1
f̃ 2
1

((
g̃(Iα ˝ I1Z̃, u)g̃(Iβ ˝ I1Z, v)´ g(Iα ˝ I1Z̃, v)g̃(Iβ ˝ I1Z̃, u)

)
Iα ˝ Iβt

+ g̃(Iα ˝ I1Z̃, v)g(Iβ ˝ I1Z̃, t)Iβ ˝ Iαu´ g̃(Iα ˝ I1Z̃, u)g̃(Iβ ˝ I1Z̃, t)Iβ ˝ Iαv
))

+
1

4 f̃1 f̃H

3
ÿ

α=0

(
2 ω̃H(u, v)g̃(Iα ˝ I1Z̃, t)IαZ̃

´ g̃(Z̃, Z̃)
(
ω̃H(Iαv, t)Iα ˝ I1u´ ω̃H(Iαu, t)Iα ˝ I1v

))
.

(4.145)

Equation (4.142) now follows by rewriting g̃(Z̃, Z̃) = k̃´1 f̃H ´ f̃1.

Lemma 4.A.3. The endomorphism field SHQ satisfies the equation

∇g̃
t Z̃ + SHQ

Z̃ t

=
1
2

(
IH ´

1
k̃

f̃H

f̃1
I1

)
t +

1
2

3
ÿ

α=0

(
1
f̃H

ω̃H(IαZ̃, t) +
1
f̃1

g̃(Iα ˝ I1Z̃, t)
)

IαZ̃.
(4.146)

Proof. This follows from a short computation:

∇g̃
t Z̃ + SHQ

Z̃ t

=
1
2
(IH ´ I1)t

+
1
2

3
ÿ

α=0

(
1
f̃H

ω̃H(IαZ̃, t)IαZ̃ +
1
f̃1

(
g̃(Iα ˝ I1Z̃, Z̃)Iαt + g̃(Iα ˝ I1Z̃, t)IαZ̃

))
=

1
2
(IH ´ I1)t´

g̃(Z̃, Z̃)
2 f̃1

I1t

+
1
2

3
ÿ

α=0

(
1
fH

ω̃H(IαZ̃, t) +
1
f̃1

g̃(Iα ˝ I1Z̃, t)
)

Iα Z̃

=
1
2

(
IH ´

1
k̃

f̃H

f̃1
I1

)
t +

1
2

3
ÿ

α=0

(
1
f̃H

ω̃H(IαZ̃, t) +
1
f̃1

g̃(Iα ˝ I1Z̃, t)
)

IαZ̃,

(4.147)

where in the final step, we have used the definition of f̃H i.e. f̃H = k̃( f̃1 + g̃(Z̃, Z̃).

Finally, we put together all of the above results to get the main lemma of this
section.
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Lemma 4.A.4. The endomorphism field SHQ satisfies the equation(
∇g̃

uSHQ
)
(v, t)´

(
∇g̃

vSHQ
)
(u, t)

+
[
SHQ

u , SHQ
v

]
t´

1
f̃H

ω̃H(u, v)
(
∇g̃

t Z̃ + SHQ
Z̃ t

)
= ´

1
2 f̃ 2

H

(
1
2

3
ÿ

α,β=0

(ω̃H(IαZ̃, u)ωH(Iβv, t)´ωH(IαZ̃, v)ω̃H(Iβu, t))Iα ˝ IβZ̃

+
3
ÿ

α=0

ω̃H(u, v)ω̃H(IαZ̃, t)IαZ̃

)

+
1

2 f̃H

(
1
2

3
ÿ

α=0

(
ω̃H(Iαv, t)Iα ˝ IHu´ ω̃H(Iαu, t)Iα ˝ IHv + 4k̃ g̃(Iα ˝ Rg̃(u, v)Z̃, t)IαZ̃

)
´ ω̃H(u, v)IHt

)

+
1
4

3
ÿ

α=0

(
g̃H(Iαu, t)Iαv´ g̃H(Iαv, t)Iαu +

(
g̃H(Iαu, v)´ gH(Iαv, u)

)
Iαt
)

.

(4.148)

Proof. Substituting (4.139), (4.142), and (4.142) into the left-hand side and cancelling
terms yields(
∇g̃

uSHQ
)
(v, t)´

(
∇g̃

vSHQ
)
(u, t)

+
[
SHQ

u , SHQ
v

]
t´

1
f̃H

ω̃H(u, v)
(
∇g̃

t Z̃ + SHQ
Z̃ t

)
=

1
f̃1

D1,1(u, v, t) +
1
f̃ 2
1

D1,2(u, v, t) +
1
f̃H

DH,1(u, v, t) +
1
f̃ 2
H

DH,2(u, v, t),

(4.149)

where the tensor fields D1,1, D1,2 are given by

D1,1(u, v, t)

=
1
4

3
ÿ

α=0

(
g̃(Iαu, t)Iαv´ g̃(Iαv, t)Iαu +

(
g̃(Iαu, v)´ g̃(Iαv, u)

)
Iαt
)

,

D1,2(u, v, t)

=
1
2

3
ÿ

α=0

(
λ1(u)

(
g̃(Iα ˝ I1Z̃, v)Iαt + g̃(Iα ˝ I1Z̃, t)Iαv

)
´ λ1(v)

(
g̃(Iα ˝ I1Z̃, u)Iαt + g̃(Iα ˝ I1Z̃, t)Iαu

))
+

1
4

ÿ

α,β

((
g̃(Iα ˝ I1Z̃, u)g̃(Iβ ˝ I1Z̃, v)´ g̃(Iα ˝ I1Z̃, v)g̃(Iβ ˝ I1Z̃, u)

)
Iα ˝ Iβt

+ g̃(Iβ ˝ I1Z̃, v)g̃(Iα ˝ I1Z̃, t)Iα ˝ Iβu´ g̃(Iβ ˝ I1Z̃, u)g̃(Iα ˝ I1Z̃, t)Iα ˝ Iβv
)

,

(4.150)
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while the tensor fields DH,1, DH,2 are given by

DH,1(u, v, t)

=
1
4

3
ÿ

α=0

(
ω̃H(Iαv, t)Iα ˝ IHu´ ω̃H(Iαu, t)Iα ˝ IHv + 4k̃ g̃(Iα ˝ Rg̃(u, v)Z̃, t)IαZ̃

)
´

1
2

ω̃H(u, v)IHt,

DH,2(u, v, t)

=
1
2

3
ÿ

α=0

(
ω̃H(Z̃, u)ω̃H(Iαv, t)´ ω̃H(Z̃, v)ω̃H(Iαu, t)´ ω̃H(u, v)ω̃H(IαZ̃, t)

)
IαZ̃

+
1
4

3
ÿ

α,β=0

(
ω̃H(Iβu, Z̃)ω̃H(Iαv, t)´ ω̃H(Iβv, Z̃)ω̃H(Iαu, t)

)
Iα ˝ IβZ̃.

(4.151)

The expressions for D1,2 and DH,2 can be simplified further by absorbing some of the
terms in the single summations into the double summation by rewriting

λ1(¨)Iα =
1
2

3
ÿ

β=0

(g̃(Iβ ˝ I1Z̃, ¨) + g̃(I1Z̃, Iβ¨))Iα ˝ Iβ,

ω̃H(Z̃, ¨)Iα =
1
2

3
ÿ

β=0

(ω̃H(IβZ̃, ¨)´ ω̃H(Iβ¨, Z̃))Iα ˝ Iβ.

(4.152)

This gives us the following expressions for D1,2 and DH,2:

D1,2(u, v, t)

=
1
4

3
ÿ

α,β=0

((
g̃(Iα ˝ I1Z̃, v)g̃(I1Z̃, Iβu)´ g̃(Iα ˝ I1Z̃, u)g̃(I1Z̃, Iβv)

)
Iα ˝ Iβt

+ g̃(I1Z̃, Iβu)g̃(Iα ˝ I1Z̃, t)Iα ˝ Iβv´ g̃(I1Z̃, Iβv)g̃(Iα ˝ I1Z̃, t)Iα ˝ Iβu
)

=
1
4

3
ÿ

α=0

((
g̃λ(Iαu, v)´ g̃λ(Iαv, u)

)
Iαt + g̃λ(Iαu, t)Iαv´ g̃λ(Iαv, t)Iαu

)
,

DH,2(u, v, t)

= ´
1
2

3
ÿ

α=0

ω̃H(u, v)ω̃H(IαZ̃, t)IαZ̃

+
1
4

3
ÿ

α,β=0

(
ω̃H(IβZ̃, u)ω̃H(Iαv, t)´ ω̃H(IβZ̃, v)ω̃H(Iαu, t)

)
Iα ˝ IβZ̃,

(4.153)

where we have made use of the shorthand g̃λ introduced in (4.85). Plugging these
simplified expressions into (4.149) and noting that the standard hyperkähler elemen-
tary deformation is

g̃H =
K̃
f̃1

g̃ +
K̃
f̃ 2
1

g̃λ (4.154)

gives us the required expression (4.148).
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4.B Ferrara–Sabharwal curvature norm

In this section, we’ll compute the curvature norm (4.128) of the quadratic prepoten-
tial Ferrara–Sabharwal metric. As preparation, we first introduce some notation and
prove a general lemma about traces.

Definition 4.B.1 (h-Kulkarni–Nomizu product). Given a metric h, and two endomor-
phism fields B1, B2 self-adjoint with respect to it, their h-Kulkarni–Nomizu product
B1 ?h B2 P Γ(End(Λ2TM)) is defined by

h((B1 ?h B2)(s^ t), u^ v) = (h ˝ B1)? (h ˝ B2)(s, t, u, v). (4.155)

Definition 4.B.2 (h-Riemann product). Given a metric h, and two endomorphism
fields B11, B12 skew-self-adjoint with respect to it, their h-Riemann product B11 :h B12 P
Γ(End(Λ2TM)) is defined by

h((B11 :h B12)(s^ t), u^ v) = (h ˝ B11): (h ˝ B12)(s, t, u, v). (4.156)

Lemma 4.B.3. Given a metric h, self-adjoint endomorphism fields B1, B2, and skew-self-
adjoint endomorphism fields B11, B12, we have

tr((B1 ?h B1) ˝ (B2 ?h B2)) = 2(tr(B1 ˝ B2)
2 ´ tr((B1 ˝ B2)

2)),

tr((B11 :h B11) ˝ (B12 :h B12)) = 6(tr(B11 ˝ B12)
2 + tr((B11 ˝ B12)

2))

tr((B1 ?h B1) ˝ (B12 :h B12)) = tr((B12 :h B12) ˝ (B1 ?h B1))

= 2(tr(B1 ˝ B12)
2 ´ 3 tr((B1 ˝ B12)

2)).

(4.157)

Proof. Let teau be an orthonormal basis for h and let εa be the sign of h(ea, eb). Now
we compute:

tr((B1 ?h B1) ˝ (B2 ?h B2))

=
1
4

ÿ

a,b,c,d

εaεbεcεdh((B1 ?h B1)ea ^ eb, ec ^ ed)h((B2 ?h B2)ec ^ ed, ea ^ eb)

=
1
4

ÿ

a,b,c,d

εaεbεcεd(h ˝ B1)? (h ˝ B1)(ea, eb, ec, ed)(h ˝ B2)? (h ˝ B2)(ec, ed, ea, eb)

=
ÿ

a,b,c,d

εaεbεcεd(h(B1ea, ec)h(B1eb, ed)´ h(B1ea, ed)h(B1eb, ec))

(h(B2ec, ea)h(B2ed, eb)´ h(B2ec, eb)h(B2ed, ea))

=
ÿ

a,b,c,d

εaεbεcεd(h(B1ea, ec)h(B1eb, ed)h(B2ec, ea)h(B2ed, eb)

´ h(B1ea, ed)h(B1eb, ec)h(B2ec, ea)h(B2ed, eb)

´ h(B1ea, ec)h(B1eb, ed)h(B2ec, eb)h(B2ed, ea)

+ h(B1ea, ed)h(B1eb, ec)h(B2ec, eb)h(B2ed, ea))

= 2(tr(B1 ˝ B2)
2 ´ tr((B1 ˝ B2)

2)).
(4.158)
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The next computation proceeds similarly, so we omit steps:

tr((B11 :h B11) ˝ (B12 :h B12))

=
ÿ

a,b,c,d

εaεbεcεd(h(B11ea, ec)h(B11eb, ed)´ h(B11ea, ed)h(B11eb, ec) + 2h(B11ea, eb)h(B11ec, ed))

(h(B12ec, ea)h(B12ed, eb)´ h(B12ec, eb)h(B12ed, ea) + 2h(B12ec, ed)h(B12ea, eb))

= 2(tr(B11 ˝ B12)
2 ´ tr((B11 ˝ B12)

2 + 2 tr(B11 ˝ B12 ˝ B1:h1 ˝ B1:h2 )

´ tr(B11 ˝ B12 ˝ B1:h1 ˝ B12)´ tr(B11 ˝ B12 ˝ B11 ˝ B1:h2 ) + 2 tr(B11 ˝ B1:h2 )2)

= 6(tr(B11 ˝ B12)
2 + tr((B11 ˝ B12)

2)),
(4.159)

where in the last step, we have used that B11 and B12 are skew-self-adjoint. Likewise,
we have

tr((B1 ?h B1) ˝ (B12 :h B12))

=
ÿ

a,b,c,d

εaεbεcεd(h(B1ea, ec)h(B1eb, ed)´ h(B1ea, ed)h(B1eb, ec))

(h(B12ec, ea)h(B12ed, eb)´ h(B12ec, eb)h(B12ed, ea) + 2h(B12ec, ed)h(B12ea, eb))

= 2(tr(B1 ˝ B12)
2 ´ tr((B1 ˝ B12)

2 + tr(B1 ˝ B12 ˝ B:h1 ˝ B1:h2 )´ tr(B1 ˝ B12 ˝ B:h1 ˝ B12)

= 2(tr(B1 ˝ B12)
2 ´ 3 tr((B1 ˝ B12)

2)),
(4.160)

where we have used that B1 is self-adjoint and B12 is skew-self-adjoint.

Now we specialise to the case of the quadratic prepotential Ferrara–Sabharwal
metrics. To apply the above lemma, we need to first rewrite the curvature norm in
terms of traces of the above form.

Lemma 4.B.4. The curvature norm in (4.128) may be written as

tr(R2) = tr

((
1

8K̃

(
idTM ?g̃H idTM +

3
ÿ

i=1

Ii :g̃H Ii

)
´

k̃
8K̃

f̃1

f̃H

(
(A ˝ IH):g̃H (A ˝ IH)

+
3
ÿ

i=1

((A ˝ IH ˝ Ii)?g̃H (A ˝ IH ˝ Ii)

))2
 ,

(4.161)

where A is the endomorphism field introduced in (4.88), namely

A =
K̃
f̃1

g̃´1
H ˝ g̃ = idTM|HH Z̃K + k̃

f̃1

f̃H
idTM|HH Z̃. (4.162)

Proof. Using the symmetries of the Riemann tensor, we may rewrite (4.128) as

tr(R2) =
1
4

ÿ

a,b,c,d

C(Ea, Eb, Ec, Ed)C(Ec, Ed, Ea, Eb). (4.163)
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Equation (4.161) then follows from the definitions of the g̃H-Kulkarni–Nomizu and
g̃H-Riemann products, and the following observations:

g̃H = g̃H ˝ idTM, ω̃H = k̃ g̃ ˝ IH =
k̃
K̃

f̃1 g̃H ˝ A ˝ IH. (4.164)

Next we collect the various trace computations we will need into a lemma.

Lemma 4.B.5. The endomorphism fields idTM, Ii, A, IH on the complex cotangent bundle
T˚Cn satisfy the following trace formulae:

tr(idTM) = 4n, tr(Ii) = 0, tr(Ii ˝ Ij) = ´4nδij, tr((Ii ˝ Ij)
2) = ´(´1)δij 4n,

tr(A ˝ IH) = 0, tr((A ˝ IH)
2) = ´tr(A2) = ´4

(
n´ 1 + k̃2 f̃ 2

1

f̃ 2
H

)
,

tr((A ˝ IH)
4) = tr(A4) = 4

(
n´ 1 + k̃4 f̃ 4

1

f̃ 4
H

)
, tr(A ˝ IH ˝ Ii) = 0,

tr((A ˝ IH ˝ Ii)
2) = tr(A2), tr(A ˝ IH ˝ A ˝ IH ˝ Ii) = ´tr(A2 ˝ Ii) = 0,

tr((A ˝ IH ˝ A ˝ IH ˝ Ii)
2) = ´tr(A4), tr((A ˝ IH ˝ Ii ˝ Ij)

2) = ´(´1)δij tr(A2),

tr(A ˝ IH ˝ Ii ˝ Ij) = ´δijtr(A ˝ IH) +
3
ÿ

k=1

εijktr(A ˝ IH ˝ Ik) = 0,

tr(A ˝ IH ˝ Ii ˝ A ˝ IH ˝ Ij) = δijtr(A2)´
3
ÿ

k=1

εijktr(A2 ˝ Ik) = δijtr(A2),

tr((A ˝ IH ˝ Ii ˝ A ˝ IH ˝ Ij)
2) = (´1)δij tr(A4),

(4.165)

where δij is the Kronecker delta and εijk is the Levi-Civita symbol.

Proof. The trace of the identity endomorphism field on any vector bundle E is the
rank of E. Thus, since we can write A as

A =
K̃
f̃1

g̃´1
H ˝ g̃ = idTM|HH Z̃K + k̃

f̃1

f̃H
idTM|HH Z̃ , (4.166)

it immediately follows that for all integers m, we have

tr(Am) = 4

(
n´ 1 + k̃m f̃ m

1

f̃ m
H

)
. (4.167)

The explicit expression for A also makes it clear that A commutes with Ii. We also
know that IH commutes with Ii. Our next goal shall be to show that IH and A com-
mute as well.

As a matter of general fact, we have already noted that IH is skew-self-adjoint
with respect to g̃ by virtue of the Killing equation for Z̃. In the specific case of the
complex cotangent bundle M = T˚Cn, the explicit expression for IH in (4.18), i.e.

IH = i

(
´dz0 ^g̃ Bz0 + dw0 ^g̃ Bw0 +

n´1
ÿ

a=1

(´dza ^g̃ Bza + dwa ^g̃ Bwa)

)
, (4.168)
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additionally tells us that I2
H = ´idTM, implying IH is g̃-orthogonal, and that

IHZ̃ = ´I1Z̃, IH ˝ IiZ̃ = Ii ˝ IHZ̃ = ´Ii ˝ I1Z̃, (4.169)

implying HH Z̃ and HH Z̃K are invariant subbundles of IH. Thus, IH commutes with
A as well. This allows us to reduce the trace of any string consisting of A, IH, Ii in
some order to one of the following traces:

tr(Am), tr(Am ˝ Ii), tr(Am ˝ IH), tr(Am ˝ IH ˝ Ii). (4.170)

The first trace we have already dealt with. The next two traces are traces of endo-
morphism fields that are skew-self-adjoint with respect to the metric g̃ ˝ A´m, and
so vanish. The last one also vanishes by virtue of the following chain of equalities:

tr(Am ˝ IH ˝ Ii) =
1
2

3
ÿ

j,k=1

εijktr(Am ˝ IH ˝ Ij ˝ Ik) =
1
2

3
ÿ

j,k=1

εijktr(Ij ˝ Am ˝ IH ˝ Ik)

=
1
2

3
ÿ

j,k=1

εijktr(Am ˝ IH ˝ Ik ˝ Ij) = ´tr(Am ˝ IH ˝ Ii),

(4.171)

where in the first line we have used the fact that Ij commutes with A and IH, and in
the second line, we have used the cyclic invariance of traces.

Now, we have all the ingredients we require to prove the main lemma of this
section.

Lemma 4.B.6. The curvature norm in (4.128) is given by

tr(R2)

=
1

K̃2

n(5n + 1) + 3

(
k̃3 f̃ 3

1

f̃ 3
H
+ (n´ 1)k̃

f̃1

f̃H

)2

+ 3

(
k̃6 f̃ 6

1

f̃ 6
H
+ (n´ 1)k̃2 f̃ 2

1

f̃ 2
H

) .

(4.172)
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Proof. We begin by expanding the square inside the trace in (4.161) and using the
cyclic invariance of the trace to write

64K̃2tr(R2)

= tr

(idTM ?g̃H idTM)2 +
3
ÿ

i,j=1

(Ii :g̃H Ii) ˝ (Ij :g̃H Ij) + k̃2 f̃ 2
1

f̃ 2
H
((A ˝ IH):g̃H (A ˝ IH))

2

+ k̃2 f̃ 2
1

f̃ 2
H

3
ÿ

i,j=1

((A ˝ IH ˝ Ii)?g̃H (A ˝ IH ˝ Ii)) ˝ ((A ˝ IH ˝ Ij)?g̃H (A ˝ IH ˝ Ij))

+ 2
3
ÿ

i=1

(idTM ?g̃H idTM) ˝ (Ii :g̃H Ii)´ 2k̃
f̃1

f̃H
(idTM ?g̃H idTM) ˝ ((A ˝ IH):g̃H (A ˝ IH))

´ 2k̃
f̃1

f̃H

3
ÿ

i=1

(idTM ?g̃H idTM) ˝ ((A ˝ IH ˝ Ii)?g̃H (A ˝ IH ˝ Ii))

´ 2k̃
f̃1

f̃H

3
ÿ

i=1

(Ii :g̃H Ii) ˝ ((A ˝ IH):g̃H (A ˝ IH))

´ 2k̃
f̃1

f̃H

3
ÿ

i,j=1

(Ii :g̃H Ii) ˝ ((A ˝ IH ˝ Ij)?g̃H (A ˝ IH ˝ Ij))

+ 2k̃2 f̃ 2
1

f̃ 2
H

3
ÿ

i=1

((A ˝ IH):g̃H (A ˝ IH)) ˝ ((A ˝ IH ˝ Ii)?g̃H (A ˝ IH ˝ Ii))

)
.

(4.173)

Next, we use (4.157) to obtain

64K̃2tr(R2)

= 2(tr(idTM)2 ´ tr(idTM)) + 6
3
ÿ

i,j=1

(tr(Ii ˝ Ij)
2 + tr((Ii ˝ Ij)

2))

+ 6k̃2 f̃ 2
1

f̃ 2
H
(tr((A ˝ IH)

2)2 + tr((A ˝ IH)
4))

+ 2k̃2 f̃ 2
1

f̃ 2
H

3
ÿ

i,j=1

(tr(A ˝ IH ˝ Ii ˝ A ˝ IH ˝ Ij)
2 ´ tr((A ˝ IH ˝ Ii ˝ A ˝ IH ˝ Ij)

2))

+ 4
3
ÿ

i=1

(tr(Ii)
2 + 3 tr(idTM))´ 4k̃

f̃1

f̃H
(tr(A ˝ IH)

2 ´ 3 tr((A ˝ IH)
2)

´ 4k̃
f̃1

f̃H

3
ÿ

i=1

(tr(A ˝ IH ˝ Ii)
2 ´ tr((A ˝ IH ˝ Ii)

2) + 3(tr(A ˝ IH ˝ Ii)
2 + tr((A ˝ IH ˝ Ii)

2)))

´ 4k̃
f̃1

f̃H

3
ÿ

i,j=1

(tr(A ˝ IH ˝ Ii ˝ Ij)
2 ´ 3 tr((A ˝ IH ˝ Ii ˝ Ij)

2)

+ 4k̃2 f̃ 2
1

f̃ 2
H

3
ÿ

i=1

(tr(A ˝ IH ˝ A ˝ IH ˝ Ii)
2 ´ 3 tr((A ˝ IH ˝ A ˝ IH ˝ Ii)

2)).

(4.174)
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Finally, substituting the trace formulae (4.165) into the above gives us

64K̃2tr(R2)

= 2((4n)2 ´ 4n) + 6
3
ÿ

i,j=1

((4n)2δij + (´1)δij 4n) + 6k̃2 f̃ 2
1

f̃ 2
H
(tr(A2)2 + tr(A4))

+ 2k̃2 f̃ 2
1

f̃ 2
H

3
ÿ

i,j=1

(δijtr(A2)2 ´ (´1)δij tr(A4)) + 4
3
ÿ

i=1

12n´ 4k̃
f̃1

f̃H
(3 tr(A2))

´ 4k̃
f̃1

f̃H

3
ÿ

i=1

(´tr(A2) + 3 tr(A2))´ 4k̃
f̃1

f̃H

3
ÿ

i,j=1

(´1)δij 3 tr(A2) + 4k̃2 f̃ 2
1

f̃ 2
H

3
ÿ

i=1

(3 tr(A4))

= 64

n(5n + 1) + 3

(
k̃3 f̃ 3

1

f̃ 3
H
+ (n´ 1)k̃

f̃1

f̃H

)2

+ 3

(
k̃6 f̃ 6

1

f̃ 6
H
+ (n´ 1)k̃2 f̃ 2

1

f̃ 2
H

) .

(4.175)
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Chapter 5

Deformations of quaternionic
Kähler structures

In this chapter, we revisit the local twist and prove two useful lemmata about it.
Lemma 5.1.1 is a generalisation of Proposition 3.1.13 that lets us write the composi-
tion of two twists as a single twist, while Lemma 5.1.8 introduces a notion of differ-
entiating twists with respect to twist data.

We then use Lemma 5.1.1 to write the one-loop deformation of a quaternionic
Kähler manifold as a twist of an elementary deformation of the quaternionic Kähler
manifold (Theorem 5.2.1 and Definition 5.2.2). Note that this differs from Macia
and Swann [MS14] in that we are taking the elementary deformation and twist of
the quaternionic Kähler manifold directly rather than its QK/HK dual. In fact, as
we show in Proposition 5.2.11, the QK/HK correspondence may be thought of as a
certain limit of the one-loop deformation.

Meanwhile, Lemma 5.1.8 is used to derive three sets of geometric evolution
equations on the space of quaternionic Kähler metrics on a contractible open set
U, namely the naïve, reparametrised, and rescaled one-loop flow equations (Propo-
sitions 5.3.2, 5.3.5, and 5.3.7 respectively).

Finally, in Subsection 5.3.4, we conclude with an outline of speculative directions
to be explored in the future.

5.1 Local twists revisited

In Chapter 4, we saw that applying the HK/QK correspondence to a hyperkähler
metric with a rotating Killing field followed by the QK/HK correspondence gives
us back the same hyperkähler metric up to an overall scaling. However, applying
the QK/HK correspondence to a quaternionic Kähler metric with a Killing field fol-
lowed by the HK/QK correspondence gives us back the same quaternionic Kähler
manifold up to an overall scaling for certain choices of f̃H, K̃, k̃ as described in (4.72).

In general, such a procedure will give an honest deformation of the original
quaternionic Kähler metric, and since our goal is to construct interesting examples
of quaternionic Kähler manifolds, we are obviously interested in describing these
deformations. But in order to do so, we first need to establish two additional results
regarding the local twist, one regarding the compositions of the local twist, and one
regarding derivatives of the local twist map with respect to twist data.

Lemma 5.1.1. If (U, Z, ω, f , η) and (U, aZ̃, ω̃1, a f̃ 1, η̃1) are local twist data on some mani-
fold M with a being a nonzero constant and

Z̃ = ´
1
f

twZ, f ,η(Z) = ´
1

f ´ η(Z)
Z, (5.1)
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then so is

(U, Z, ω2, f 2, η2) := (U, Z, a1d( f̃ 1η ´ η̃1), a1 f f̃ 1, a1( f̃ 1η ´ η̃1)), (5.2)

for any nonzero constant a1. Moreover, the local twist maps with respect to the above tuples
of local twist data satisfy

twaZ̃, f̃ 1,aη̃1 ˝ twZ, f ,η = twZ, f 2,η2 . (5.3)

Proof. Since (U, Z, ω, f , η) and (U, aZ̃, ω̃1, a f̃ 1, η̃1) constitute local twist data, we must
have

ιZω = ιZdη = ´d f , ιaZ̃ω̃1 = ´
a ιZdη̃1

f ´ η(Z)
= ´a d f̃ 1. (5.4)

It then follows that

ιZω2 = a1ιZd( f̃ 1η ´ η̃1) = a1ιZ(d f̃ 1 ^ η + f̃ 1dη ´ dη̃1)

= a1(´η(Z)d f̃ 1 ´ f̃ 1 d f ´ ( f ´ η(Z)d f̃ 1)

= ´a1( f̃ 1 d f + f d f̃ 1) = ´d(a1 f f̃ 1) = ´d f 2.

(5.5)

In addition, since f ´ η(Z) and a f̃ 1 ´ η̃1(aZ̃), and so f̃ 1 ´ η̃1(Z), are nowhere vanish-
ing,

f 2 ´ η2(Z) = a1 f f̃ 1 ´ a1( f̃ 1η(Z)´ η̃1(Z))

= a1( f f̃ 1 ´ f̃ 1η(Z)´ ( f ´ η(Z))η̃1(Z̃))

= a1( f ´ η(Z))( f̃ 1 ´ η̃1(Z))

(5.6)

is nowhere vanishing as well. So, (U, Z, ω2, f 2, η2) indeed constitutes local twist
data.

To prove (5.3), it’s enough to show that it holds for functions and 1-forms since
local twists preserve contractions and tensor products by definition. That it holds for
functions is clear, since the local twist is just the identity in that case. For a 1-form α,
we introduce the shorthand α1 = twZ, f ,η(α) and compute

twaZ̃, f̃ 1,aη̃1 ˝ twZ, f ,η(α) = twaZ̃, f̃ 1,aη̃1(α
1) = α1 ´

α1(aZ̃)
a f̃ 1

η̃1

= α1 +
α(Z)
f f̃ 1

η̃1 = α´
α(Z)

f
η +

α(Z)
f f̃ 1

η̃1

= α´
α(Z)
a1 f f̃ 1

a1( f̃ 1η ´ η̃1) = twZ, f 2,ω2(α).

(5.7)

Corollary 5.1.2. If (U, Z, ω, f , η) is local twist data on some manifold M and a1, a2, a3 are
nonzero constants such that a2

f
+ a3 (5.8)

is nowhere vanishing, and if (U, Z̃, ω̃, f̃ , η̃) are the local twist data dual to (U, Z, ω, f , η),
then we have the following relation of local twist maps:

twa1Z̃,a1(a2 f̃+a3),a2η̃ ˝ twZ, f ,η = twZ, f+ a2
a3

,η . (5.9)
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Proof. This is just a specialisation of Lemma 5.1.1 to the case

η̃1 = a2η̃, f̃ 1 = a2 f̃ + a3, a = a1, a1 =
1
a3

. (5.10)

Remark 5.1.3. The limit a3 Ñ 0 is well-defined and reproduces (3.30), i.e. local twists
with respect to tuples of twist data dual to each other are the inverses of each other.

In order to state the other lemma, we need two new definitions.

Definition 5.1.4 (Local log-derivative twist). The local log-derivative twist dltwZ, f ,η
with respect to local twist data (U, Z, ω, f , η) is a graded C8(U)-linear map

dltwZ, f ,η : Γ(T‚,˛U)Ñ Γ(T‚,˛U) (5.11)

of tensor fields, satisfying the Leibniz rule over tensor products and contractions,
whose action on an arbitrary 1-form α is given by

dltwZ, f ,η(α) =
α(Z)

f ( f ´ η(Z))
η. (5.12)

Remark 5.1.5. The fact that dltwZ, f ,η is C8(U)-linear and satisfies the Leibniz prop-
erty with respect to tensor products forces it to vanish on 0-forms.

Definition 5.1.6 (Local derivative twist). The local derivative twist map dtwZ, f ,η
with respect to local twist data (U, Z, ω, f , η) is the composition

dtwZ, f ,η = twZ, f ,η ˝ dltwZ, f ,η . (5.13)

Example 5.1.7. The local log-derivative twists of a vector field u, a symmetric bilin-
ear form g, and an endomorphism field A may be computed to be

dltwZ, f ,η(u) = ´
η(u)

f ( f ´ η(Z))
Z, dltwZ, f ,η(g) =

2
f ( f ´ η(Z))

η ιZg,

dltwZ, f ,η(A) =
1

f ( f ´ η(Z))
[A, η b Z].

(5.14)

Thus, their local derivative twists are given by

dtwZ, f ,η(u) = ´
η(u)

( f ´ η(Z))2 Z, dtwZ, f ,η(g) =
2
f 2 η twZ, f ,η(ιZg),

dtwZ, f ,η(A) =
1

f ( f ´ η(Z))
[twZ, f ,η(A), η b Z].

(5.15)

Lemma 5.1.8. Given local twist data (U, Z, ω, f , η) on some manifold M, we have for all
tensor fields S on M, the following identity:

d
da

(twZ, f+a,η(S))
ˇ

ˇ

ˇ

ˇ

a=0
= dtwZ, f ,η(S). (5.16)
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Proof. Let (U, Z̃, ω̃, f̃ , η̃) denote the local twist data dual to (U, Z, ω, f , η), as usual.
We begin by showing that the C8(U)-linear map

twZ̃, f̃ ,η̃

(
d
da

(twZ, f+a,η(¨))

ˇ

ˇ

ˇ

ˇ

a=0

)
(5.17)

satisfies the Leibniz property over tensor products. Let α be an arbitrary 1-form and
β an arbitrary k-form. Then we have

twZ̃, f̃ ,η̃

(
d
da

(twZ, f+a,η(αb β))

ˇ

ˇ

ˇ

ˇ

a=0

)
= twZ̃, f̃ ,η̃

(
d
da

(twZ, f+a,η(α)b twZ, f+a,η(β))

ˇ

ˇ

ˇ

ˇ

a=0

)
= twZ̃, f̃ ,η̃

(
d
da

(twZ, f+a,η(α))

ˇ

ˇ

ˇ

ˇ

a=0
b twZ, f ,η(β) + twZ, f ,η(α)b

d
da

(twZ, f+a,η(β))

ˇ

ˇ

ˇ

ˇ

a=0

)
= twZ̃, f̃ ,η̃

(
d
da

(twZ, f+a,η(α))

ˇ

ˇ

ˇ

ˇ

a=0

)
b β + αb twZ̃, f̃ ,η̃

(
d
da

(twZ, f+a,η(β))

ˇ

ˇ

ˇ

ˇ

a=0

)
.

(5.18)

A similar chain of equalities shows that the map (5.17) satisfies the Leibniz property
over contractions as well. All that now remains to be shown in order to prove the
lemma is that (5.17) coincides with the local log-derivative twist for functions and
1-forms. Letting α be an arbitrary 1-form, we have

twZ̃, f̃ ,η̃

(
d
da

(twZ, f+a,η(α))

ˇ

ˇ

ˇ

ˇ

a=0

)
= twZ̃, f̃ ,η̃

(
d
da

(
α´

α(Z)
f + a

η

)ˇ
ˇ

ˇ

ˇ

a=0

)
= twZ̃, f̃ ,η̃

(
α(Z)

f 2 η

)
=

α(Z)
f 2

(
η ´

η(Z̃)
f̃

η̃

)
=

α(Z)
f 2

(
1 +

η(Z)
f ´ η(Z)

η̃

)
η =

α(Z)
f ( f ´ η(Z))

η.

(5.19)

5.2 One-loop deformations

5.2.1 Definition and characterisation

Now that we know how to compose twists that are not dual to each other, we can
enhance this to a statement about composing a QK/HK correspondence with an
HK/QK correspondence.

Theorem 5.2.1. Let (M, g, Q, Z, ωQ, fQ, gQ) constitute QK/HK data with hyperkähler dual
(M̃, g̃, H, Z̃, I1, f̃1, ω̃H, f̃H, g̃H) such that

f̃ c
1 := f̃1 + 4Kc = ´

K
‖µZ‖ + 4Kc, f̃ c

H := f̃H + 4Kc, (5.20)
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are nowhere vanishing. Let (Mc, gc, Qc, Zc, ωc
Q, f c

Q, gc
Q) be a quaternionic dual of the HK/QK

data (M̃, g̃, H, Z̃, I1, f̃ c
1 , ω̃H, f̃ c

H, g̃H). Then(
Mc,´4k̃Kc Zc, 4k̃Kc ωc,

4c
ν

(
1´ 4k̃Kc f c

Q
))

(5.21)

is a twist of (M, Z, ωQ, fQ + ν
4c ) and the metric gc is given by

gc = ´K̃ Tc

(
ν

1´ 4c‖µZ‖ g|HQZK +
ν + 4c fQ

(1´ 4c‖µZ‖)2 g|HQZ

)
, (5.22)

where Tc is a global twist map, ν is the reduced scalar curvature of the quaternionic Kähler
manifold (M, g, Q) and ‖µZ‖ its quaternionic moment map.

Proof. As usual, we work locally on appropriate contractible open sets U, Ũ, Uc of
M, M̃, Mc that we all identify via the local diffeomorphisms underlying the global
twist maps T and T̃ that realise the QK/HK correspondence from M to M̃ and the
HK/QK corespondence from M̃ to Mc. Then the quaternionic Kähler metric gc on
Uc – U is given by

gc = twZ̃, f̃ c
H,η̃H

(g̃H) = twZ̃, f̃ c
H,η̃H

(
K̃
f̃ c
1

g̃|HH Z̃K +
K̃
k̃

f̃H

( f̃ c
1)

2
g̃|HH Z̃

)

= twZ̃, f̃ c
H,η̃H

˝ twZ, fQ,ηQ

(
K̃
f̃ c
1

gQ|HQZK +
K̃
k̃

f̃ c
H

( f̃ c
1)

2
gQ|HQZ

)
(2.61)
= twZ̃, f̃ c

H,η̃H
˝ twZ, fQ,ηQ

(
K̃
f̃ c
1

Kν

‖µZ‖ g|HQZK ´
K̃
k̃

f c
H

( f̃ c
1)

2

K fQ

‖µZ‖2 g|HQZ

)
.

(5.23)

Substituting into the above

f̃ c
1 = ´

K
‖µZ‖ + 4Kc,

f̃ c
H = k̃( f̃1 + g̃(Z̃, Z̃)) = k̃

(
´

K
‖µZ‖ +

1
f 2
Q

gQ(Z, Z) + 4Kc

)
(2.61)
= k̃

(
´

K
‖µZ‖ ´

K
‖µZ‖2

g(Z, Z)
fQ

+ 4Kc
)

(2.57)
= ´

k̃K
‖µZ‖

(
1´

g(Z, Z)
g(Z, Z) + ν‖µZ‖2

)
+ 4k̃Kc

(2.57)
=

k̃Kν

fQ
+ 4k̃Kc,

(5.24)

and using (5.9) along with an appropriate choice of η̃H, we get

gc = ´K̃ twZ, fQ+
ν
4c ,ηQ

(
ν

1´ 4c‖µZ‖ g|HQZK +
ν + 4c fQ

(1´ 4c‖µZ‖)2 g|HQZ

)
. (5.25)

By similiar reasoning, we find that the accompanying data of the quaternionic bun-
dle Qc and Killing field Zc, along with the rest of the twist data, ωc

Q and f c
Q, are given
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by

Qc = twZ̃, f̃ c
H,η̃H

˝ twZ, fQ,ηQ(Q) = twZ, fQ+
ν
4c ,ηQ

(Q)

Zc = ´
1
f̃ c
H

twZ̃, f̃ c
H,η̃H

(
´

1
fQ

twZ, fQ,ηQ(Z)
)

=
(k̃K)´1

ν + 4c fQ
twZ, fQ+

ν
4c ,ηQ

(Z),

ωc
Q =

1
f̃ c
H

twZ̃, f̃ c
H,η̃H

(
1
fQ

twZ, fQ,ηQ(ωQ)

)
=

(k̃K)´1

ν + 4c fQ
twZ, fQ+

ν
4c ,ηQ

(ωQ),

f c
Q =

1
f̃ c
H

=
(k̃K)´1 fQ

ν + 4c fQ
.

(5.26)

The twist data in (5.21) may then be obtained by writing the twist data(
´

1
fQ + ν

4c
twZ, fQ+

ν
4c ,ηQ

(Z),
1

fQ + ν
c

twZ, fQ+
ν
4c ,ηQ

(ωQ),
1

fQ + ν
4c

)
(5.27)

dual to (Z, ωQ, fQ + ν
4c ) in terms of the usual quaternionic twist data (Zc, ωc, f c).

A notable aspect of the quaternionic Kähler manifold (Mc, gc, Qc) is that it de-
pends only on the parameters c and K̃, of which K̃ is an overall scaling factor. The
Killing field Zc does depend on k̃ and K, but these enter only as overall scaling fac-
tors. There is thus no essential loss of generality if we impose the same relations on
these as in (4.72), namely

K̃ = ´
1
ν

, k̃ =
1

Kν
. (5.28)

This gives us a general notion of a 1-loop deformation of quaternionic Kähler mani-
folds with a Killing field.

Definition 5.2.2 (1-loop deformation). Let (M, g, Q) be a quaternionic Kähler mani-
fold equipped with a Killing field Z with nowhere vanishing quaternionic moment
map µZ and so well-defined quaternionic twist data (Z, ωQ, fQ) and let c ‰ 0 be a
constant such that

1´ 4c‖µZ‖, ν + 4c fQ (5.29)

are nowhere vanishing. Then its 1-loop c-deformation (Mc, gc, Qc, Zc) by Z is a
quaternionic Kähler manifold (Mc, gc, Qc) equipped with a Killing vector field Zc

with nowhere vanishing moment map µZc
and so well-defined quaternionic twist

data (Zc, ωc
Q, f c

Q), such that

(
Mc, Z̃c, ω̃c, f̃c

)
:=
(

Mc,´
4c
ν

Zc,
4c
ν

ωc,´
4c
ν

(
4c
ν

f c
Q ´ 1

))
(5.30)

is a twist of (M, Z, ωQ, fQ + ν
4c ) and a global twist map

Tc : Γ(T‚,˛M)Z Ñ Γ(T‚,˛Mc)Zc
(5.31)
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realising this satisfies

gc = Tc(gL) := Tc

(
1

1´ 4c‖µZ‖ g|HQZK +
1 + 4c

ν fQ

(1´ 4c‖µZ‖)2 g|HQZ

)
. (5.32)

Example 5.2.3. We consider the Przanowski–Tod Ansatz metric g given in (2.75),
with (ρ, ζ, τ) coordinatising

M = Rą0 ˆCˆR. (5.33)

Note that, strictly speaking, this metric does not admit a 1-loop c-deformation by Bτ

for any c ą 0 since

1´ 4c‖µZ‖ = 1´
c
ρ

(5.34)

vanishes when ρ = c. One way to get around this is to restrict to the region ρ ą c
on M. We adopt here an alternative approach where we instead look at the pullback
φ˚c g of g under the smooth map φc : M Ñ M given by

(ρ, ζ, τ) ÞÑ (ρ + c, ζ, τ). (5.35)

If we denote by u1, P1, Θ1 the pullbacks of u, P, Θ under φc, then we explictly have

g1 := φ˚c g =
1

4(ρ + c)2

(
P1 dρ2 + 2P1eu1 |dζ|2 +

1
P1

(dτ + Θ1)2
)

, (5.36)

with the norm φ˚c ‖µZ‖ of the quaternionic moment map for Z = Bτ satisfying

1´ 4c φ˚c ‖µZ‖ = 1´
c

ρ + c
=

ρ

ρ + c
. (5.37)

This is now nowhere vanishing. If we additionally have that ν + 4c f 1Q is nowhere
vanishing, with

f 1Q := φ˚c fQ = ´
Bρu1

P1
, (5.38)

then g1 does admit a 1-loop c-deformation by Z = Bτ. To determine it, we first
compute the elementary deformation g1L to be

g1L =
1

4ρ2

(
1´

2c
ν

Bρu1

P1

)(
P1 dρ2 + 2P1eu1 |dζ|2 +

1
P1

(dτ + Θ1)2
)

. (5.39)

Meanwhile, if we choose the auxiliary 1-form η1Q to be

η1Q = ´
1
2

(
1
P1

(Bρu1)(dτ + Θ1) + Byu1 dx´ Bxu1 dy
)

, (5.40)
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the local twists of φ˚c (ιZg) = ιZg1 and φ˚c (ιZgL) = ιZg1L for the choice of Hamiltonian
function f 1Q + ν/4c is

twZ, f 1Q+
ν
4c ,η1q(ιZg1)

=
1

4(ρ + c)2P1

(
1´

2c
ν

Bρu1

P1

)´1 (
dτ + Θ1 ´

4c
ν
(Byu1 dx´ Bxu1 dy)

)
,

twZ, f 1Q+
ν
4c ,η1q(ιZg1L)

=
1

4ρ2P1

(
dτ + Θ1 ´

4c
ν
(Byu1 dx´ Bxu1 dy)

)
.

(5.41)

Thus, the 1-loop correction g1c is given by

g1c = twZ, f 1Q+
ν
4c ,η1q(g1L)

= g1L ´
1

gL(Z, Z)

(
(ιZg1L)

2 ´ (twZ, f 1Q+
ν
4c ,η1q(ιZg1L))

2
)

=
1

4ρ2

(
Pc dρ2 + 2Pceuc

|dζ|2 +
1
Pc (dτ + Θc)2

)
,

(5.42)

where uc, Pc, Θc (with c not an exponent) are given by

uc = u1, Pc =

(
1´

2c
ν

Bρu1

P1

)
P1 = P1 ´

2c
ν
Bρuc,

Θc = Θ1 ´
4c
ν
(Byu1 dx´ Bxu1 dy) = Θ1 ´

4ci
ν

(
Bζuc dζ ´ Bζuc dζ

)
.

(5.43)

Note that these satisfy

BζBζuc = ´
1
2
B2

ρ(e
uc
), Pc =

2
ν
(ρ Bρuc ´ 2)

dΘc = i
((
Bζ Pc dζ ´ Bζ Pc dζ

)
^ dρ´ Bρ(Pceuc

)dζ ^ dζ
)

.
(5.44)

Thus, we again obtain the Przanowski–Tod Ansatz, but with the Toda potential u
replaced by uc = φ˚c u. Note in particular that the quaternionic moment map is
unchanged owing to what amounted to a coordinate reparametrisation ρ ÞÑ ρ + c.

As it turns out, we can use Theorem 4.2.5 due to Swann and Macia to deduce that
1-loop deformations are the only way the twist of an elementary deformation of a
quaternionic Kähler metric by a Killing field, with respect to twist data featuring the
same Killing field, can produce another quaternionic Kähler metric. This therefore
characterises 1-loop deformations.

Theorem 5.2.4. Let (M, g, Q) be a quaternionic Kähler manifold equipped with a nowhere
vanishing Killing field Z, an arbitrary 2-form ω, and an arbitrary nowhere vanishing func-
tion f satisfying ιZω = ´d f . If the twist (M1, g1, Q1) of any elementary deformation of
(M, g, Q) by Z, with respect to the twist data (Z, ω, f ) is a quaternionic Kähler manifold
different from (M, g, Q), then (M1, g1, Q1) is necessarily a 1-loop c-deformation of (M, g, Q)
by Z for some parameter c.

Proof. We know that the quaternionic Kähler manifold (M, g, Q) is the twist of an
elementary deformation of a locally hyperkähler manifold (M̃, g̃, H) by some rotat-
ing Killing field Z̃ given by the QK/HK correspondence. By virtue of Lemma 5.1.1,
(M1, g1, Q1) would then be the twist of some elementary deformation of (M̃, g̃, H)
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by Z̃. Theorem 4.2.5 then implies that this is necessarily a 1-loop c-deformation of
(M, g, Q) by Z for some parameter c.

5.2.2 Basic results

Given the interpretation of the 1-loop c-deformation of a quaternionic Kähler mani-
fold in terms of shifts in the Hamiltonian function f̃H associated with its hyperkähler
dual by c, the following facts are immediately evident.

Proposition 5.2.5. Let (M, g, Q) be a quaternionic Kähler manifold equipped with a Killing
field Z with nowhere vanishing quaternionic moment map µZ admitting a 1-loop c-deformation
(Mc, gc, Qc, Zc) with respect to Z. Then (Mc, gc, Qc) has a nowhere vanishing quaternionic
moment map with norm ‖µZc‖ given by

1
‖µZc‖ =

1
‖µZ‖ ´ 4c. (5.45)

Proposition 5.2.6. Let (M, g, Q) be a quaternionic Kähler manifold equipped with a Killing
field Z with nowhere vanishing quaternionic moment map µZ admitting a 1-loop c-deformation
(Mc, gc, Qc, Zc) with respect to Z, such that (Mc, gc, Qc) itself admits a 1-loop c1-deformation

((Mc)c1 , (gc)c1 , (Qc)c1 , (Zc)c1) (5.46)

with respect to Zc. Then this is locally isometric to a 1-loop (c+ c1)-deformation of (M, g, Q)
with respect to Z when c1 ‰ ´c and to (M, g) itself otherwise.

A slightly less obvious fact is the following relation between the Levi-Civita con-
nections ∇g and ∇gc

of a quaternionic Kähler metric g and its 1-loop c-deformation
gc.

Proposition 5.2.7. Let (M, g, Q) be a quaternionic Kähler manifold equipped with a Killing
field Z with nowhere vanishing quaternionic moment map µZ admitting a 1-loop c-deformation
(Mc, gc, Qc, Zc) with respect to Z, realised by a global twist map Tc. Then, for any Z-
invariant vector fields u, v on M, the Levi-Civita connections ∇g and ∇gc

satisfy

∇gc

Tc(u)
˝ Tc(v) = Tc

(
∇g

uv + Sc
uv
)

, (5.47)

where Sc P T1,2M is given by

Sc
Tc(u) ˝ Tc(v) =

1
2

3
ÿ

α=0

(
1

fQ + ν
4c

ωQ(Jαu, v)JαZ

´
1

‖µZ‖´ 1
4c

(g(JαZ, u)Jα ˝ J1v + g(JαZ, v)Jα ˝ J1u)

)
.

(5.48)

Proof. We begin by rewriting Proposition 4.2.8 so that the Levi-Civita connection∇g̃

on the hyperkähler side is expressed in terms of the Levi-Civita connection ∇g on
the quaternionic Kähler side:

∇g̃
T(u) ˝ T(v) = T

(
∇g

uv + SQH
u v

)
, (5.49)



118 Chapter 5. Deformations of quaternionic Kähler structures

where T = T̃´1 is a global twist map realising the QK/HK correspondence and
SQH P Γ(T1,2M) is a tensor field given by

SQH
u v = ´T̃

(
SHQ

T(u) ˝ T(v)
)

=
1
2

3
ÿ

α=0

(
1
fQ

ωQ(Jαu, v)JαZ´
1
‖µZ‖ (g(JαZ, u)Jα ˝ J1v + g(JαZ, v)Jα ˝ J1u)

)
,

(5.50)

with J0 denoting the identity endomorphism field. Since the 1-loop deformation on
the quaternionic Kähler side leaves the hyperkähler metric (and so its Levi-Civita
connection unchanged, we have

∇gc

Tc(u)
˝ Tc(v) + SQH,c

Tc(u)
˝ Tc(v) = Tc

(
∇g

uv + SQH
u v

)
, (5.51)

where SQH,c is given by

SQH,c
u1 v1 =

1
2

3
ÿ

α=0

(
1
f c
Q

ωc
Q(Jc

αu1, v1)Jc
αZc

´
1
‖µZc‖ (gc(Jc

αZc, u1)Jc
α ˝ Jc

1v1 + gc(Jc
αZc, v1)Jc

α ˝ Jc
1u1)

)
.

(5.52)

We choose Jα to be Z-invariant (this is always possible due to Lemma 2.2.11), so that
it makes sense to say

Jc
α = Tc(Jα), ι Jc

αZc gc =
Tc(ι JiZg)

(1´ 4c‖µZ‖)2 , (5.53)

in addition to the following:

Zc =
Tc(Z)

1 + 4c
ν fQ

, ωc
Q =

Tc(ωQ)

1 + 4c
ν fQ

, f c
Q =

fQ

1 + 4c
ν fQ

,

1
‖µZc‖ =

1´ 4c‖µZ‖
‖µZ‖ , ι Jc

αZc gc =
Tc(ιZg)

(1´ 4c‖µZ‖)2 .

(5.54)

Substituting these gives us

SQH,c
Tc(u)

˝ Tc(v) =
1
2

3
ÿ

α=0

Tc

(
1

1 + 4c
ν fQ

1
fQ

ωQ(Jαu, v)JαZ

´
1

1´ 4c‖µZ‖
1
‖µZ‖ (g(JαZ, u)Jα ˝ J1v + g(JαZ, v)Jα ˝ J1u)

)
.

(5.55)

Plugging this into (5.51) and rearranging gives us (5.48). Note that the expression
inside the big brackets is independent of the particular choice of Jα, so they don’t
necessarily have to be individually Z-invariant for the expression to make sense.

Remark 5.2.8. Analogous to the comments made Remark 4.2.9, the above statement
can also be easily generalised to vector fields u and v which are not Z-invariant if we
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are given auxiliary local twist data (U, ηQ). This is given by

∇gc

u1v
1 = twZ, fQ+

ν
4c ,ηQ

(
∇g

uv + Sc
uv +

LZv
fQ + ν

4c ´ ηQ(Z)
ηQ

)
, (5.56)

where u1 and v1 are the local twists of u and v. In particular, if Jc
i are the local twists

of the sections Ji constituting a local oriented orthonormal frame of Q, we have

∇gc

u1 J
c
i = twZ, fQ+

ν
4c ,ηQ

(
∇g

u Ji + [Sc
u, Ji] +

ηQ(u)
f̃Q + ν

4c ´ ηQ(Z)
LZ Ji

)
. (5.57)

By making the replacement Jα ÞÑ Ji ˝ Jα, we see that

1
2

3
ÿ

α=0

(
1

fQ + ν
4c

ωQ(Jαu, Jiv)JαZ´
1

‖µZ‖´ 1
4c

g(JαZ, Jiv)Jα ˝ J1u

)

=
1
2

3
ÿ

α=0

Ji

(
1

fQ + ν
4c

ωQ(Jαu, v)JαZ´
1

‖µZ‖´ 1
4c

g(JαZ, v)Jα ˝ J1u

)
.

(5.58)

This implies that the commutators of Sc with the Hermitian structures Ji are given
by

[Sc
u, Ji] = ´

1
2
(
‖µZ‖´ 1

4c

) 3
ÿ

α=0

g(JαZ, u)[Jα ˝ J1, Ji]. (5.59)

Written out more explicitly, this becomes

[Sc
u, J1] =

1
‖µZ‖´ 1

4c

(ω2(Z, u)J2 + ω3(Z, u)J3),

[Sc
u, J2] = ´

1
‖µZ‖´ 1

4c

(g(Z, u)J3 + ω2(Z, u)J1),

[Sc
u, J3] =

1
‖µZ‖´ 1

4c

(g(Z, u)J2 ´ω3(Z, u)J1),

(5.60)

which gives us

∇gc
Jc
1 = twZ, fQ+

ν
4c ,ηQ

(
∇g J1 +

1
‖µZ‖´ 1

4c

(ιZω2 b J2 + ιZω3 b J3)

+
ηQ bLZ J1

fQ + ν
4c ´ ηQ(Z)

)
,

∇gc
Jc
2 = twZ, fQ+

ν
4c ,ηQ

(
∇g J2 ´

1
‖µZ‖´ 1

4c

(ιZgb J3 + ιZω2 b J1)

+
ηQ bLZ J2

fQ + ν
4c ´ ηQ(Z)

)
,

∇gc
Jc
3 = twZ, fQ+

ν
4c ,ηQ

(
∇g J3 +

1
‖µZ‖´ 1

4c

(ιZgb J2 ´ ιZω3 b J1)

+
ηQ bLZ J3

fQ + ν
4c ´ ηQ(Z)

)
.

(5.61)
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The above remark can be used to derive a useful consequence.

Proposition 5.2.9. Let (M, g, Q) be a quaternionic Kähler manifold equipped with a Killing
field Z with nowhere vanishing quaternionic moment map µZ with normalisation JZ admit-
ting a 1-loop c-deformation (Mc, gc, Qc, Zc) with respect to Z realised by a global twist map
Tc. Let (J1 = JZ, J2, J3) be a local oriented orthonormal frame for Q over some contractible
open set U such that the 1-form

ηQ = ´
ιZg
‖µZ‖ ´ xJ2,∇g J3y, (5.62)

is a valid choice of an auxiliary local 1-form for the twist data associated to the global twist
Tc. Then

ηc
Q := ´

ιZc gc

‖µZc‖ ´ xJ
c
2,∇gc

Jc
3y =

ηQ
4c
ν fQ + 1

, (5.63)

where Jc
2 and Jc

3 are the local twists of J2 and J3 with respect to local twist data(
U, Z, ωQ, fQ +

ν

4c
, ηQ

)
. (5.64)

Proof. Substituting the local realisations of (5.54) and (5.61) into the definition of ηc
Q

yields

ηc
Q = twZ, fQ+

ν
4c ,ηQ

(
´

(
1
‖µZ‖ ´ 4c

)
ιZg

(1´ 4c‖µZ‖)2 ´
ιZg

‖µZ‖´ 1
4c

´ xJ2,∇g J3y ´
xJ2, LZ J3y

fQ + ν
4c ´ ηQ(Z)

ηQ

)
= twZ, fQ+

ν
4c ,ηQ

(
´

ιZg
‖µZ‖ ´ xJ2,∇g J3y ´

xJ2, LZ J3y

fQ + ν
4c ´ ηQ(Z)

ηQ

)
=

fQ + ν
4c ´ ηQ(Z)´ xJ2, LZ J3y

fQ + ν
4c

ηQ
(3.7)
=

ηQ
4c
ν fQ + 1

.

(5.65)

Proposition 5.2.10. Let (M, g, Q) be a quaternionic Kähler manifold equipped with a Killing
field Z with nowhere vanishing quaternionic moment map µZ with normalisation JZ admit-
ting a 1-loop c-deformation (Mc, gc, Qc, Zc) with respect to Z realised by a global twist map
Tc. Let (J1 = JZ, J2, J3) be a local oriented orthonormal frame for Q over some contractible
open set U such that the 1-form

ηQ = ´
ιZg
‖µZ‖ ´ xJ2,∇g J3y, (5.66)

is a valid choice of an auxiliary local 1-form for the twist data associated to the global twist
Tc. Then

ηc
Q =

ηQ
ν
4c fQ + 1

(5.67)

satisfies the following equation:

f c
Q ´ ηc

Q(Zc) =
fQ ´ ηQ(Z)

1 + 4c
ν ( fQ ´ ηQ(Z))

. (5.68)
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Proof. Applying (3.7) to the local twist data (U, Zc, ωc
Q, f c

Q, ηc
Q), we have

f c
Q ´ ηc(Zc) = xJc

2, LZc Jc
3y

(5.30)
= ´

ν

4c
xJc

2, LZ̃c
Jc
3y. (5.69)

Now we may use (3.44) to deduce

xJc
2, LZ̃c

Jc
3y = xJ2, LZ J3y ´

fQ + ν
4c ´ ηQ(Z) + 1

fQ + ν
4c ´ ηQ(Z)

xJ2, LZ J3y

= ´
xJ2, LZ J3y

fQ + ν
4c ´ ηQ(Z)

= ´
fQ ´ ηQ(Z)

fQ + ν
4c ´ ηQ(Z)

,
(5.70)

giving us the required result.

Note that the reason we didn’t pass through the hyperkähler side to deduce the
two propositions above as we did in the case of the rest of the twist data is that then
the argument would have held only for those ηQ for which fQ ´ ηQ(Z) is nowhere
vanishing, i.e. those ηQ which are necessarily valid choices of auxiliary 1-forms for
the twist data (Z, ωQ, fQ).

This is however not required for the above argument to work; we only need that
fQ + ν

4c ´ ηQ(Z) is nowhere vanishing i.e. ηQ which are necessarily valid choices of
auxiliary 1-forms for the twist data (Z, ωQ, fQ + ν

4c ).
However, if we do choose ηQ such that these conditions simultaneously hold, we

obtain the following result regarding the c Ñ ˘8 limit of the 1-loop c-deformation.

Proposition 5.2.11. Let (M, g, Q) be a quaternionic Kähler manifold of reduced scalar
curvature ν equipped with a Killing field Z with nowhere vanishing quaternionic moment
map µZ admitting quaternionic twist data (Z, ωQ, fQ) and a locally hyperkähler manifold
(M̃, g̃, H) as its image under the QK/HK correspondence locally realised by a local twist
with respect to the local twist data (U, Z, ωQ, fQ, ηQ). Let (M, g, Q) also admit a 1-loop
c-deformation (Mc, gc, Qc, Zc) with respect to Z for all c ą c0 ą 0, respectively c ă c0 ă 0,
for some c0, locally realised by a local twist with respect to local twist data(

U, Z, ωQ, fQ +
ν

4c
, ηQ

)
. (5.71)

Then, we have on U the well-defined limit

lim
cÑ8

4cKν gc = ´g̃, respectively lim
cÑ´8

4cKν gc = ´g̃. (5.72)

Proof. We prove this only in the c ą c0 case since the other case is similar. By hy-
pothesis, the expression

4cKν gc

= 4cKν twZ, fQ+
ν
4c ,ηQ

(gL)

= 4cKν twZ, fQ+
ν
4c ,ηQ

(
1

1´ 4c‖µZ‖ g|HQZK +
1 + 4c

ν fQ

(1´ 4c‖µZ‖)2 g|HQZ

)

= ´twZ, fQ+
ν
4c ,ηQ

(
Kν

‖µZ‖´ 1
4c

g|HQZK ´ K
fQ + ν

4c(
‖µZ‖´ 1

4c

)2 g|HQZ

) (5.73)
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is well-defined for all c ą c0. The limit c Ñ8 then clearly exists and is given by

lim
cÑ8

4cKν gc = ´twZ, fQ,ηQ

(
Kν

‖µZ‖ g|HQZK ´
K fQ

‖µZ‖2 g|HQZ

)
= ´g̃. (5.74)

Example 5.2.12. We once again consider the CH2 metric from Example 3.1.11, namely

g =
1

4ρ2

(
dρ2 + 2ρ |dζ|2 + (dτ + Im(ζ dζ))2) , (5.75)

but restricted to 0 ă ρ ă c0 so that ‖µZ‖´ 1
c is nowhere vanishing for all c ą c0. We

have already seen that the auxiliary 1-form ηQ may be chosen to be of the form

ηQ = ´ϑ4 + κ dτ = ´
1

2ρ
(dτ + Im(ζ dζ)) + κ dτ, (5.76)

so that we have
fQ +

ν

4c
´ ηQ(Z) = ´κ´

ν

4c
= ´κ +

1
2c

. (5.77)

Thus, we can ensure that this is nowhere vanishing as well for all c ą c0 by making
the choice

κ =
1

2c0
. (5.78)

We compute the elementary deformation to be

gL =
1

4ρ

ρ + c
(ρ´ c)2

(
dρ2 + 2ρ |dζ|2 + (dτ + Im(ζ dζ))2) , (5.79)

and the local twist of ιZgL to be

twZ, fQ+
ν
4c ,ηQ

(ιZgL) =
c
4

1
(ρ´ c)2

(
dτ

c0
´

1
c
(dτ + Im(ζ dζ))

)
. (5.80)

So all in all, we have have following expression for gc:

gc = twZ, fQ+
ν
4c ,ηQ

(gL)

=
1

(ρ´ c)2

(
ρ + c

ρ
dρ2 + 2(ρ + c)|dζ|2 +

c2ρ

ρ + c

(
dτ

c0
´

1
c
(dτ + Im(ζ dζ))

)2
)

.

(5.81)

Finally, we compute the limit

lim
cÑ8

4cKν gc = lim
cÑ8

´8cK gc = ´8K
(

dρ2

ρ2 + 2|dζ|2 +
ρ

c2
0

dτ2
)

, (5.82)

which after a change of coordinates

ρ = r2, ζ =
?

2 w, τ = c0τ1, (5.83)

yields the QK/HK dual metric

g̃ = 8K(dr2 + r2dτ12 + |dw|2), (5.84)
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as we had found in Example 4.1.13.

5.3 Flows of quaternionic Kähler structures

5.3.1 Naïve one-loop flow

Our final task in this dissertation will be to cast deformations of quaternionic Kähler
structures as solutions to certain geometric flow equations defined on the underlying
manifolds. We begin by establishing an easy lemma.

Lemma 5.3.1. The c-dependent elementary deformation

gL =
1

1´ 4c‖µZ‖ g|HQZK +
1 + 4c

ν fQ

(1´ 4c‖µZ‖)2 g|HQZ (5.85)

introduced in (5.32) satisfies the following differential equation:

dgL

dc
= 4‖µZc‖ gL ´

4
ν

gc(Zc, Zc)

‖µZc‖ gL|HQZ. (5.86)

Proof. This follows from a short computation:

dgL

dc
=

4‖µZ‖
(1´ 4c‖µZ‖)2 g|HQZK +

(
4 fQ

ν(1´ 4c‖µZ‖)2 +
8‖µZ‖

(
1 + 4c

ν fQ
)

(1´ 4c‖µZ‖)3

)
g|HQZ

=
4‖µZ‖

1´ 4c‖µZ‖ gL|HQZK +

(
4 fQ

ν + 4c fQ
+

8‖µZ‖
1´ 4c‖µZ‖

)
gL|HQZ

= 4‖µZc‖ gL|HQZK +

(
4
ν

f c
Q + 8‖µZc‖

)
gL|HQZ

= 4‖µZc‖ gL +
4
ν

(
f c
Q + ν‖µZc‖

)
gL|HQZ

(2.57)
= 4‖µZc‖ gL ´

4
ν

gc(Zc, Zc)

‖µZc‖ gL|HQZ.

(5.87)

This along with Lemma 5.1.8 regarding the local derivative twist gives us the
following result.

Proposition 5.3.2. The local 1-loop c-deformation (U, gc, Qc, Zc) of a quaternionic Kähler
manifold (M, g, Q) with respect to a Killing field Z and auxiliary local twist data (U, ηQ)
satisfies the “naïve 1-loop flow” equations:

dgc

dc
= ´

8
ν

ηc
Q ιZc gc + 4‖µZc‖ gc ´

4
ν

gc(Zc, Zc)

‖µZc‖ gc|HQc Zc , (5.88a)

dZc

dc
= ´

4
ν
( f c

Q ´ ηc
Q(Zc))Zc, (5.88b)

dQc

dc
= ´

4
ν
[Qc, ηc

Q b Zc], (5.88c)

dηc
Q

dc
= ´

4
ν

f c
Q ηc

Q, (5.88d)

subject to the intial conditions

(gc, Zc, Qc, ηc
Q)|c=0 = (g, Z, Q, ηQ). (5.89)
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Proof. The Leibniz rule together with (5.16) and the chain rule yields the following
equation for gc:

dgc

dc
=

d
dc

(
twZ, fQ+

ν
4c ,ηQ

(gL)
)

=
d
dc

( ν

4c

)
dtwZ, fQ+

ν
4c ,ηQ

(gL) + twZ, fQ+
ν
4c ,ηQ

(
dgL

dc

)
= ´

ν

4c2
2

( fQ + ν
4c )

2 ηQ twZ, fQ+
ν
4c ,ηQ

(ιZgL) + twZ, fQ+
ν
4c ,ηQ

(
dgL

dc

)
= ´

8
ν

ηc
Q ιZc gc + twZ, fQ+

ν
4c ,ηQ

(
dgL

dc

)
.

(5.90)

Substituting (5.85) into the above then results in (5.88a). Likewise, (5.88b) follows
from the following computation:

dZc

dc
(5.30)
=

d
dc

(
´

ν

4c
Z̃c

)
=

d
dc

(
Z

1 + 4c
ν ( fQ ´ ηQ(Z))

)

= ´
4
ν

fQ ´ ηQ(Z)(
1 + 4c

ν ( fQ ´ ηQ(Z))
)2 Z = ´

4
ν

fQ ´ ηQ(Z)
1 + 4c

ν ( fQ ´ ηQ(Z))
Zc

(5.68)
= ´

4
ν
( f c

Q ´ ηc
Q(Zc))Zc.

(5.91)

For deriving (5.88c), we once again use (5.16):

dQc

dc
=

d
dc

(
dtwZ, fQ+

ν
4c ,ηQ

(Q)
)
=

d
dc

( ν

4c

)
dtwZ, fQ+

ν
4c ,ηQ

(Q)

= ´
ν

4c2

[
twZ, fQ+

ν
4c ,ηQ

(Q), ηQ b Z
]

(
fQ + ν

4c

) (
fQ + ν

4c ´ ηQ(Z)
)

= ´
4
ν

[
Qc,

ηQ

1 + 4c
ν fQ

b
Z

1 + 4c
ν ( fQ ´ ηQ(Z))

]
= ´

4
ν
[Qc, ηc

Q b Zc].

(5.92)

Equation (5.88d) meanwhile follows from the following computation:

dηc
Q

dc
=

d
dc

(
ηQ

1 + 4c
ν fQ

)
= ´

4
ν

fQ ηQ(
1 + 4c

ν fQ
)2

= ´
4
ν

f c
Q ηc

Q.

(5.93)

Finally, (5.89) follows from the fact that the c Ñ 0 limits of gc, Zc, Qc, ηc
Q are well-

defined and given by g, Z, Q, ηQ respectively.

5.3.2 Reparametrised one-loop flow

As we saw in Example 5.2.3, sometimes we may have to work with a c-dependent
pullback g1 = φ˚c g of a quaternionic Kähler metric in order to ensure that the 1-loop
c-deformation is well-defined. In the case of Example 5.2.12, this boiled down to
choosing a pullback so that the norm of quaternionic moment map

‖µZ1c‖ := φ˚c ‖µZc‖ (5.94)
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of the 1-loop deformation of pulled back data is independent of c. We generalise
this to an arbitrary quaternionic Kähler manifold (M, g, Q) with nowhere vanishing
Killing field Z, nowhere vanishing quaternionic moment map µZ, and well-defined
quaternionic twist data (Z, ωQ, fQ), by constructing a c-dependent map φ˚c such that
φ˚c ‖µZc‖, if well-defined, is equal to ‖µZ‖.

Lemma 5.3.3. Let (M, g, Q) be a quaternionic Kähler manifold of reduced scalar curvature
ν equipped with a Killing field Z with nowhere vanishing quaternionic moment map µZ,
admitting quaternionic twist data (Z, ωQ, fQ) and auxiliary local twist data (U, ηQ). Let
Uc be open subsets of U on which the 1-loop c-deformation of the restriction of (M, g, Q) with
respect to Z is well-defined and let φc : U Ñ Uc be a 1-parameter family of diffeomorphisms
satisfying for all p P Uc

φ0 = idU ,
dφb

db

ˇ

ˇ

ˇ

ˇ

b=c
(φ´1

c (p)) = Wc,p, (5.95)

where Wc is a vector field given by

Wc =
4‖µZc‖

gc(Zc, Zc)
µZc

Zc. (5.96)

Then we have on U, the following equation:

φ˚c ‖µZc‖ = ‖µZ‖. (5.97)

Proof. It suffices to show that the c-derivative of φ˚c ‖µZc‖´1 vanishes. Applying the
Leibniz rule, we have

d
dc

(φ˚c ‖µZc‖´1) = φ˚c

(
Wc

(
‖µZc‖´1

)
+

d‖µZc‖
dc

)
(5.45)
= φ˚c

(
´

Wc(‖µZc‖)
‖µZc‖2

)
´ 4.

(5.98)
The hypothesis that the 1-loop c-deformation is well-defined on Uc entails that µZc

is
nowhere vanishing on Uc and its normalisation JZc

is well-defined, so that we have

Wc =
4‖µZc‖

gc(Zc, Zc)
µZc

Zc =
4‖µZc‖2

gc(Zc, Zc)
JZc

Zc. (5.99)

Furthermore, (2.49) applies to this context and we have

Wc(‖µZc‖) = d‖µZc‖(Wc) = ´g(JZc
Zc, Wc)

= ´
4‖µZc‖2

gc(Zc, Zc)
gc(JZc

Zc, JZc
Zc) = ´4‖µZc‖2.

(5.100)

This gives us the required result

d
dc

(φ˚c ‖µZc‖´1) = φ˚c

(
´

Wc(‖µZc‖)
‖µZc‖2

)
´ 4 = 4´ 4 = 0. (5.101)

Example 5.3.4. In the case of the Przanowski–Tod Ansatz, the naïve 1-loop-deformed
quantities may be read off from our computations in Example 5.2.3 by undoing the
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action of the diffeomorphism φc. In particular, we have

µZc
=

1
4(ρ´ c)

Jc
1, Jc

1Zc =
1

P´ 2c
ν Bρu

Bρ, gc(Zc, Zc) =
1
4
(ρ´ c)´2

P´ 2c
ν Bρu

. (5.102)

So, the vector field Wc is given by

Wc =
4‖µZc‖

gc(Zc, Zc)
µZc

Zc =
4‖µZc‖2

gc(Zc, Zc)
Jc
1Zc = Bρ. (5.103)

This generates precisely the diffeomorphism φc i.e. (ρ, ζ, τ) ÞÑ (ρ + c, ζ, τ).

Proposition 5.3.5. Let (U, gc, Qc, Zc) be the local 1-loop c-deformation of a quaternionic
Kähler manifold (M, g, Q) with respect to a Killing field Z and auxiliary local twist data
(U, ηQ) and let

(g1c, Q1c, Z1c, f 1cQ , η1cQ) := (φ˚c gc, φ˚c Qc, φ˚c Zc, φ˚c f c
Q, φ˚c ηc

Q) (5.104)

denote the action via Lie-dragging of the 1-parameter family of diffeomorphisms φc : U Ñ

Uc Ď U satisfying for all p P Uc

φ0 = idU ,
dφb

db

ˇ

ˇ

ˇ

ˇ

b=c
(φ´1

c (p)) = Wc,p, (5.105)

where Wc is a vector field given by

Wc =
4‖µZc‖

gc(Zc, Zc)
µZc

Zc. (5.106)

Furthermore, let W1
c denote π˚c Wc. Then (g1c, Q1c, Z1c, η1cQ) satisfies the “reparametrised 1-

loop flow” equations:

dg1c

dc
= LW1

c
g1c ´

8
ν

η1cQ ιZ1c g1c + 4‖µZ1c‖ g1c ´
4
ν

g1c(Z1c, Z1c)
‖µZ1c‖ g1c|HQ1c Z1c ,

dZ1c

dc
= LW1

c
Z1c ´

4
ν
( f 1cQ ´ η1cQ(Z1c))Z1c,

dQ1c

dc
= LW1

c
Q1c ´

4
ν
[Q1c, η1cQ b Z1c],

dη1cQ
dc

= LW1
c
η1cQ ´

4
ν

f 1cQ η1cQ,

(5.107)

subject to the intial conditions

(g1c, Z1c, Q1c, η1cQ)|c=0 = (g, Z, Q, ηQ). (5.108)

Proof. This follows from the general observation that if S1 and S2 are c-dependent
tensor fields satisfying

dS1

dc
= S2, (5.109)

then, by the Leibniz rule and naturality of the Lie derivative

d
dc

(φ˚c S1) = φ˚c

(
LWc S1 +

dS1

dc

)
= LW1

c
(φ˚c S1) + φ˚c S2. (5.110)
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5.3.3 Rescaled one-loop flow

There is yet another way we might consider modifying the naïve 1-loop flow. We
may rescale the metric gc by a factor Lc with L a fixed constant, which, as we saw in
Proposition 5.2.11, is expected to have a sensible large c limit as the QK/HK dual
metric g̃, up to an overall factor. For this we need a lemma regarding how the
QK/HK data changes when the quaternionic Kähler metric g is rescaled to ag.

Lemma 5.3.6. Let (M, g, Q) be a quaternionic Kähler metric equipped with a Killing field
Z with nowhere vanishing quaternionic moment map µZ with normalisation JZ and quater-
nionic twist data (Z, ωQ, fQ). Then, for any nonzero constant a, (M, ag, Q) is a quater-
nionic Kähler metric with Z being a Killing field thereof with nowhere vanishing quater-
nionic moment map aµZ and quaternionic twist data (Z, ωQ, fQ).

Proof. We make use of the well-known fact that the Levi-Civita connection ∇ag as-
sociated to the rescaled metric ag and inner product induced on the endomorphism
bundle End(TM) by ag are the same as the Levi-Civita connection∇g and the inner
product x¨, ¨y induced on End(TM) by g. As a consequence, when g is Einstein with
reduced scalar curvature ν, the metric ag has reduced scalar curvature a´1ν, since
there is a contraction with the inverse metric a´1g´1 involved. Thus, the quater-
nionic moment map for the new metric ag is given by

´
2

a´1ν
prQ(∇

agZ) = aµZ. (5.111)

Choosing an appropriate local oriented orthonormal frame J1 = JZ, J2, J3) for Q, we
additionally see that we have the auxiliary local 1-form

´
ιZ(ag)
a‖µZ‖ ´ xJ2,∇ag J3y = ´

ιZg
‖µZ‖ ´ xJ2,∇g J3y = ηQ. (5.112)

Since this is unchanged under the rescaling g ÞÑ ag in addition to Z, so must be the
quaternionic twist data (Z, ωQ, fQ), given that ωQ = dηQ and

´
ag(Z, Z)
a‖µZ‖ ´ a´1νa‖µZ‖ = ´g(Z, Z)

‖µZ‖ ´ ν‖µZ‖ = fQ. (5.113)

Now direct substitution of the above into the naïve 1-loop flow equations has the
following result.

Proposition 5.3.7. Let (U, gc, Qc, Zc) be the local 1-loop c-deformation of a quaternionic
Kähler manifold (M, g, Q) with respect to a Killing field Z and auxiliary local twist data
(U, ηQ). Let the family(

g(t), Q(t), Z(t), ν(t), µZ(t)
, f (t)Q , η

(t)
Q

)
:= (4Lc gc, Qc, Zc, (4Lc)´1ν, 4Lc µZc

, f c
Q, ηc

Q),
(5.114)

be parametrised by a parameter t related to c restricted to be either positive or negative by

e`t = 4Lc, (5.115)
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for some fixed nonzero constants L and ` such that Lc and ` are positive. Then it satisfies the
“the rescaled 1-loop flow” equations:

d
dt

g(t) = ´
2`

Lν(t)
η
(t)
Q ιZ(t)g(t) +

(
`

L
‖µZ(t)‖+ `

)
g(t)

´
`

Lν(t)
g(t)(Z(t), Z(t))

‖µZ(t)‖
g(t)

ˇ

ˇ

ˇ

H
Q(t) Z(t)

,

d
dt

Z(t) = ´
`

Lν(t)
( f (t)Q ´ η

(t)
Q (Z(t)))Z(t),

d
dt

Q(t) = ´
`

Lν(t)

[
Q(t), η

(t)
Q b Z(t)

]
,

d
dt

η
(t)
Q = ´

`

Lν(t)
f (t)Q η

(t)
Q ,

(5.116)

subject to the initial conditions

lim
tÑ´8

(
e´`tg(t), Z(t), Q(t), η

(t)
Q

)
= (g, Z, Q, ηQ). (5.117)

5.3.4 Towards instanton corrections

A noteworthy aspect of the (naïve) 1-loop flow equations is that they may be for-
mally extended to AQH manifolds. This is due to the fact that the ingredients that
go into defining these flow equations, namely the quaternionic moment map µZ,
the auxiliary 1-form ηQ, and the Hamiltonian function fQ, all have rather explicit
expressions in terms of the data (g, Q, Z). Such a formal extension is by no means
canonical and there are a whole lot of ways one could go about it.

As an example, consider a family of AQH structures (gc, Qc) on a fixed con-
tractible open set U of dimension 4n, each member of which is equipped with a
vector field Zc, and a choice of section Jc

2 P Γ(Qc) orthogonal to the endomorphism
field ∇gc

Zc. Away from the points where this endomorphism field is orthogonal to
Qc, such a choice amounts to a choice of a local oriented orthonormal frame

(Jc
1, Jc

2, Jc
3) :=

(
prQc(∇gc

Zc)

‖prQc(∇gc Zc)‖ , Jc
2,

prQc(∇gc
Zc)

‖prQc(∇gc Zc)‖ ˝ Jc
2

)
(5.118)

for Qc and so a connection 1-form αc
23 given by

αc
23(u) = xJ

c
2,∇gc

u Jc
3y. (5.119)

Thus, it makes sense to consider the following system of differential equations:

dgc

dc
= 2(n + 2)(´‖prQc(∇gc

Zc)‖gc + αc
23 ιZc gc)

+
Ricc(Zc, Zc)

2‖prQc(∇gc Zc)‖

(
´(ιZc gc)2 +

c
ÿ

i=1

(ιZc gc ˝ Jc
i )

2

)
,

dZc

dc
= ´(n + 2)xJc

2, LZc Jc
3yZ

c,

dJc
2

dc
=

[
Jc
2,

(
ιZc Ricc

2‖prQc(∇gc Zc)‖ + (n + 2)αc
23

)
b Zc

]
,

(5.120)
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where Ricc denotes the Ricci curvature of gc. Up to absorption of constant factors
into the parameter c, this system of differential equations reduces to the naïve 1-
loop flow equations in the case when the almost quaternionic Hermitian structures
are quaternionic Kähler, with the auxiliary 1-forms ηc

Q given by (5.63).
As mentioned in Folklore 1.A.3, the quaternionic Kähler property of the hyper-

multiplet moduli space is a consequence of N = 2 supersymmetry. So, a defor-
mation away from quaternionic Kähler structures has a physical interpretation as a
supersymmetry-breaking deformation of the theory. Now, while an order-by-order
perturbative expansion of the quantum corrections to the correlators of a supersym-
metric theory often converges or even truncates, the same isn’t the case for non-
supersymmetric theories, where perturbative expansions generically diverge and
have to be interpreted as asymptotic expansions of analytic functions. Based on
the observation that such asymptotic expansions contain a great deal of informa-
tion about the nonperturbative sectors of a theory, recent works in physics [DÜ16;
Koz+18; DG18] have fruitfully made use of supersymmetry-breaking deformations
to determine instanton contributions to expectation values of observables in super-
symmetric theories.

Taking cue from this, one can hope that an alternative description of the twistor-
based construction of instanton corrections to quaternionic Kähler metrics in [APP11]
might emerge from investigating the behaviour of solutions of a suitable generalisa-
tion of the 1-loop flow equations such as (5.120) around singularities due to ∇gc

Zc

becoming orthogonal to Qc. In particular, it is hoped that by introducing a small
deformation away from quaternionic Kähler structure and taking the limit of this
deformation going to zero only at the end, we will be able to construct nonanalytic
1-parameter families of quaternionic Kähler metrics that solve the 1-loop flow equa-
tions but are different from the 1-loop deformation. This failure of uniqueness is
consistent with the Cauchy–Kovaleskaya theorem, which applies only to analytic
solutions.
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[RVV06] Martin Roček, Cumrun Vafa, and Stefan Vandoren. “Quaternion-Kähler
spaces, hyperkahler cones, and the c-map”. In: (2006). arXiv: math/0603048
[math-dg].

[Sal82] Simon M. Salamon. “Quaternionic Kähler manifolds”. In: Inventiones math-
ematicae 67.1 (Feb. 1982), 143–171. ISSN: 1432-1297. DOI: 10.1007/BF01393378.
URL: https://doi.org/10.1007/BF01393378.

[Soh85] Martin F. Sohnius. “Introducing supersymmetry”. In: Physics Reports 128.2
(1985), 39–204. ISSN: 0370-1573. DOI: 10.1016/0370- 1573(85)90023-
7. URL: http : / / www . sciencedirect . com / science / article / pii /
0370157385900237.

[Swa10] Andrew F. Swann. “Twisting Hermitian and hypercomplex geometries”.
In: Duke Math. J. 155.2 (Nov. 2010), pp. 403–431. DOI: 10.1215/00127094-
2010-059. URL: https://doi.org/10.1215/00127094-2010-059.

[Swa90] Andrew F. Swann. “HyperKähler and quaternionic Kähler geometry”.
PhD thesis. University of Oxford, 1990. URL: https://users-math.au.
dk/~swann/thesisafs.pdf.

https://doi.org/10.1007/BF01458016
https://doi.org/10.1007/BF01458016
https://doi.org/10.1063/1.1705200
https://doi.org/10.1063/1.1705200
https://doi.org/10.1063/1.1705200
https://doi.org/10.1063/1.1705200
https://doi.org/10.1017/CBO9780511816079
https://doi.org/10.1017/CBO9780511618123
https://doi.org/10.1017/CBO9780511618123
https://doi.org/10.1063/1.529375
https://doi.org/10.1063/1.529375
https://doi.org/10.1063/1.529375
https://doi.org/10.1063/1.529375
https://doi.org/10.4310/jdg/1214446322
https://doi.org/10.4310/jdg/1214446322
https://doi.org/10.4310/jdg/1214446322
https://doi.org/10.1088/1126-6708/2006/03/081
https://doi.org/10.1088%2F1126-6708%2F2006%2F03%2F081
https://arxiv.org/abs/math/0603048
https://arxiv.org/abs/math/0603048
https://doi.org/10.1007/BF01393378
https://doi.org/10.1007/BF01393378
https://doi.org/10.1016/0370-1573(85)90023-7
https://doi.org/10.1016/0370-1573(85)90023-7
http://www.sciencedirect.com/science/article/pii/0370157385900237
http://www.sciencedirect.com/science/article/pii/0370157385900237
https://doi.org/10.1215/00127094-2010-059
https://doi.org/10.1215/00127094-2010-059
https://doi.org/10.1215/00127094-2010-059
https://users-math.au.dk/~swann/thesisafs.pdf
https://users-math.au.dk/~swann/thesisafs.pdf


136 Bibliography

[Swa91] Andrew F. Swann. “HyperKähler and quaternionic Kähler geometry”.
In: Mathematische Annalen 289.1 (Mar. 1991), 421–450. ISSN: 1432-1807.
DOI: 10.1007/BF01446581. URL: https://doi.org/10.1007/BF01446581.

[Tod95] K. Paul Tod. “The SU(8) Toda field equation and special four-dimensional
metrics”. In: Geometry and physics. Proceedings, Conference, Aarhus, Den-
mark, July 18-27, 1995. 1995, pp. 307–312.

[Ton09] David Tong. Lectures on String Theory. 2009. arXiv: 0908.0333 [hep-th].

[Wol65] Joseph A. Wolf. “Complex Homogeneous Contact Manifolds and Quater-
nionic Symmetric Spaces”. In: Journal of Mathematics and Mechanics 14.6
(1965), pp. 1033–1047. ISSN: 00959057, 19435274. URL: http://www.jstor.
org/stable/24901319.

[WVP92] Bernard de Wit and Antoine Van Proeyen. “Special geometry, cubic poly-
nomials and homogeneous quaternionic spaces”. In: Commun. Math. Phys.
149 (1992), pp. 307–334. DOI: 10 . 1007 / BF02097627. arXiv: hep - th /
9112027 [hep-th].

https://doi.org/10.1007/BF01446581
https://doi.org/10.1007/BF01446581
https://arxiv.org/abs/0908.0333
http://www.jstor.org/stable/24901319
http://www.jstor.org/stable/24901319
https://doi.org/10.1007/BF02097627
https://arxiv.org/abs/hep-th/9112027
https://arxiv.org/abs/hep-th/9112027

	Abstract
	Zussamenfassung
	Acknowledgements
	Introduction
	Background
	Overarching theme
	Immediate context

	Main results

	      Appendix
	Supergravity and quaternionic Kähler geometry
	The Type IIA superstring and its dimensional reduction
	Quantum corrections to Type IIA hypermultiplets

	Quaternionic Kähler manifolds
	Definition and basic properties
	The quaternionic moment map
	Definition and examples
	Anticipatory lemmata

	Przanowski–Tod Ansatz and continuous Toda
	Quaternionic moment map for the Ansatz
	Explicit solutions of cohomogeneity one


	The twist construction
	The local twist map
	Derivatives under the local twist
	Exterior derivative
	Lie derivatives
	Levi-Civita connection

	Global aspects of the twist construction
	Auxiliary data are indeed auxiliary
	Global twists


	To locally hyperkähler manifolds and back again
	Locally hyperkähler structures on quaternionic twists
	Locally hyperkähler manifolds and rotating Killing fields
	The QK/HK correspondence

	Inverting the QK/HK correspondence
	The HK/QK correspondence
	Levi-Civita connection under HK/QK
	Riemann curvature under HK/QK


	      Appendix
	HK/QK curvature formula
	Ferrara–Sabharwal curvature norm

	Deformations of quaternionic Kähler structures
	Local twists revisited
	One-loop deformations
	Definition and characterisation
	Basic results

	Flows of quaternionic Kähler structures
	Naïve one-loop flow
	Reparametrised one-loop flow
	Rescaled one-loop flow
	Towards instanton corrections


	Bibliography

