Basics of linear and commutative superalgebra

1 Linear superalgebra

Definition 1.1. A Z-graded ring R is a ring with the additional structure of a decompo-
sition
R=Pr
1EZ
as abelian groups, such that R; - R; C R;y;. A Z-graded module M over a Z-graded ring
R is a module over R equipped with a decomposition

M= M
i€
as abelian groups such that R; - M; C M;,;. Elements of the R; and M; are called
homogeneous.

We note that
1. we can turn every ring R into a graded ring by setting Ry = R and R; = 0 for i # 0,

2. only Ry is a subring of R, the other R; are modules over Ry,
3. if R is unital (which we will always assume), then 1 € Ry

4. this construction can be carried out with an arbitrary monoid M instead of Z. E.g.,
we can have N-graded rings such as the polynomials K[z] or differential forms Q°® (M)
on a smooth manifold.

Definition 1.2. A super vector space V = V@V over a field K is a Zs-graded K-module.
On the homogeneous elements we define the parity function

p: (VouVi)\{0} — Z
p(v) = i forveV,.
A morphism ¢ : V. — W of super vector spaces is a linear map that preserves the grading,
ie., 6(Vi) C Wi.
Most natural constructions for vector spaces can be extended to super vector spaces:
1. direct sums: (Ve W); =V, & W,
2. tensor products: (V@ W); :=@,_; 4 V; ® Wi

The space Homgyect(V, W) of morphisms of super vector spaces does not form a super
vector space itself, but the space of all linear maps does, via

HomVect(V) W)z = {Qf) V= quS(VJ) C Wj+i}.

So every linear map ¢ : V. — W of super vector spaces splits uniquely into ¢ = ¢ + ¢1
where ¢g ism.

Note: in a supercommutative algebra, all odd elements square to zero: a?

= 1la,a] =0.



2 Supermodules

Definition 2.1. A left supermodule over a supercommutative ring R = Rg® R; is simply
a left Zo-graded module M = My @ M; over R.

For the supermodules over a supercommutative superring R we define a braiding, i.e.,
a rule for how to interchange the factors in a tensor product of modules:

CMJV:M@N - N®®M

men — (=1)PrMy @,

for all R-modules M, N and homogeneous elements m € M,n € N. This braiding dis-
tinguishes superalgebra (and supergeometry) from the plain algebra of graded rings and
modules. In practice on can sum this up in the

Sign Rule: whenever in a multiplicative expression involving elements of supermodules
over a supercommutative ring we exchange two neighbouring odd elements, a factor (-1)
occurs.

Example: the braiding defines what “symmetric” means: amap f : M @ M — N
between modules over a supercommutative algebra A is supersymmetric, if f(my,mg) =
(=1)Pm)P(m2) f(my my) for all homogeneous my,ms € M. So a supercommutative alge-
bra is commutative in this new “super” sense.

Every left supermodule M over a supercommutative algebra A can be given a right
module structure by setting

m-aq:= (_1)p(a)p(m)a -m.

Definition 2.2. Let M, N be left supermodules over a supercommutative IK-superalgebra
A. A K-linear map ¢ : M — N is called graded linear over A, if for all homogeneous
m € M,a € A we have

d(a-m) = (=1)P PP q. ¢(m).

We write Hom 4 (M, N) for the A-supermodule of graded linear maps M — N over A, and
End 4 (M) for Hom4 (M, M).

Example: left translation Ly : M — M, Ly(m) = b-m for b € A, A supercommutative,
M a left A-module is graded linear of parity p(Ly) = p(b).

Definition 2.3. A left supermodule M over a supercommutative superalgebra A is called
free of rank r|s, if there exists a homogeneous basis

€ly-+-5€r,€p4p1y...,€Epr4g
—_—— — ——
even odd
for M. That means that every x € M can uniquely be written as

r+s

:c:ZaJej, a’ € A.
i=1

Remarks:

1. One can show that the rank r|s is independent of the basis chosen.



2. We can as well use a left basis like above as a right basis, i.e., we can as well write

every x € M uniquely as
r+s

x:Zejbj, Ve A.
i=1

A graded linear morphism ¢ : M — N between free A-supermodules can be written
as a matrix as follows. We pick bases e; ..., em+n of M and f1,..., fr+s. Then we have
unique expressions

r+s
o(ej) = Z fid’

=1

m+n

= Y el
r = GJIE
j=1

r+s

dx) = > [
=1

for any = € M. Thus

m+n r+s m+n
$(z) = dlej)al =) Y fiala!
7=1 =1 j=1

and so y' =Y j aé-xj . We can therefore think of the aé- as the entries of a matrix represen-
tation L of the morphism ¢ which decomposes into blocks

Loo | L
I - < 00 | Lot > (1)
Lyo | L1
where Lg is a r X m-matrix, Loy a 7 X n matrix, Lig a s X m-matrix and Lq; a s X n-matrix.
When ¢ is homogeneous, then the entries of L;; have parity ¢ + j + p(¢).

Definition 2.4. We define Mat 4(m|n,r|s) as the A-supermodule of all matrices of block
form as in (1). A matrix L is homogeneous of parity p(L) if the entries of L;; have parity
i+ j+p(L). The A-supermodule structure of Mat 4(m|n,r|s) is given by

a- L — CLLOO ‘ aL01
(—1)P@aLyg | (-1)P@aLy )

3 The supertrace

Definition 3.1. The supertrace is defined on the quadratic supermatrices Mat 4 (m/|n) by
str(L) := tr(Loo) — (—1)PPtr(L1y).
This definition is essentially (up to normalization) forced upon us by requiring that
1. str: Mat4(m|n) is A-linear,
2. str([X,Y]) = 0 where [X, Y] is the supercommutator of matrices (see above).

The second requirement ensures that the super trace is invariant under base changes: we
can actually define the super trace to be a morphism of A-modules str : End(M) — A for
any free A-module M.

One checks that str is an even A-linear map, i.e., str(a - L) = a - str(L) for all square
supermatrices L and all a € A.



4 The superdeterminant (Berezinian)

The superdeterminant is a less obvious generalization. It can only be defined on a certain
subset of the square matrices Mat 4(m|n).

Lemma 4.1. Let A = Ay ® Ay be a supercommutative IK-superalgebra. Then

1. the quotient A = A/(A;1), where (A1) is the ideal generated by the odd elements, is
an ordinary commutative K-algebra,

2. an element a € A is invertible if and only if its even part ag is invertible, and ag is
invertible if and only if its image w(a) € A is invertible. Here m : A — A denotes
the projection onto the quotient algebra.

Theorem 4.2. A matriz L € Mat(m|n) is invertible if and only if 7(L) € Mat4(m+n)
is invertible.

Both statements are proven in [1]. As a corollary one finds that an even matrix L is
invertible if and only if Lgg and Lq1 are invertible.

Definition 4.3. We define the general linear group of a free A-supermodule of rank r|s
as
GLA(r|s) ={L € Mata(r|s)mp(L) =0, L invertible }.

The superdeterminant (Berezinian) can only be defined on such even invertible square
matrices.

Definition 4.4. The superdeteterminant is defined as
sdet : GLa(r|s) — Ao

Loo | L
sdet ( 00 | ~01 ) := det(Loo — Lo1 L7 L1o) ™) det(Loo)
Lo | L1n

This definition is again essentially forced upon us if we require that
1. the superdeterminant be multiplicative: sdet(A - B) = sdet(A) - sdet(B),

2. sdet is independent of the chosen basis for a free module, i.e., that it is actually a
map from the even invertible endomorphisms to Ay rather than from the matrices.

Theorem 4.5. For all r,s > 0 the superdeterminant is a homomorphism
sdet : GLA(r|s) = A]

of groups. Moreover we have
sdet(e?) = e*t(A)

for all A € GLA(r|s).
Proof. Tough, see [2]. O
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