Seminar on Supergeometry - super domains and super manifolds

David Klein - 4 May 2011 - Reference: C. Bär - Nichtkommutative Geometrie (2005)

1 Super domains

Recall 1. U is a \mathbb{K} - vector space. The **Grassmann algebra** is defined by:

$$\Lambda^* U = \bigoplus_{k \ge 0} \Lambda^k U$$

with the wedge product as multiplication. The partition of Λ^*U into

$$(\Lambda^*U)_0 := \bigoplus_{j>0} \Lambda^{2j}U$$
 and $(\Lambda^*U)_1 := \bigoplus_{j>0} \Lambda^{2j+1}U$

gives Λ^*U the structure of an associative super algebra.

Def. 1.1. Let $U \subset \mathbb{R}^m$ be an open subset. We consider

$$\mathcal{O}_{m|n}:=C^{\infty}(U)\otimes_{\mathbb{R}}\Lambda^*\mathbb{R}^n$$

which can be understood more easily if we choose a basis, i.e. let $\theta_1^{\epsilon_1} \wedge \cdots \wedge \theta_n^{\epsilon_n}$, $\epsilon_j \in \{0,1\}$ be a basis of $\Lambda^*\mathbb{R}^n$. Hence we can express every $f \in \mathcal{O}_{m|n}(U)$ in a unique way:

$$f = \sum_{\substack{\epsilon = (\epsilon_1, \dots, \epsilon_n) \\ \epsilon_j \in \{0,1\}}} f_{\epsilon} \otimes \theta_1^{\epsilon_1} \wedge \dots \wedge \theta_n^{\epsilon_n}, \quad f_{\epsilon} \in C^{\infty}(U)$$

We call the elements f of $\mathcal{O}_{m|n}(U)$ **superfunctions** of even dimension m and odd dimension n.

Remark 1.2. Let $V \subset U \subset \mathbb{R}^n$ be open subsets. We find a morphism $\mathcal{O}_{m|n}(U) \to \mathcal{O}_{m|n}(V)$ by

$$f = \sum_{\epsilon} f_{\epsilon} \otimes \theta_1^{\epsilon_1} \wedge \cdots \wedge \theta_n^{\epsilon_n} \mapsto \sum_{\epsilon} f_{\epsilon} \big|_{V} \otimes \theta_1^{\epsilon_1} \wedge \cdots \wedge \theta_n^{\epsilon_n}$$

by the usual restriction $C^{\infty}(U) \to C^{\infty}(V)$. Hence, $\mathcal{O}_{m|n}$ is a **sheaf** of supercommutative super algebras. The multiplication and the neutral element in $\mathcal{O}_{m|n}(U)$ are defined by

$$(f \otimes \theta_1^{\epsilon_1} \wedge \dots \wedge \theta_n^{\epsilon_n}) \cdot (g \otimes \theta_1^{\delta_1} \wedge \dots \wedge \theta_n^{\delta_n}) = (fg) \otimes \theta_1^{\epsilon_1} \wedge \dots \wedge \theta_n^{\epsilon_n} \wedge \theta_1^{\delta_1} \wedge \dots \wedge \theta_n^{\delta_n}$$

$$1 = \sum_{\epsilon} f_{\epsilon} \otimes \theta_1^{\epsilon_1} \wedge \dots \wedge \theta_n^{\epsilon_n}, \text{ with } f_{\epsilon} \left\{ \begin{array}{c} 1, \ \epsilon = (0, \dots, 0) \\ 0, \text{ otherwise} \end{array} \right\}$$

Remark 1.3. We obtain a homomorphism of algebras v_p by

$$v_p \colon \mathcal{O}_{m|n,p} \to \mathbb{R}, \quad v_p([f]_p) := f_{(0,\dots,0)}(p)$$

We can now assemble the above concepts to obtain the triple (\mathbb{R}^m , $\mathcal{O}_{m|n}$, v).

Theorem 1.4. $(\mathbb{R}^m, \mathcal{O}_{m|n}, v)$ is a locally ringed space.

Proof 1.5 (Bä05). p. 16.

Def. 1.6. Let $U \subset \mathbb{R}^m$ be a domain, i.e. open and connected. We call $(U, \mathcal{O}_{m|n}|_U)$ a **super domain** of dimension $m \mid n$. The cartesian coordinates x_1, \ldots, x_m of \mathbb{R}^m are called the **even coordinates**, the coordinates $\theta_1, \ldots, \theta_n$ are called the **odd coordinates**.

2 Super manifolds

Def. 2.1. Let (X, \mathcal{O}_X) be an arbitrary \mathbb{R} -super ringed space. A **super chart** of dim m | n of (X, \mathcal{O}_X) consists of open subsets $U \subset X$, $V \subset \mathbb{R}^m$ and an isomorphism of \mathbb{R} -super ringed spaces:

$$(\phi,\psi)\colon (U,\mathcal{O}_x\big|_U)\to (V,\mathcal{O}_{m|n}\big|_V)$$

Def. 2.2. A \mathbb{R} -super ringed space (X, \mathcal{O}_X) is a **super manifold** if

- 1. X is Hausdorff.
- 2. The topology \mathcal{T}_X of X possesses a countable basis.
- 3. Each point $p \in X$ is in the Domain of a super chart.

Def. 2.3. A morphism of super manifolds is a morphism of \mathbb{R} -ringed spaces.

Example 2.4. Let M be an m-dimensional smooth manifold. We find that (M, C_M^{∞}) is a super manifold of dimension $m \mid 0$, since we can construct a super chart from any chart $\phi \colon M \supset U \to V \supset \mathbb{R}^m$ of the manifold M, by chosing

$$\psi(f) = f \circ \phi = \phi^*(f)$$

and finally constructing

$$(\phi,\psi)\colon (U,C_U^\infty)\to (V,C_V^\infty)$$

which is an isomorphism of R-super ringed spaces and

$$C_V^{\infty}(V') = C^{\infty}(V') \otimes_{\mathbb{R}} \mathbb{R} = C^{\infty}(V') \otimes_{\mathbb{R}} \Lambda^* \mathbb{R}^0 = \mathcal{O}_{m|0}(V')$$

Theorem 2.5. Let (X, \mathcal{O}_X) be a super manifold. It holds:

- 1. *X* possesses exactly one differentiable structure such that for any super chart $(\phi, \psi) \colon (U, \mathcal{O}_x|_U) \to (V, \mathcal{O}_{m|n}|_V)$, the map $\phi \colon U \to V$ is a diffeomorphism.
- 2. There exists exactly one 1-preserving homomorphism

$$\beta \colon \mathcal{O}_X \to C_X^{\infty}$$

of sheaves of R-algebras.

3. Let $U \in \mathcal{T}_X$. We define $\mathcal{O}^1(U) := \{ f \in \mathcal{O}_X(U) | \text{f is nilpotent} \}$. Then we find that the sequence

$$0 \to \mathcal{O}^1(U) \hookrightarrow \mathcal{O}_X(U) \xrightarrow{\beta_U} C^{\infty}(U) \to 0$$

is exact, i.e. β is surjective and $\ker \beta_U = \mathcal{O}^1(U)$.

- 4. Let (Y, \mathcal{O}_Y) be another super manifold and $(\phi, \psi) \colon (X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ be a morphism of super manifolds. Then $\phi \colon X \to Y$ is smooth.
- 5. For any $V \in \mathcal{T}_Y$ the diagram

$$\begin{array}{c|c} \mathcal{O}_X(\phi^{-1}(V)) & \xrightarrow{\psi_V} & \mathcal{O}_Y(V) \\ \beta_{\phi^{-1}(V)} & & & & \beta_V \\ C^{\infty}(\phi^{-1}(V)) & \xrightarrow{\phi^*} & c^{\infty}(V) \end{array}$$

commutes.

Proof 2.6 (Bä05). p. 21.