Reconstruction of tensor categories from their invariants

Yinhuo Zhang (joint with Huixiang Chen)

University of Hasselt

Universität Hamburg, June 8, 2017
Overview

1 Introduction
 - Introduction to Representation Rings
 - Preliminaries and Notations

2 Construction of tensor categories from given data
 - Goal of construction
 - First assumptions
 - Constructing the Category

3 Invariants of tensor categories
Section 1

Introduction
Consider the finite dimensional representations of the Lie algebra $\mathfrak{sl}_2(\mathbb{C})$. The simple objects of this module category are irreducible representations V_m of dimension $m + 1$ for each $m \in \mathbb{N}$. The tensor product is determined by the Glebsch-Gordan formula:

$$V_n \otimes V_m = V_{n+m} \oplus V_{n+m-2} \oplus \cdots \oplus V_{n-m+2} \oplus V_{n-m}, \text{ for } n \geq m.$$

This module category is an abelian, Krull-Schmidt tensor category.

Definition (Representation Ring)

Let \mathcal{C} be an abelian, Krull-Schmidt tensor category. The Green ring or representation ring $r(\mathcal{C})$ of \mathcal{C} is the abelian group generated by the isomorphism classes $[V]$ of \mathcal{C} modulo the relations $[V \oplus W] = [M] + [V]$. The multiplication is given by the tensor product, i.e. $[V][W] = [V \otimes W]$.

Yinhuo Zhang (joint with Huixiang Chen) (University of Hasselt)
Consider the finite dimensional representations of the Lie algebra \(\mathfrak{sl}_2(\mathbb{C}) \). The simple objects of this module category are irreducible representations \(V_m \) of dimension \(m + 1 \) for each \(m \in \mathbb{N} \). The tensor product is determined by the Glebsch-Gordan formula:

\[
V_n \otimes V_m = V_{n+m} \oplus V_{n+m-2} \oplus \cdots \oplus V_{n-m+2} \oplus V_{n-m}, \quad \text{for} \; n \geq m.
\]

This module category is an abelian, Krull-Schmidt tensor category.

Definition (Representation Ring)

Let \(\mathcal{C} \) be an abelian, Krull-Schmidt tensor category. The Green ring or representation ring \(r(\mathcal{C}) \) of \(\mathcal{C} \) is the abelian group generated by the isomorphism classes \([V]\) of \(\mathcal{C} \) modulo the relations

\[
[V \oplus W] = [M] + [V].
\]

The multiplication is given by the tensor product, i.e. \([V][W] = [V \otimes W]\).
Consider again the representation category of $\mathfrak{sl}_2(\mathbb{C})$. It is easy to see that the representation ring is generated by $[V_m]$, the classes of simple objects. By the Glebsch-Gordan formula, $[V_n][V_m] = \sum_{k \in \mathbb{N}} c_{n,m,k}[V_k]$ with $c_{n,m,k} \in \mathbb{N}$.

Question

Which rings can arise as the representation ring of an abelian, Krull-Schmidt tensor category?

Example

Suppose that $\mathbb{Z}[i] = r(C)$ for some Krull-Schmidt tensor category C. Then C has (at least) two indecomposable objects. We assume that the unit object for the tensor product is simple, hence this object corresponds to $1 \in r(C)$. Let X denote the other indecomposable object. Then X corresponds to $a + bi \in r(C)$ with $b \neq 0$. Since $(a + bi)^2 = -(a^2 + b^2) \cdot 1 + 2ab \cdot (a + bi)$, $X \otimes X \cong -(a^2 + b^2)1 \oplus 2aX$, but this makes no sense. Hence $\mathbb{Z}[i]$ is not the representation ring of such a category. Notice that $\mathbb{Z}[i]$ is not a unital \mathbb{Z}_+-ring.
Consider again the representation category of $\mathfrak{sl}_2(\mathbb{C})$. It is easy to see that the representation ring is generated by $[V_m]$, the classes of simple objects. By the Glebsch-Gordan formula,

$$[V_n][V_m] = \sum_{k \in \mathbb{N}} c_{n,m,k}[V_k]$$

with $c_{n,m,k} \in \mathbb{N}$.

Question

Which rings can arise as the representation ring of an abelian, Krull-Schmidt tensor category?

Example

Suppose that $\mathbb{Z}[i] = r(C)$ for some Krull-Schmidt tensor category C. Then C has (at least) two indecomposable objects. We assume that the unit object for the tensor product is simple, hence this object corresponds to $1 \in r(C)$. Let X denote the other indecomposable object. Then X corresponds to $a + bi \in r(C)$ with $b \neq 0$. Since $(a + bi)^2 = -(a^2 + b^2) \cdot 1 + 2a \cdot (a + bi)$, $X \otimes X \cong -(a^2 + b^2)1 \oplus 2aX$, but this makes no sense. Hence $\mathbb{Z}[i]$ is not the representation ring of such a category. Notice that $\mathbb{Z}[i]$ is not a unital \mathbb{Z}_+-ring.
Consider again the representation category of $\mathfrak{sl}_2(\mathbb{C})$. It is easy to see that the representation ring is generated by $[V_m]$, the classes of simple objects. By the Glebsch-Gordan formula,

\[[V_n][V_m] = \sum_{k \in \mathbb{N}} c_{n,m,k}[V_k] \] with $c_{n,m,k} \in \mathbb{N}$.

Question

Which rings can arise as the representation ring of an abelian, Krull-Schmidt tensor category?

Example

Suppose that $\mathbb{Z}[i] = r(C)$ for some Krull-Schmidt tensor category C. Then C has (at least) two indecomposable objects. We assume that the unit object for the tensor product is simple, hence this object corresponds to $1 \in r(C)$. Let X denote the other indecomposable object. Then X corresponds to $a + bi \in r(C)$ with $b \neq 0$. Since $(a + bi)^2 = -(a^2 + b^2) \cdot 1 + 2a \cdot (a + bi)$, $X \otimes X \cong -(a^2 + b^2)1 \oplus 2aX$, but this makes no sense. Hence $\mathbb{Z}[i]$ is not the representation ring of such a category. Notice that $\mathbb{Z}[i]$ is not a unital \mathbb{Z}_+-ring.
A \(\mathbb{Z}_+ \)-basis of a ring free as a module over \(\mathbb{Z} \) is a \(\mathbb{Z} \)-basis \(B = \{r_i\}_{i \in I} \) such that for any \(i, j \in I \), \(r_i r_j = \sum_k c_{ijk} r_k \) with \(c_{ijk} \in \mathbb{N} \).

A \(\mathbb{Z}_+ \)-ring is a \(\mathbb{Z} \)-algebra with unit endowed with a \(\mathbb{Z}_+ \)-basis.

A \(\mathbb{Z}_+ \)-ring with a \(\mathbb{Z}_+ \)-basis \(B \) is unital if \(1 \in B \).

A \(\mathbb{Z}_+ \)-module over a \(\mathbb{Z}_+ \)-ring is a free \(\mathbb{Z} \)-module \(M \) endowed with a fixed basis \(\{m_j\}_{j \in J} \) such that \(r_i m_j = \sum_k d_{ijk} m_k \) with \(d_{ijk} \in \mathbb{N} \).
Let A be an F-algebra with a complete set of orthogonal primitive idempotents $\{e_i\}_{i \in I}$ satisfying $1 = \sum_i e_i$ and $|I| = n$.

For $m = (m_i)_{i \in I} \in \mathbb{N}^I$, let $|m| = \sum_{i \in I} m_i$.

For $m, s \in \mathbb{N}^I$, an (m, s)-type matrix X over A is a block matrix

$$X = \begin{pmatrix}
X_{11} & X_{12} & \ldots & X_{1n} \\
X_{21} & X_{22} & \ldots & X_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
X_{n1} & X_{n2} & \ldots & X_{nn}
\end{pmatrix}$$

with $X_{ij} \in M_{m_i \times s_j}(e_i A e_j)$. Notice that X is an $|m| \times |s|$-matrix over A.

Yinhuo Zhang (joint with Huixiang Chen) (University of Hasselt) Representation rings Universität Hamburg, June 8, 2017 7 / 32
Let A be an \mathbb{F}-algebra with a complete set of orthogonal primitive idempotents $\{e_i\}_{i \in I}$ satisfying $1 = \sum_{i} e_i$ and $|I| = n$.

For $m = (m_i)_{i \in I} \in \mathbb{N}^I$, let $|m| = \sum_{i \in I} m_i$.

For $m, s \in \mathbb{N}^I$, an (m, s)-type matrix X over A is a block matrix

$$X = \begin{pmatrix}
X_{11} & X_{12} & \ldots & X_{1n} \\
X_{21} & X_{22} & \ldots & X_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
X_{n1} & X_{n2} & \ldots & X_{nn}
\end{pmatrix}$$

with $X_{ij} \in M_{m_i \times s_j}(e_i A e_j)$. Notice that X is an $|m| \times |s|$-matrix over A.
Let A be an F-algebra with a complete set of orthogonal primitive idempotents $\{e_i\}_{i \in I}$ satisfying $1 = \sum_i e_i$ and $|I| = n$.

For $m = (m_i)_{i \in I} \in \mathbb{N}^I$, let $|m| = \sum_{i \in I} m_i$.

For $m, s \in \mathbb{N}^I$, an (m, s)-type matrix X over A is a block matrix

$$X = \begin{pmatrix} X_{11} & X_{12} & \cdots & X_{1n} \\ X_{21} & X_{22} & \cdots & X_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \cdots & X_{nn} \end{pmatrix}$$

with $X_{ij} \in M_{m_i \times s_j}(e_i A e_j)$. Notice that X is an $|m| \times |s|$-matrix over A.

Let $X \in M_{m \times s}(A)$ and $Y \in M_{m' \times s}(A)$. Then we define the horizontal sum of X and Y as

$$X \oplus Y := \begin{pmatrix}
X_{11} & X_{12} & \ldots & X_{1n} \\
Y_{11} & Y_{12} & \ldots & Y_{1n} \\
X_{21} & X_{22} & \ldots & X_{2n} \\
Y_{21} & Y_{22} & \ldots & Y_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
X_{n1} & X_{n2} & \ldots & X_{nn} \\
Y_{n1} & Y_{n2} & \ldots & Y_{nn}
\end{pmatrix}.$$

Similarly, we define the vertical sum of X and Y:

$$X \oplus Y := \begin{pmatrix}
X_{11} & Y_{11} & X_{12} & Y_{12} & \ldots & X_{1n} & Y_{1n} \\
X_{21} & Y_{21} & X_{22} & Y_{22} & \ldots & X_{2n} & Y_{2n} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
X_{n1} & Y_{n1} & X_{n2} & Y_{n2} & \ldots & X_{nn} & Y_{nn}
\end{pmatrix}.$$
Preliminaries and Notations

Let $X \in M_{m \times s}(A)$ and $Y \in M_{m' \times s}(A)$. Then we define the horizontal sum of X and Y as

$$X \oplus Y := \begin{pmatrix}
X_{11} & X_{12} & \ldots & X_{1n} \\
Y_{11} & Y_{12} & \ldots & Y_{1n} \\
X_{21} & X_{22} & \ldots & X_{2n} \\
Y_{21} & Y_{22} & \ldots & Y_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
X_{n1} & X_{n2} & \ldots & X_{nn} \\
Y_{n1} & Y_{n2} & \ldots & Y_{nn}
\end{pmatrix}.$$

Similarly, we define the vertical sum of X and Y:

$$X \boxplus Y := \begin{pmatrix}
X_{11} & Y_{11} & X_{12} & Y_{12} & \ldots & X_{1n} & Y_{1n} \\
X_{21} & Y_{21} & X_{22} & Y_{22} & \ldots & X_{2n} & Y_{2n} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
X_{n1} & Y_{n1} & X_{n2} & Y_{n2} & \ldots & X_{nn} & Y_{nn}
\end{pmatrix}.$$
Let $m_1, m_2, \ldots, m_r, s_1, s_2, \ldots, s_l \in \mathbb{N}$. For a matrix

$$X = \begin{pmatrix}
X_{11} & X_{12} & \cdots & X_{1l} \\
X_{21} & X_{22} & \cdots & X_{2l} \\
\vdots & \vdots & \ddots & \vdots \\
X_{r1} & X_{r2} & \cdots & X_{rl}
\end{pmatrix}$$

over A with $X_{ij} \in M_{m_i \times s_j}(A)$, define a matrix $\prod(X)$ over A by

$$\prod(X) := (X_{11} \oplus X_{12} \oplus \cdots \oplus X_{1l}) \oplus \cdots \oplus (X_{r1} \oplus X_{r2} \oplus \cdots \oplus X_{rl}).$$

Then $\prod(X) \in M_{m \times s}(A)$ with $m = \sum_{i=1}^r m_i$ and $s = \sum_{j=1}^l s_j$.
Let A and B be two \mathbb{F}-algebras. Let

$$X = \begin{pmatrix} x_{11} & x_{12} & \ldots & x_{1s} \\ x_{21} & x_{22} & \ldots & x_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \ldots & x_{ms} \end{pmatrix}$$

and

$$Y = \begin{pmatrix} y_{11} & y_{12} & \ldots & y_{1s'} \\ y_{21} & y_{22} & \ldots & y_{2s'} \\ \vdots & \vdots & \ddots & \vdots \\ y_{m'1} & y_{m'2} & \ldots & y_{m's'} \end{pmatrix}$$

be an $m \times s$-matrix over A and an $m' \times s'$-matrix over B respectively. Then we define an $mm' \times ss'$-matrix $X \otimes_{\mathbb{F}} Y$ over $A \otimes_{\mathbb{F}} B$ by

$$X \otimes_{\mathbb{F}} Y = \begin{pmatrix} x_{11} \otimes y_{11} & \ldots & x_{1s} \otimes y_{11} & \ldots & x_{11} \otimes y_{1s'} & \ldots & x_{1s} \otimes y_{1s'} \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{m1} \otimes y_{11} & \ldots & x_{ms} \otimes y_{11} & \ldots & x_{m1} \otimes y_{1s'} & \ldots & x_{ms} \otimes y_{1s'} \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{11} \otimes y_{m'1} & \ldots & x_{1s} \otimes y_{m'1} & \ldots & x_{11} \otimes y_{m's'} & \ldots & x_{1s} \otimes y_{m's'} \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ x_{m1} \otimes y_{m'1} & \ldots & x_{ms} \otimes y_{m'1} & \ldots & x_{m1} \otimes y_{m's'} & \ldots & x_{ms} \otimes y_{m's'} \end{pmatrix}$$
Lemma

Let $X \in M_{m \times s}(A)$, $X_1 \in M_{s \times t}(A)$ and $Y \in M_{m' \times s'}(A)$, $Y_1 \in M_{s' \times t'}(B)$. Then

$$(X \otimes Y)(X_1 \otimes Y_1) = (XX_1) \otimes (YY_1).$$

Definition

- An (m, s)-type matrix X is called column-independent if for any (s, l)-type matrix Y, $XY = 0 \Rightarrow Y = 0$.
- Similarly, we define row-independent.
- An (s, t)-type matrix Y is a right universal annihilator of X if $XY = 0$ and $XM = 0 \Rightarrow M = YZ$ for a unique Z.
- Similarly, we define left universal annihilators.
Section 2

Construction of tensor categories from given data
Goal of the construction

We will construct an abelian, Krull-Schmidt tensor category C from the data

$$(R, A, I, \{e_i \mid i \in I\}, \phi, \{a_{ijl} \mid i, j, l \in I\})$$

s.t.

- $R = r(C)$.
- A is the Auslander algebra of C.

We will give a workable criterion when two such categories are tensor equivalent.
Goal of the construction

- We will construct an abelian, Krull-Schmidt tensor category C from the data

$$ (R, A, I, \{e_i \mid i \in I\}, \phi, \{a_{ijl} \mid i, j, l \in I\}) $$

s.t.

- $R = r(C)$.
- A is the Auslander algebra of C.

- We will give a workable criterion when two such categories are tensor equivalent.
First assumptions

- \(R \) is a unital \(\mathbb{Z}_+ \)-ring with finite unital basis \(\{r_i\}_{i \in I} \) with \(I = \{1, 2, \ldots, n\} \) and \(r_1 = 1 \) and \(r_i r_j \neq 0 \).

- \(A \) is a finite dimensional \(\mathbb{F} \)-algebra with a complete set of orthogonal primitive idempotents \(\{e_i\}_{i \in I} \).

- \(\mathbb{F} \) is algebraically closed.

- (KS) \(e_i A e_j A e_i \subset \text{rad}(e_i A e_i) \) for \(i \neq j \).

- (Dec) Any \((m, s) \)-type matrix can be written as the product of CI and RI matrices.

- (RUA) Any matrix has right universal annihilator.

- (LUA) Any matrix has left universal annihilator.

- (CI) If \(X \) is CI and \(Y \) a LUA of \(X \), then \(X \) is RUA of \(Y \).

- (RI) If \(X \) is RI and \(Y \) a RUA of \(X \), then \(Y \) is LUA of \(X \).
First assumptions

- R is a unital $\mathbb{Z}_+\text{-ring}$ with finite unital basis $\{r_i\}_{i \in I}$ with $I = \{1, 2, \ldots, n\}$ and $r_1 = 1$ and $r_i r_j \neq 0$.
- A is a finite dimensional \mathbb{F}-algebra with a complete set of orthogonal primitive idempotents $\{e_i\}_{i \in I}$.
- \mathbb{F} is algebraically closed.
- (KS) $e_i A e_j A e_i \subset \text{rad}(e_i A e_i)$ for $i \neq j$.
- (Dec) Any (m, s)-type matrix can be written as the product of CI and RI matrices.
- (RUA) Any matrix has right universal annihilator.
- (LUA) Any matrix has left universal annihilator.
- (CI) If X is CI and Y a LUA of X, then X is RUA of Y.
- (RI) If X is RI and Y a RUA of X, then Y is LUA of X.

Yinhuo Zhang (joint with Huixiang Chen) (University of Hasselt)
First assumptions

- R is a unital \mathbb{Z}_+-ring with finite unital basis $\{r_i\}_{i \in I}$ with $I = \{1, 2, \ldots, n\}$ and $r_1 = 1$ and $r_i r_j \neq 0$.
- A is a finite dimensional \mathbb{F}-algebra with a complete set of orthogonal primitive idempotents $\{e_i\}_{i \in I}$.
- \mathbb{F} is algebraically closed.
- (KS) $e_i A e_j A e_i \subset \text{rad}(e_i A e_i)$ for $i \neq j$.
- (Dec) Any (m, s)-type matrix can be written as the product of CI and RI matrices.
- (RUA) Any matrix has right universal annihilator.
- (LUA) Any matrix has left universal annihilator.
- (CI) If X is CI and Y a LUA of X, then X is RUA of Y.
- (RI) If X is RI and Y a RUA of X, then Y is LUA of X.
We define a category C by

1. $\text{Obj}(C) := \mathbb{N}^I$;
2. $\text{Hom}_C(m, s) := M_{s \times m}(A)$;
3. Composition is usual matrix product.

Lemma

- Let $m, s \in \text{Obj}(C)$, then $m + s \cong m \oplus s$.
- Moreover, C is an additive category over \mathbb{F}.
- $m \cong s$ if and only if $m = s$.
Construction of Category

Definition

We define a category \(C \) by

1. \(\text{Obj}(C) := \mathbb{N}^I; \)
2. \(\text{Hom}_C(m, s) := M_{s \times m}(A); \)
3. Composition is usual matrix product.

Lemma

- Let \(m, s \in \text{Obj}(C) \), then \(m + s \cong m \oplus s. \)
- Moreover, \(C \) is an additive category over \(\mathbb{F}. \)
- \(m \cong s \) if and only if \(m = s. \)
Definition

Define $e_i := (0, \ldots, 0, 1, 0 \ldots, 0)$. Then for any $m \in \text{Obj}(C)$, we have

$$m \cong \bigoplus_{i \in I} m_i e_i.$$

Moreover, the e_i’s are all non-isomorphic indecomposable objects.

Proposition

C is an abelian Krull-Schmidt category over \mathbb{F}.

Corollary

The following are equivalent:

1. C is a semisimple category over \mathbb{F};
2. $\dim_{\mathbb{F}}(A) = n$;
3. $A \cong \mathbb{F}^n$ as \mathbb{F}-algebras.
Definition

Define \(e_i := (0, \ldots, 0, 1, 0 \ldots, 0) \). Then for any \(m \in \text{Obj}(C) \), we have

\[
m \cong \bigoplus_{i \in I} m_i e_i.
\]

Moreover, the \(e_i \)'s are all non-isomorphic indecomposable objects.

Proposition

\(C \) is an abelian Krull-Schmidt category over \(\mathbb{F} \).

Corollary

The following are equivalent:

1. \(C \) is a semisimple category over \(\mathbb{F} \);
2. \(\text{dim}_\mathbb{F}(A) = n \);
3. \(A \cong \mathbb{F}^n \) as \(\mathbb{F} \)-algebras.
Definition

Define $e_i := (0, \ldots, 0, 1, 0 \ldots, 0)$. Then for any $m \in \text{Obj}(C)$, we have

$$m \cong \bigoplus_{i \in I} m_i e_i.$$

Moreover, the e_i’s are all non-isomorphic indecomposable objects.

Proposition

C is an abelian Krull-Schmidt category over \mathbb{F}.

Corollary

The following are equivalent:

1. C is a semisimple category over \mathbb{F};
2. $\dim_{\mathbb{F}}(A) = n$;
3. $A \cong \mathbb{F}^n$ as \mathbb{F}-algebras.
Constructing the Tensor Product

Definition

- Put $c_{ij} = (c_{ij1}, \ldots, c_{ijn})$ with $r_ir_j = \sum_{k=1}^n c_{ijk}r_k$.
- We define $m \otimes s := \sum_{i,j} m_isjc_{ij}$.
- Define an \mathbb{F}-algebra $M(R, A, I) := \bigoplus_{1 \leq i, i', j, j' \leq n} M_{c_{i'i'j'j}} \times c_{ij}(A)$.
- If $X \in M_{c_{i'i'j'j}} \times c_{ij}$, $Y \in M_{c_{i'i'j'j}} \times c_{i'j1}$, then XY is the usual matrix product if $(i, j) = (i'', j'')$ and zero otherwise.

Assumption

Assume that $\dim(e_1 Ae_1) = 1$ and $\exists \phi : A \otimes A \to M(R, A, I)$ s.t.

1. $\phi(e_1 \otimes e_j) = E_{c_{ij}} \in M_{c_{ij}}(A)$;
2. $\phi(e_1 \otimes a) = a = \phi(a \otimes e_1)$ for all $a \in e_1 Ae_j$.
Constructing the Tensor Product

Definition

- Put $c_{ij} = (c_{ij1}, \ldots, c_{ijn})$ with $r_ir_j = \sum_{k=1}^n c_{ijk}r_k$.
- We define $m \otimes s := \sum_{i,j} m_isjc_{ij}$.
- Define an \mathbb{F}-algebra $M(R, A, I) := \bigoplus_{1 \leq i,i',j,j' \leq n} M_{c_{i'j'}} \times c_{ij}(A)$.
- If $X \in M_{c_{i'j'}} \times c_{ij}$, $Y \in M_{c_{i''j''}} \times c_{i_1j_1}$, then XY is the usual matrix product if $(i, j) = (i'', j'')$ and zero otherwise.

Assumption

Assume that $\dim(e_1Ae_1) = 1$ and $\exists \phi : A \otimes A \to M(R, A, I)$ s.t.

1. $\phi(e_1 \otimes e_j) = E_{c_{ij}} \in M_{c_{ij}}(A)$;
2. $\phi(e_1 \otimes a) = a = \phi(a \otimes e_1)$ for all $a \in e_iAe_j$.
Constructing the Tensor Product

Definition

- Put $c_{ij} = (c_{ij1}, \ldots, c_{ijn})$ with $r_ir_j = \sum_{k=1}^n c_{ijk}r_k$.
- We define $m \otimes s := \sum_{i,j} m_isjc_{ij}$.
- Define an \mathbb{F}-algebra $M(R, A, I) := \bigoplus_{1 \leq i, i', j, j' \leq n} M_{c_{i'j'}} \times_{c_{ij}} (A)$.
- If $X \in M_{c_{i'j'}} \times_{c_{ij}} Y \in M_{c_{i''j''}} \times_{c_{i'j_1j_1}}$, then XY is the usual matrix product if $(i, j) = (i'', j'')$ and zero otherwise.

Assumption

Assume that $\dim(e_1Ae_1) = 1$ and $\exists \phi : A \otimes A \to M(R, A, I)$ s.t.

1. $\phi(e_1 \otimes e_j) = E_{c_{ij}} \in M_{c_{ij}}(A)$;
2. $\phi(e_1 \otimes a) = a = \phi(a \otimes e_1)$ for all $a \in e_iAe_j$.
Constructing the Tensor Product

Definition

- Put \(c_{ij} = (c_{ij1}, \ldots, c_{ijn}) \) with \(r_ir_j = \sum_{k=1}^n c_{ijk}r_k \).
- We define \(m \otimes s := \sum_{i,j} m_isjc_{ij} \).
- Define an \(\mathbb{F} \)-algebra \(M(R, A, I) := \bigoplus_{1 \leq i,i',j,j' \leq n} Mc_{i',j'} \times c_{ij}(A) \).
- If \(X \in Mc_{i',j'} \times c_{ij}, Y \in Mc_{i''j''} \times c_{i'j'1} \), then \(XY \) is the usual matrix product if \((i,j) = (i'',j'') \) and zero otherwise.

Assumption

Assume that \(\dim(e_1Ae_1) = 1 \) and \(\exists \phi : A \otimes A \rightarrow M(R, A, I) \) s.t.

1. \(\phi(e_1 \otimes e_j) = E_{c_{ij}} \in Mc_{ij}(A) \);
2. \(\phi(e_1 \otimes a) = a = \phi(a \otimes e_1) \) for all \(a \in e_iAe_j \).
Constructing the Tensor Product

Definition

Let $X \in \text{Hom}_C(m_1, s_1)$, $Y \in \text{Hom}_C(m_2, s_2)$. We define $X \otimes Y$ over A by

- if $m_1 \otimes m_2 = 0$ and $s_1 \otimes s_2 = 0$, then $X \otimes Y := 0 \in M_{1 \times 1}(A)$;
- if $m_1 \otimes m_2 = 0$ and $s_1 \otimes s_2 \neq 0$, then $X \otimes Y := 0 \in M_{|s_1 \otimes s_2| \times 1}(A)$;
- if $m_1 \otimes m_2 \neq 0$ and $s_1 \otimes s_2 = 0$, then $X \otimes Y := 0 \in M_{1 \times |m_1 \otimes m_2|}(A)$;
- if $m_1 \otimes m_2 \neq 0$ and $s_1 \otimes s_2 \neq 0$, then $X \otimes Y := \prod(\phi(X \otimes_F Y))$.

Lemma

$X \otimes Y \in \text{Hom}_C(m_1 \otimes m_2, s_1 \otimes s_2)$. Moreover

1. $E_m \otimes E_s = E_{m \otimes s}$;
2. $E_{e_1} \otimes X = X = X \otimes E_{e_1}$.

Finally, $(X \otimes Y)(X_1 \otimes Y_1) = (XX_1 \otimes YY_1)$.
Constructing the Tensor Product

Definition

Let $X \in \text{Hom}_C(m_1, s_1)$, $Y \in \text{Hom}_C(m_2, s_2)$. We define $X \otimes Y$ over A by

- if $m_1 \otimes m_2 = 0$ and $s_1 \otimes s_2 = 0$, then $X \otimes Y := 0 \in M_{1 \times 1}(A)$;
- if $m_1 \otimes m_2 = 0$ and $s_1 \otimes s_2 \neq 0$, then $X \otimes Y := 0 \in M_{|s_1 \otimes s_2| \times 1}(A)$;
- if $m_1 \otimes m_2 \neq 0$ and $s_1 \otimes s_2 = 0$, then $X \otimes Y := 0 \in M_{1 \times \|m_1 \otimes m_2\|}(A)$;
- if $m_1 \otimes m_2 \neq 0$ and $s_1 \otimes s_2 \neq 0$, then $X \otimes Y := \prod(\phi(X \otimes_F Y))$.

Lemma

$X \otimes Y \in \text{Hom}_C(m_1 \otimes m_2, s_1 \otimes s_2)$. Moreover

1. $E_m \otimes E_s = E_{m \otimes s}$;
2. $E_{e_1} \otimes X = X = X \otimes E_{e_1}$.

Finally, $(X \otimes Y)(X_1 \otimes Y_1) = (XX_1 \otimes YY_1)$.
The Associativity Constraint

Definition

Set $Y_{i,k}^m = (y_1, \ldots, y_{|m|}) \in M_{e_i \times m(A)}$, where

$$y_j = \begin{cases} e_i, & j = k + \sum_{1 \leq l < i} m_l \\ 0, & \text{otherwise.} \end{cases}$$

Put $X_{i,k}^m = (Y_{i,k}^m)^T$. Then $Y_{i,k}^m X_{i',k'}^m = E_{e_i}$ if $(i,k) = (i',k')$ and zero otherwise, and

$$\sum_{i=1}^{n} \sum_{1 \leq k \leq m_i} X_{i,k}^m Y_{i,k}^m = E_m.$$
Assumptions on Associativity Constraint

Assumptions

There exists a family of matrices $a_{ijl} \in M_{e_i \otimes e_j \otimes e_l}(A)$ s.t.

1. a_{ijl} is invertible;
2. $(x \otimes (y \otimes z))a_{ijl} = a_{i'j'l'}((x \otimes y) \otimes z)$ for $x \in e_{i'} A e_i$, $y \in e_{j'} A e_j$, $z \in e_{l'} A e_l$;
3. $a_{i1j} = E_{c_{ij}}$;
4. \[
\sum_{j=1}^{n} \sum_{k=1}^{c_{i2i3,j}} (e_{i1} \otimes a_{i2i3i4}(X_{jk}^{c_{i2i3}} \otimes e_{k4}))a_{i1ji4}((e_{i1} \otimes Y^{c_{i2i3}})a_{i1i2i3} \otimes e_{i4}) = \\
\sum_{j,j'=1}^{n} \sum_{k=1}^{c_{i3i4,j}} \sum_{k'=1}^{c_{i1i2,j'}} (e_{i1} \otimes (e_{i2} \otimes X_{jk}^{c_{i3i4}}))a_{i1i2j}(X_{j'k'}^{c_{i1i2}} \otimes Y_{jk}^{c_{i3i4}})
\cdot a_{j'i3i4}((Y_{j'k'}^{c_{i1i2}} \otimes e_{i3}) \otimes e_{i4}).
\]
C is monoidal

Theorem

$(C, \otimes, e_1, a, l = ld, r = ld)$ is a tensor category over \mathbb{F}, $r(C) \cong R$ and $\text{End}_C(\bigoplus_{i=1}^n e_i) \cong A$ as \mathbb{F}-algebras.

Remark

In general e_1 is not simple, but TFAE:

- e_1 is a simple object of C;
- If $X \in M_{e_1 \times m}(A)$ is CI, then either $m = 0$ and $X = 0$, or $m = e_1$ and $X = \alpha e_1$ for some $\alpha \in \mathbb{F}_0$.
Theorem

\((C, \otimes, e_1, a, l = \text{Id}, r = \text{Id})\) is a tensor category over \(\mathbb{F}\), \(r(C) \cong R\) and \(\text{End}_C(\bigoplus_{i=1}^n e_i) \cong A\) as \(\mathbb{F}\)-algebras.

Remark

In general \(e_1\) is not simple, but TFAE:

- \(e_1\) is a simple object of \(C\);
- If \(X \in M_{e_1 \times m}(A)\) is CI, then either \(m = 0\) and \(X = 0\), or \(m = e_1\) and \(X = \alpha e_1\) for some \(\alpha \in \mathbb{F}_0\).
Other associativity constraints

Definition

\(\{ a_{ijl} \} \) and \(\{ a'_{i'j'l'} \} \) are called equivalent if there exists a family of invertible matrices \(\eta_{i,j} \in M_{c_{ij}}(A) \) s.t.

1. \((x \otimes y) \eta_{i,j} = \eta_{i',j'}(x \otimes y)\);

2.

\[
\sum_{t=1}^{n} \sum_{k=1}^{c_{ijt}} a_{ijl} (X_{tk}^{c_{ij}} \otimes e_l) \eta(t, l)(Y_{tk}^{c_{ij}} \eta(i, j) \otimes e_l) \\
= \sum_{t=1}^{n} \sum_{k=1}^{c_{jlt}} (e_i \otimes X_{tk}^{c_{jl}}) \eta(i, t)(e_i \otimes Y_{tk}^{c_{jl}} \eta(j, l) a'_{ijl}).
\]

Proposition

\((C, \otimes, e_1, a, l, r)\) and \((C, \otimes, e_1, a', l, r)\) are equivalent if \(\{ a_{ijl} \} \) and \(\{ a'_{ijl} \} \) are equivalent.
Other associativity constraints

Definition

\{ a_{ijl} \} and \{ a'_{ij'l'} \} are called equivalent if there exists a family of invertible matrices \(\eta_{ij} \in M_{c_{ij}}(A) \) s.t.

1. \((x \otimes y)\eta_{ij} = \eta_{ij'}(x \otimes y)\);

2.
\[
\sum_{t=1}^{n} \sum_{k=1}^{c_{ijt}} a_{ijl}(X_{tk}^{c_{ij}} \otimes e_l) \eta(t, l)(Y_{tk}^{c_{ij}} \eta(i, j) \otimes e_l) = \sum_{t=1}^{n} \sum_{k=1}^{c_{jlt}} (e_i \otimes X_{tk}^{c_{jl}}) \eta(i, t)(e_i \otimes Y_{tk}^{c_{jl}} \eta(j, l)a'_{ijl}).
\]

Proposition

\((C, \otimes, e_1, a, l, r)\) and \((C, \otimes, e_1, a', l, r)\) are equivalent if \(\{ a_{ijl} \} \) and \(\{ a'_{ij'l'} \} \) are equivalent.
Uniqueness

Theorem

\((C, \otimes, e_1, a, l, r)\) and \((C', \otimes_{C'}, e'_1, a', l', r')\) are tensor equivalent if and only if \(n = n'\) \((l = l')\) and there exists a \(\sigma \in S(l)\) such that:

1. \(R \to R' : r_i \mapsto r'_i\) is a ring isomorphism;
2. there exists a \(\mathbb{F}\)-algebra map \(\delta : A \to A'\) with \(\delta(e_i) = e'_{\sigma(i)}\);
3. there exists an \(\alpha \in \mathbb{F}_0\) and a family of invertible elements \(\phi_{i,j} \in M_{c'_{\sigma(i)\sigma(j)}}(A')\) s.t.
 1. \(\phi_{1,i} = \phi_{i,1} = \alpha E'_{e_i\sigma}\);
 2. \(\phi_{i',j'}(\delta(x) \otimes C' \delta(y)) = P_{\sigma(c'_{i'j'})} \delta(x \otimes C y) P_{\sigma(c_{ij})}^T \phi_{i,j}\);
 3.
 \[
 \sum_{t=1}^n \sum_{k=1}^{c_{ijt}} \delta(a_{i,j,l}) \delta(X_{t,k}^c \otimes C e_l) P_{\sigma(c_{itl})}^T \phi_{t,l}(Y_{\sigma(t),k}^c e_{ij}^c) \phi_{i,j} \otimes C' e'_{\sigma(l)} = \\
 \sum_{t=1}^n \sum_{k=1}^{c_{ijt}} \delta(e_i \otimes C X_{t,k}^c) P_{\sigma(c_{it})}^T \phi_{i,t}(e'_{\sigma(i)} \otimes C' Y_{\sigma(t),k}^c \phi_{j,l}) a_{\sigma(i),\sigma(j),\sigma(l')}
 \]
 for all \(x \in e'_i Ae_i, y \in e'_j Ae_j\).
Section 3

Invariants of tensor categories
Invariants of tensor categories

Let \mathcal{C}

- be an abelian, Krull-Schmidt tensor category over \mathbb{F};
- have finitely many indecomposable objects;
- have finite-dimensional Hom-spaces;
- be strict and the unit object $\mathbf{1}$ be simple.

Let $\{V_i \mid i \in I\}$ be a set of representatives of the isomorphism classes of the indecomposable objects of \mathcal{C} ($\mathbf{1} = V_1$). We also assume that $U \otimes V \neq 0$ for all nonzero objects.

Goal of the section

We will associate data $(r(\mathcal{C}), A(\mathcal{C}), I, \{e_i \mid i \in I\}, \phi_\mathcal{C}, \{a_{ijl} \mid i, j, l \in I\})$ to \mathcal{C}. By the previous section we can then construct a category $\hat{\mathcal{C}}$. We will show that $\hat{\mathcal{C}}$ is tensor equivalent to \mathcal{C}.

Definition

Let $V = \bigoplus_{i \in I} V_i$ and $A(\mathcal{C}) = \text{End}_\mathcal{C}(V) = \text{Hom}_\mathcal{C}(V, V)$. Then $A(\mathcal{C})$ is a finite-dimensional \mathbb{F}-algebra. Let $\pi_i : V \rightarrow V_i$ and $\tau_i : V_i \rightarrow V$ be the canonical projections and injections. Then $\text{Id}_V = \sum_{i \in I} \tau_i \circ \pi_i$ and

\[
\pi_i \circ \tau_j = \begin{cases}
\text{Id}_{V_i}, & \text{if } i = j, \\
0, & \text{else}.
\end{cases}
\]

Let $e_i = \tau_i \circ \pi_i \in A(\mathcal{C})$.

Yinhuo Zhang (joint with Huixiang Chen) (University of Hasselt)
Invariants of tensor categories

Let \(C \)

- be an abelian, Krull-Schmidt tensor category over \(\mathbb{F} \);
- have finitely many indecomposable objects;
- have finite-dimensional Hom-spaces;
- be strict and the unit object \(1 \) be simple.

Let \(\{ V_i \mid i \in I \} \) be a set of representatives of the isomorphism classes of the indecomposable objects of \(C \) (\(1 = V_1 \)). We also assume that \(U \otimes V \neq 0 \) for all nonzero objects.

Goal of the section

We will associate data \((r(C), A(C), I, \{ e_i \mid i \in I \}, \phi_C, \{ a_{ijl} \mid i, j, l \in I \})\) to \(C \). By the previous section we can then construct a category \(\hat{C} \). We will show that \(\hat{C} \) is tensor equivalent to \(C \).

Definition

Let \(V = \bigoplus_{i \in I} V_i \) and \(A(C) = \text{End}_C(V) = \text{Hom}_C(V, V) \). Then \(A(C) \) is a finite-dimensional \(\mathbb{F} \)-algebra. Let \(\pi_i : V \to V_i \) and \(\tau_i : V_i \to V \) be the canonical projections and injections. Then

\[
\pi_i \circ \tau_j = \begin{cases}
ld_{V_i}, & \text{if } i = j, \\
0, & \text{else}.
\end{cases}
\]

Let \(e_i = \tau_i \circ \pi_i \in A(C) \).
Invariants of tensor categories

Let \(\mathcal{C} \)
- be an abelian, Krull-Schmidt tensor category over \(\mathbb{F} \);
- have finitely many indecomposable objects;
- have finite-dimensional Hom-spaces;
- be strict and the unit object \(1 \) be simple.

Let \(\{ V_i \mid i \in I \} \) be a set of representatives of the isomorphism classes of the indecomposable objects of \(\mathcal{C} \) (\(1 = V_1 \)). We also assume that \(U \otimes V \neq 0 \) for all nonzero objects.

Goal of the section

We will associate data \((r(\mathcal{C}), A(\mathcal{C}), I, \{e_i \mid i \in I \}, \phi_\mathcal{C}, \{a_{ijl} \mid i, j, l \in I \})\) to \(\mathcal{C} \). By the previous section we can then construct a category \(\hat{\mathcal{C}} \). We will show that \(\hat{\mathcal{C}} \) is tensor equivalent to \(\mathcal{C} \).

Definition

Let \(V = \bigoplus_{i \in I} V_i \) and \(A(\mathcal{C}) = \text{End}_\mathcal{C}(V) = \text{Hom}_\mathcal{C}(V, V) \). Then \(A(\mathcal{C}) \) is a finite-dimensional \(\mathbb{F} \)-algebra. Let \(\pi_i : V \to V_i \) and \(\tau_i : V_i \to V \) be the canonical projections and injections. Then
\[
\text{Id}_V = \sum_{i \in I} \tau_i \circ \pi_i
\]
and
\[
\pi_i \circ \tau_j = \begin{cases}
\text{Id}_{V_i}, & \text{if } i = j, \\
0, & \text{else.}
\end{cases}
\]
Let \(e_i = \tau_i \circ \pi_i \in A(\mathcal{C}) \).
Invariants of tensor categories

Let \mathcal{C}
- be an abelian, Krull-Schmidt tensor category over \mathbb{F};
- have finitely many indecomposable objects;
- have finite-dimensional Hom-spaces;
- be strict and the unit object $\mathbf{1}$ be simple.

Let $\{V_i \mid i \in I\}$ be a set of representatives of the isomorphism classes of the indecomposable objects of \mathcal{C} ($1 = V_1$). We also assume that $U \otimes V \neq 0$ for all nonzero objects.

Goal of the section

We will associate data $(r(\mathcal{C}), A(\mathcal{C}), I, \{e_i \mid i \in I\}, \phi_C, \{a_{ijl} \mid i, j, l \in I\})$ to \mathcal{C}. By the previous section we can then construct a category $\hat{\mathcal{C}}$. We will show that $\hat{\mathcal{C}}$ is tensor equivalent to \mathcal{C}.

Definition

Let $V = \bigoplus_{i \in I} V_i$ and $A(\mathcal{C}) = \text{End}_\mathcal{C}(V) = \text{Hom}_\mathcal{C}(V, V)$. Then $A(\mathcal{C})$ is a finite-dimensional \mathbb{F}-algebra. Let $\pi_i : V \to V_i$ and $\tau_i : V_i \to V$ be the canonical projections and injections. Then $\text{Id}_V = \sum_{i \in I} \tau_i \circ \pi_i$ and

$$\pi_i \circ \tau_j = \begin{cases} \text{Id}_{V_i}, & \text{if } i = j, \\ 0, & \text{else}. \end{cases}$$

Let $e_i = \tau_i \circ \pi_i \in A(\mathcal{C})$.
The conditions are satisfied

Proposition

The set \(\{ e_i \mid i \in I \} \) forms a complete set of orthogonal primitive idempotents of \(A(C) \). Moreover, for all \(i \neq j \), \(e_i A(C) e_j A(C) e_i \subset \text{rad}(e_i A(C) e_i) \). Hence if \(f \in \text{Hom}(V_i, V_j) \), \(g \in \text{Hom}(V_j, V_i) \), then \(gf \in \text{End}(V_i) \).

Proposition

Let \(X \) be an \((m, s) \)-matrix over \(A(C) \), then

1. \(X \) has a right universal annihilator.
2. \(X \) has a left universal annihilator.
3. There is a CI \((m, t) \)-matrix \(X_1 \) and a RI \((t, s) \)-matrix \(X_2 \) s.t. \(X = X_1 X_2 \).
4. If \(X \) is CI and \(Y \) is a LUA of \(X \), then \(X \) is a RUA of \(Y \).
5. If \(X \) is RI and \(Y \) is a RUA of \(X \), then \(X \) is a LUA of \(Y \).
The conditions are satisfied

Proposition

The set \(\{ e_i \mid i \in I \} \) forms a complete set of orthogonal primitive idempotents of \(A(\mathcal{C}) \). Moreover, for all \(i \neq j \), \(e_i A(\mathcal{C}) e_j A(\mathcal{C}) e_i \subseteq \text{rad}(e_i A(\mathcal{C}) e_i) \). Hence if \(f \in \text{Hom}(V_i, V_j) \), \(g \in \text{Hom}(V_j, V_i) \), then \(gf \in \text{End}(V_i) \).

Proposition

Let \(X \) be an \((m, s)\)-matrix over \(A(\mathcal{C}) \), then

1. \(X \) has a right universal annihilator.
2. \(X \) has a left universal annihilator.
3. There is a CI \((m, t)\)-matrix \(X_1 \) and a RI \((t, s)\)-matrix \(X_2 \) s.t. \(X = X_1 X_2 \).
4. If \(X \) is CI and \(Y \) is a LUA of \(X \), then \(X \) is a RUA of \(Y \).
5. If \(X \) is RI and \(Y \) is a RUA of \(X \), then \(X \) is a LUA of \(Y \).
The tensor product

Definition

We write

\[[V_i][V_j] = \sum_{k \in I} c_{ijk} [V_k] \] in \(r(C) \). Let \(c_{ij} := (c_{ijk})_{k \in I} \in \mathbb{N}^I \). Define a vector space \(M(C) \) by

\[
M(C) := \bigoplus_{i,i',j,j' \in I} M_{c_{i'j'} c_{ij}}(A(C)).
\]

Then \(M(C) \) is an \(\mathbb{F} \)-algebra as before.

Proposition

There exists an algebra map \(\phi_C : A(C) \otimes_{\mathbb{F}} A(C) \to M(C) \) s.t.

1. \(\phi_C(e_i \otimes e_j) = E_{c_{ij}} \in M_{c_{ij}}(A(C)) \);
2. \(\phi_C(e_1 \otimes a) = \phi_C(a \otimes e_1) = a \) for all \(a \in e_i A(C) e_j \).
The tensor product

Definition

We write \([V_i][V_j] = \sum_{k \in I} c_{ijk}[V_k]\) in \(r(C)\). Let \(c_{ij} := (c_{ijk})_{k \in I} \in \mathbb{N}^I\). Define a vector space \(M(C)\) by

\[
M(C) := \bigoplus_{i,i',j,j' \in I} M_{c_{i,j};c_{i',j'}}(A(C)).
\]

Then \(M(C)\) is an \(\mathbb{F}\)-algebra as before.

Proposition

There exists an algebra map \(\phi_C : A(C) \otimes_{\mathbb{F}} A(C) \to M(C)\) s.t.

1. \(\phi_C(e_i \otimes e_j) = E_{c_{ij}} \in M_{c_{ij}}(A(C))\);

2. \(\phi_C(e_1 \otimes a) = \phi_C(a \otimes e_1) = a\) for all \(a \in e_i A(C) e_j\).
Tensor product of morphisms

- For \(\mathbf{m} = (m_i)_{i \in I}, \mathbf{s} = (s_i)_{i \in I} \), we identify \(\text{Hom}_C(\bigoplus_{i \in I} m_i V_i, \bigoplus_{i \in I} s_i V_i) = M_{s \times m}(A(C)) \).

- For \(f \in \text{Hom}_C(\bigoplus_{i \in I} m_i V_i, \bigoplus_{i \in I} s_i V_i) \), the corresponding matrix is

\[
\begin{pmatrix}
 f_{11} & f_{12} & \cdots & f_{1m} \\
 f_{21} & f_{22} & \cdots & f_{2m} \\
 \vdots & \vdots & \ddots & \vdots \\
 f_{s1} & f_{s2} & \cdots & f_{sm}
\end{pmatrix}
\]

where \(f_{kl} = Y_{i,k_1}^s f X_{j,k_2}^m \) if \(k = \sum_{t=1}^{i-1} s_t + k_1 \) and \(l = \sum_{t=1}^{j-1} m_t + k_2 \).

- \(Y_{i,k_1}^s \in \text{Hom}_C(\bigoplus_{j \in I} s_j V_j, V_i) \) is the projection from \(\bigoplus_{j \in I} s_j V_j \) to the \(k_1 \)-th \(V_i \) of the direct summand \(s_i V_i \) of \(\bigoplus_{j \in I} s_j V_j \).

- \(X_{j,k_2}^m \in \text{Hom}_C(V_j, \bigoplus_{i \in I} m_i V_i) \) is the embedding of \(V_j \) into the \(k_2 \)-th \(V_j \) of the direct summand \(m_j V_j \) of \(\bigoplus_{i \in I} m_i V_i \).

- As before, let \(\mathbf{m} \otimes \mathbf{s} = \sum_{i,j \in I} m_i s_j c_{ij} \).

- Let \(X \in M_{s_1 \times m_1}(A(C)), Y \in M_{s_2 \times m_2}(A(C)) \). Then

\[
X \in \text{Hom}_C(\bigoplus_{i \in I} m_i V_i, \bigoplus_{i \in I} s_i V_i), \ Y \in \text{Hom}_C(\bigoplus_{i \in I} m_i V_i, \bigoplus_{i \in I} s_i V_i).
\]
For $m = (m_i)_{i \in I}, s = (s_i)_{i \in I}$, we identify $\text{Hom}_C(\bigoplus_{i \in I} m_i V_i, \bigoplus_{i \in I} s_i V_i) = M_{s \times m}(A(C))$.

For $f \in \text{Hom}_C(\bigoplus_{i \in I} m_i V_i, \bigoplus_{i \in I} s_i V_i)$, the corresponding matrix is

$$
\begin{pmatrix}
 f_{11} & f_{12} & \cdots & f_{1m} \\
 f_{21} & f_{22} & \cdots & f_{2m} \\
 \vdots & \vdots & \ddots & \vdots \\
 f_{s1} & f_{s2} & \cdots & f_{sm}
\end{pmatrix}
$$

where $f_{kl} = Y_{i,k_1}^s f X_{j,k_2}^m$ if $k = \sum_{t=1}^{i-1} s_t + k_1$ and $l = \sum_{t=1}^{j-1} m_t + k_2$.

$Y_{i,k_1}^s \in \text{Hom}_C(\bigoplus_{j \in I} s_j V_j, V_i)$ is the projection from $\bigoplus_{j \in I} s_j V_j$ to the k_1-th V_i of the direct summand $s_i V_i$ of $\bigoplus_{j \in I} s_j V_j$.

$X_{j,k_2}^m \in \text{Hom}_C(V_j, \bigoplus_{i \in I} m_i V_i)$ is the embedding of V_j into the k_2-th V_j of the direct summand $m_j V_j$ of $\bigoplus_{i \in I} m_i V_i$.

As before, let $m \otimes s = \sum_{i,j \in I} m_i s_j c_{ij}$.

Let $X \in M_{s_1 \times m_1}(A(C)), Y \in M_{s_2 \times m_2}(A(C))$. then

$$
X \in \text{Hom}_C(\bigoplus_{i \in I} m_1_i V_i, \bigoplus_{i \in I} s_1_i V_i), Y \in \text{Hom}_C(\bigoplus_{i \in I} m_2_i V_i, \bigoplus_{i \in I} s_2_i V_i).
$$
Tensor product of morphisms

- For $m = (m_i)_{i \in I}, s = (s_i)_{i \in I}$, we identify $\text{Hom}_C(\bigoplus_{i \in I} m_i V_i, \bigoplus_{i \in I} s_i V_i) = M_{s \times m}(A(C))$.
- For $f \in \text{Hom}_C(\bigoplus_{i \in I} m_i V_i, \bigoplus_{i \in I} s_i V_i)$, the corresponding matrix is
 \[
 \begin{pmatrix}
 f_{11} & f_{12} & \ldots & f_{1m} \\
 f_{21} & f_{22} & \ldots & f_{2m} \\
 \vdots & \vdots & \ddots & \vdots \\
 f_{s1} & f_{s2} & \ldots & f_{sm}
 \end{pmatrix}
 \]
 where $f_{kl} = Y_{i,k_1}^s f X_{j,k_2}^m$ if $k = \sum_{t=1}^{i-1} s_t + k_1$ and $l = \sum_{t=1}^{j-1} m_t + k_2$.
- $Y_{i,k_1}^s \in \text{Hom}_C(\bigoplus_{j \in I} s_j V_j, V_i)$ is the projection from $\bigoplus_{j \in I} s_j V_j$ to the k_1-th V_i of the direct summand $s_i V_i$ of $\bigoplus_{j \in I} s_j V_j$.
- $X_{j,k_2}^m \in \text{Hom}_C(V_j, \bigoplus_{i \in I} m_i V_i)$ is the embedding of V_j into the k_2-th V_j of the direct summand $m_j V_j$ of $\bigoplus_{i \in I} m_i V_i$.
- As before, let $m \otimes s = \sum_{i,j \in I} m_i s_j c_{ij}$.
- Let $X \in M_{s_1 \times m_1}(A(C)), Y \in M_{s_2 \times m_2}(A(C))$. Then
 \[
 X \in \text{Hom}_C(\bigoplus_{i \in I} m_{1i} V_i, \bigoplus_{i \in I} s_{1i} V_i), Y \in \text{Hom}_C(\bigoplus_{i \in I} m_{2i} V_i, \bigoplus_{i \in I} s_{2i} V_i).
 \]
For $m = (m_i)_{i \in I}$, $s = (s_i)_{i \in I}$, we identify $\text{Hom}_C(\bigoplus_{i \in I} m_i V_i, \bigoplus_{i \in I} s_i V_i) = M_s \times m(A(C))$.

For $f \in \text{Hom}_C(\bigoplus_{i \in I} m_i V_i, \bigoplus_{i \in I} s_i V_i)$, the corresponding matrix is

$$
\begin{pmatrix}
 f_{11} & f_{12} & \ldots & f_{1m} \\
 f_{21} & f_{22} & \ldots & f_{2m} \\
 \vdots & \vdots & \ddots & \vdots \\
 f_{s1} & f_{s2} & \ldots & f_{sm}
\end{pmatrix}
$$

where $f_{kl} = Y_{s_i,k_1}^s f X_{j,k_2}^m$ if $k = \sum_{t=1}^{i-1} s_t + k_1$ and $l = \sum_{t=1}^{j-1} m_t + k_2$.

$Y_{s_i,k_1}^s \in \text{Hom}_C(\bigoplus_{j \in I} s_j V_j, V_i)$ is the projection from $\bigoplus_{j \in I} s_j V_j$ to the k_1-th V_i of the direct summand $s_i V_i$ of $\bigoplus_{j \in I} s_j V_j$.

$X_{j,k_2}^m \in \text{Hom}_C(V_j, \bigoplus_{i \in I} m_i V_i)$ is the embedding of V_j into the k_2-th V_j of the direct summand $m_j V_j$ of $\bigoplus_{i \in I} m_i V_i$.

As before, let $m \otimes s = \sum_{i,j \in I} m_i s_j c_{ij}$.

Let $X \in M_{s_1 \times m_1}(A(C)), Y \in M_{s_2 \times m_2}(A(C))$. then

$$
X \in \text{Hom}_C(\bigoplus_{i \in I} m_i V_i, \bigoplus_{i \in I} s_i V_i), Y \in \text{Hom}_C(\bigoplus_{i \in I} m_i V_i, \bigoplus_{i \in I} s_i V_i).
$$
Tensor product of morphisms

Let $X \otimes Y$ denote the tensor product of X and Y in \mathcal{C}. Then

$$X \otimes Y \in \text{Hom}_\mathcal{C}((\bigoplus_{i \in I} m_1 V_i) \otimes (\bigoplus_{i \in I} m_2 V_i), (\bigoplus_{i \in I} s_1 V_i) \otimes (\bigoplus_{i \in I} s_2 V_i)).$$

Let $X\hat{\otimes} Y := \prod (\phi_C(X \otimes_{\mathbb{F}} Y)) \in M_{(s_1 \otimes s_2) \times (m_1 \otimes m_2)}(A(\mathcal{C})).$ We now have two different tensor products!

Lemma

Let $x \in e_i A(\mathcal{C}) e_i, y \in e_j A(\mathcal{C}) e_j$. Then the following diagram commutes:

\[
\begin{array}{ccc}
V_i \otimes V_j & \xrightarrow{\theta_{ij}} & \bigoplus_{k \in I} c_{ijk} V_k \\
\downarrow x \otimes y & & \downarrow x \hat{\otimes} y \\
V_i' \otimes V_j' & \xrightarrow{\theta_{i'j'}} & \bigoplus_{k \in I} c_{i'j'k} V_k
\end{array}
\]
Tensor product of morphisms

1. Let $X \otimes Y$ denote the tensor product of X and Y in \mathcal{C}. Then

$$X \otimes Y \in \text{Hom}_\mathcal{C}((\bigoplus_{i \in I} m_i V_i) \otimes (\bigoplus_{i \in I} m_i V_i), (\bigoplus_{i \in I} s_i V_i) \otimes (\bigoplus_{i \in I} s_i V_i)).$$

2. Let $X \widetilde{\otimes} Y := \prod (\phi \mathcal{C}(X \otimes \mathbb{F} Y)) \in M_{(s_1 \otimes s_2) \times (m_1 \otimes m_2)}(A(\mathcal{C}))$. We now have two different tensor products!

Lemma

Let $x \in e_i' A(\mathcal{C}) e_i$, $y \in e_j' A(\mathcal{C}) e_j$. Then the following diagram commutes:

$$
\begin{align*}
V_i \otimes V_j & \xrightarrow{\theta_{ij}} \bigoplus_{k \in I} c_{ijk} V_k \\
x \otimes y & \downarrow \quad \downarrow x \otimes y \\
V_{i'} \otimes V_{j'} & \xrightarrow{\theta_{i'j'}} \bigoplus_{k \in I} c_{i'j'k} V_k
\end{align*}
$$
Tensor product of morphisms

- Let $X \otimes Y$ denote the tensor product of X and Y in \mathcal{C}. Then

$$X \otimes Y \in \text{Hom}_\mathcal{C}((\bigoplus_{i \in I} m_1 V_i) \otimes (\bigoplus_{i \in I} m_2 V_i), (\bigoplus_{i \in I} s_1 V_i) \otimes (\bigoplus_{i \in I} s_2 V_i)).$$

- Let $X \tilde{\otimes} Y := \prod(\phi_C(X \otimes \mathbb{F} Y)) \in M_{(s_1 \otimes s_2) \times (m_1 \otimes m_2)}(A(C))$. We now have two different tensor products!

Lemma

Let $x \in e_i A(C) e_i$, $y \in e_j A(C) e_j$. Then the following diagram commutes:

\[
\begin{array}{ccc}
V_i \otimes V_j & \xrightarrow{\theta_{ij}} & \bigoplus_{k \in I} c_{ijk} V_k \\
\uparrow x \otimes y & & \downarrow x \tilde{\otimes} y \\
V_{i'} \otimes V_{j'} & \xrightarrow{\theta_{i'j'}} & \bigoplus_{k \in I} c_{i'j'k} V_k
\end{array}
\]
Towards another associativity constraint

Definition

Let \(m \in \mathbb{N}^I \), then we define \(V(m) := \bigoplus_{i \in I} m_i V_i \). For \(m_1, m_2 \in \mathbb{N}^I \), define a morphism \(\theta(m_1, m_2) : V(m_1) \otimes V(m_2) \to V(m_1 \otimes m_2) \) in \(C \) by

\[
\theta(m_1, m_2) = \sum_{i,j=1}^{m_1 i} \sum_{k_1=1}^{m_2 j} (X_{i,k_1}^{m_1} \otimes X_{j,k_2}^{m_2}) \theta_{ij}(Y_{i,k_1}^{m_1} \otimes Y_{j,k_2}^{m_2}).
\]

Then \(\theta(e_i, e_j) = \theta_{ij} \).

Lemma

Each \(\theta(m_1, m_2) \) is an isomorphism. Moreover, the following diagram commutes:

\[
\begin{array}{ccc}
V(m_1) \otimes V(m_2) & \xrightarrow{\theta(m_1, m_2)} & V(m_1 \otimes m_2) \\
X \otimes Y & \downarrow & X \otimes Y \\
V(s_1) \otimes V(s_2) & \xrightarrow{\theta(s_1, s_2)} & V(s_1 \otimes s_2)
\end{array}
\]
Towards another associativity constraint

Definition

Let \(m \in \mathbb{N}^I \), then we define \(V(m) := \bigoplus_{i \in I} m_i V_i \). For \(m_1, m_2 \in \mathbb{N}^I \), define a morphism \(\theta(m_1, m_2) : V(m_1) \otimes V(m_2) \rightarrow V(m_1 \otimes m_2) \) in \(C \) by

\[
\theta(m_1, m_2) = \sum_{i,j=1}^{n} \sum_{k_1=1}^{m_1} \sum_{k_2=1}^{m_2} (X_{i,k_1}^{m_1} \tilde{\otimes} X_{j,k_2}^{m_2}) \theta_{ij}(Y_{i,k_1}^{m_1} \otimes Y_{j,k_2}^{m_2}).
\]

Then \(\theta(e_i, e_j) = \theta_{ij} \).

Lemma

Each \(\theta(m_1, m_2) \) is an isomorphism. Moreover, the following diagram commutes:

\[
\begin{array}{ccc}
V(m_1) \otimes V(m_2) & \xrightarrow{\theta(m_1, m_2)} & V(m_1 \otimes m_2) \\
Y \otimes X & \xrightarrow{\theta(s_1, s_2)} & Y \otimes X \\
V(s_1) \otimes V(s_2) & \xrightarrow{\theta(s_1, s_2)} & V(s_1 \otimes s_2)
\end{array}
\]
The associativity constraint

Definition

Define $a_{ijl} \in M_{e_i \otimes e_j \otimes e_l}(A(C)) = \text{End}_C(V^{(e_i \otimes e_j \otimes e_l)})$ by

$$a_{ijl} := \theta(e_i, e_j \otimes e_l)(E_{e_i} \otimes \theta(e_j, e_l))(\theta(e_i, e_j)^{-1} \otimes E_{e_l})\theta(e_i \otimes e_j, e_l)^{-1}.$$

Proposition

The family $\{a_{ijl}\}$ satisfies the four conditions encountered earlier w.r.t. the tensor product $\tilde{\otimes}$.

Denote by \tilde{C} the category associated to the data $(r(C), A(C), I, \{e_i | i \in I\}, \phi_C, \{a_{ijl} | i, j, l \in I\})$. The tensor products of C and \tilde{C} are denoted by \otimes and $\tilde{\otimes}$ respectively.

Theorem

\tilde{C} and C are tensor equivalent.
The associativity constraint

Definition

Define \(a_{ijl} \in M_{e_i \otimes e_j \otimes e_l}(A(C)) = \text{End}_C(V^{(e_i \otimes e_j \otimes e_l)})\) by

\[
a_{ijl} := \theta(e_i, e_j \otimes e_l)(E_{e_i} \otimes \theta(e_j, e_l))(\theta(e_i, e_j)^{-1} \otimes E_{e_l})\theta(e_i \otimes e_j, e_l)^{-1}.
\]

Proposition

The family \(\{a_{ijl}\}\) satisfies the four conditions encountered earlier w.r.t. the tensor product \(\tilde{\otimes}\).

Theorem

\(\hat{C}\) and \(C\) are tensor equivalent.