Reconstruction of tensor categories from their invariants

Yinhuo Zhang (joint with Huixiang Chen)

University of Hasselt

Universität Hamburg, June 8, 2017

Overview

Introduction

- Introduction to Representation Rings
- Prelimenaries and Notations

Construction of tensor categories from given data

- Goal of construction
- First assumptions
- Constructing the Category

Invariants of tensor categories

Section 1

Introduction

Yinhuo Zhang (joint with Huixiang Chen) (University

Representation rings

Universität Hamburg, June 8, 2017 3 / 32

2

・ロト ・回ト ・ヨト ・ヨト

Consider the finite dimensional representations of the Lie algebra $\mathfrak{sl}_2(\mathbb{C})$. The simple objects of this module category are irreducible representations V_m of dimension m + 1 for each $m \in \mathbb{N}$. The tensor product is determined by the Glebsch-Gordan formula:

$$V_n \otimes V_m = V_{n+m} \oplus V_{n+m-2} \oplus \cdots \oplus V_{n-m+2} \oplus V_{n-m}$$
, for $n \ge m$.

This module category is an abelian, Krull-Schmidt tensor category.

Definition (Representation Ring)

Let C be an abelian, Krull-Schmidt tensor category. The Green ring or representation ring r(C) of C is the abelian group generated by the isomorphism classes [V] of C modulo the relations $[V \oplus W] = [M] + [V]$. The multiplication is given by the tensor product, i.e. $[V][W] = [V \otimes W]$.

(日) (同) (日) (日)

Consider the finite dimensional representations of the Lie algebra $\mathfrak{sl}_2(\mathbb{C})$. The simple objects of this module category are irreducible representations V_m of dimension m + 1 for each $m \in \mathbb{N}$. The tensor product is determined by the Glebsch-Gordan formula:

$$V_n \otimes V_m = V_{n+m} \oplus V_{n+m-2} \oplus \cdots \oplus V_{n-m+2} \oplus V_{n-m}$$
, for $n \ge m$.

This module category is an abelian, Krull-Schmidt tensor category.

Definition (Representation Ring)

Let C be an abelian, Krull-Schmidt tensor category. The Green ring or representation ring r(C) of C is the abelian group generated by the isomorphism classes [V] of C modulo the relations $[V \oplus W] = [M] + [V]$. The multiplication is given by the tensor product, i.e. $[V][W] = [V \otimes W]$.

< □ > < ^[] >

Consider again the representation category of $\mathfrak{sl}_2(\mathbb{C})$. It is easy to see that the representation ring is generated by $[V_m]$, the classes of simple objects. By the Glebsch-Gordan formula, $[V_n][V_m] = \sum_{k \in \mathbb{N}} c_{n,m,k}[V_k]$ with $c_{n,m,k} \in \mathbb{N}$.

Question

Which rings can arise as the representation ring of an abelian, Krull-Schmidt tensor category?

Example

Suppose that $\mathbb{Z}[i] = r(\mathcal{C})$ for some Krull-Schmidt tensor category \mathcal{C} . Then \mathcal{C} has (at least) two indecomposable objects. We assume that the unit object for the tensor product is simple, hence this object corresponds to $1 \in r(\mathcal{C})$. Let X denote the other indecomposable object. Then X corresponds to $a + bi \in r(\mathcal{C})$ with $b \neq 0$. Since $(a + bi)^2 = -(a^2 + b^2) \cdot 1 + 2a \cdot (a + bi)$, $X \otimes X \cong -(a^2 + b^2) 1 \oplus 2aX$, but this makes no sense. Hence $\mathbb{Z}[i]$ is not the representation ring of such a category. Notice that $\mathbb{Z}[i]$ is not a unital \mathbb{Z}_+ -ring.

Consider again the representation category of $\mathfrak{sl}_2(\mathbb{C})$. It is easy to see that the representation ring is generated by $[V_m]$, the classes of simple objects. By the Glebsch-Gordan formula, $[V_n][V_m] = \sum_{k \in \mathbb{N}} c_{n,m,k}[V_k]$ with $c_{n,m,k} \in \mathbb{N}$.

Question

Which rings can arise as the representation ring of an abelian, Krull-Schmidt tensor category?

Example

Suppose that $\mathbb{Z}[i] = r(\mathcal{C})$ for some Krull-Schmidt tensor category \mathcal{C} . Then \mathcal{C} has (at least) two indecomposable objects. We assume that the unit object for the tensor product is simple, hence this object corresponds to $1 \in r(\mathcal{C})$. Let X denote the other indecomposable object. Then X corresponds to $a + bi \in r(\mathcal{C})$ with $b \neq 0$. Since $(a + bi)^2 = -(a^2 + b^2) \cdot 1 + 2a \cdot (a + bi)$, $X \otimes X \cong -(a^2 + b^2) 1 \oplus 2aX$, but this makes no sense. Hence $\mathbb{Z}[i]$ is not the representation ring of such a category. Notice that $\mathbb{Z}[i]$ is not a unital \mathbb{Z}_+ -ring.

イロト イポト イヨト イヨト

Consider again the representation category of $\mathfrak{sl}_2(\mathbb{C})$. It is easy to see that the representation ring is generated by $[V_m]$, the classes of simple objects. By the Glebsch-Gordan formula, $[V_n][V_m] = \sum_{k \in \mathbb{N}} c_{n,m,k}[V_k]$ with $c_{n,m,k} \in \mathbb{N}$.

Question

Which rings can arise as the representation ring of an abelian, Krull-Schmidt tensor category?

Example

Suppose that $\mathbb{Z}[i] = r(\mathcal{C})$ for some Krull-Schmidt tensor category \mathcal{C} . Then \mathcal{C} has (at least) two indecomposable objects. We assume that the unit object for the tensor product is simple, hence this object corresponds to $1 \in r(\mathcal{C})$. Let X denote the other indecomposable object. Then X corresponds to $a + bi \in r(\mathcal{C})$ with $b \neq 0$. Since $(a + bi)^2 = -(a^2 + b^2) \cdot 1 + 2a \cdot (a + bi)$, $X \otimes X \cong -(a^2 + b^2) 1 \oplus 2aX$, but this makes no sense. Hence $\mathbb{Z}[i]$ is not the representation ring of such a category. Notice that $\mathbb{Z}[i]$ is not a unital \mathbb{Z}_+ -ring.

- A \mathbb{Z}_+ -basis of a ring free as a module over \mathbb{Z} is a \mathbb{Z} -basis $B = \{r_i\}_{i \in I}$ such that for any $i, j \in I$, $r_i r_j = \sum_k c_{ijk} r_k$ with $c_{ijk} \in \mathbb{N}$.
- \bullet A $\mathbb{Z}_+\text{-ring}$ is a $\mathbb{Z}\text{-algebra}$ with unit endowed with a $\mathbb{Z}_+\text{-basis}.$
- A \mathbb{Z}_+ -ring with a \mathbb{Z}_+ -basis *B* is unital if $1 \in B$.
- A \mathbb{Z}_+ -module over a \mathbb{Z}_+ -ring is a free \mathbb{Z} -module M endowed with a fixed basis $\{m_j\}_{j \in J}$ such that $r_i m_j = \sum_k d_{ijk} m_k$ with $d_{ijk} \in \mathbb{N}$.

- Let A be an 𝔽-algebra with a complete set of orthogonal primitive idempotents {e_i}_{i∈I} satisfying 1 = ∑_i e_i and |I| = n.
- For $\mathbf{m} = (m_i)_{i \in I} \in \mathbb{N}^I$, let $|\mathbf{m}| = \sum_{i \in I} m_i$.
- For $\mathbf{m}, \mathbf{s} \in \mathbb{N}^{I}$, an (\mathbf{m}, \mathbf{s}) -type matrix X over A is a block matrix

$$X = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{nn} \end{pmatrix}$$

with $X_{ij} \in M_{m_i \times s_i}(e_i A e_j)$. Notice that X is an $|\mathbf{m}| \times |\mathbf{s}|$ -matrix over A.

- Let A be an 𝔽-algebra with a complete set of orthogonal primitive idempotents {e_i}_{i∈I} satisfying 1 = ∑_i e_i and |I| = n.
- For $\mathbf{m} = (m_i)_{i \in I} \in \mathbb{N}^I$, let $|\mathbf{m}| = \sum_{i \in I} m_i$.
- For $\mathbf{m},\mathbf{s}\in\mathbb{N}^{l}$, an (\mathbf{m},\mathbf{s}) -type matrix X over A is a block matrix

$$X = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{nn} \end{pmatrix}$$

with $X_{ij} \in M_{m_i \times s_i}(e_i A e_j)$. Notice that X is an $|\mathbf{m}| \times |\mathbf{s}|$ -matrix over A.

- Let A be an 𝔅-algebra with a complete set of orthogonal primitive idempotents {e_i}_{i∈I} satisfying 1 = ∑_i e_i and |I| = n.
- For $\mathbf{m} = (m_i)_{i \in I} \in \mathbb{N}^I$, let $|\mathbf{m}| = \sum_{i \in I} m_i$.
- For $\mathbf{m},\mathbf{s}\in\mathbb{N}^{l}$, an (\mathbf{m},\mathbf{s}) -type matrix X over A is a block matrix

$$X = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{nn} \end{pmatrix}$$

with $X_{ij} \in M_{m_i \times s_i}(e_i A e_j)$. Notice that X is an $|\mathbf{m}| \times |\mathbf{s}|$ -matrix over A.

Let $X \in M_{m \times s}(A)$ and $Y \in M_{m' \times s}(A)$. Then we define the horizontal sum of X and Y as

$$X \underline{\oplus} Y := \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ Y_{11} & Y_{12} & \dots & Y_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ Y_{21} & Y_{22} & \dots & Y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{nn} \\ Y_{n1} & Y_{n2} & \dots & Y_{nn} \end{pmatrix}$$

Similarly, we define the vertical sum of X and Y:

$$X \overline{\oplus} Y := \begin{pmatrix} X_{11} & Y_{11} & X_{12} & Y_{12} & \dots & X_{1n} & Y_{1n} \\ X_{21} & Y_{21} & X_{22} & Y_{22} & \dots & X_{2n} & Y_{2n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ X_{n1} & Y_{n1} & X_{n2} & Y_{n2} & \dots & X_{nn} & Y_{nn} \end{pmatrix}.$$

2

Let $X \in M_{m \times s}(A)$ and $Y \in M_{m' \times s}(A)$. Then we define the horizontal sum of X and Y as

$$X \underline{\oplus} Y := \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1n} \\ Y_{11} & Y_{12} & \dots & Y_{1n} \\ X_{21} & X_{22} & \dots & X_{2n} \\ Y_{21} & Y_{22} & \dots & Y_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ X_{n1} & X_{n2} & \dots & X_{nn} \\ Y_{n1} & Y_{n2} & \dots & Y_{nn} \end{pmatrix}$$

Similarly, we define the vertical sum of X and Y:

$$X \overline{\oplus} Y := \begin{pmatrix} X_{11} & Y_{11} & X_{12} & Y_{12} & \dots & X_{1n} & Y_{1n} \\ X_{21} & Y_{21} & X_{22} & Y_{22} & \dots & X_{2n} & Y_{2n} \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ X_{n1} & Y_{n1} & X_{n2} & Y_{n2} & \dots & X_{nn} & Y_{nn} \end{pmatrix}$$

æ

Let $\mathbf{m}_1, \mathbf{m}_2, \dots, \mathbf{m}_r, \mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_l \in \mathbb{N}^l$. For a matrix

$$X = \begin{pmatrix} X_{11} & X_{12} & \dots & X_{1l} \\ X_{21} & X_{22} & \dots & X_{2l} \\ \vdots & \vdots & \ddots & \vdots \\ X_{r1} & X_{r2} & \dots & X_{rl} \end{pmatrix}$$

over A with $X_{ij} \in M_{\mathbf{m}_i imes \mathbf{s}_j}(A)$, define a matrix $\prod(X)$ over A by

$$\prod(X) := (X_{11} \overline{\oplus} X_{12} \overline{\oplus} \dots \overline{\oplus} X_{1l}) \underline{\oplus} \dots \underline{\oplus} (X_{r1} \overline{\oplus} X_{r2} \overline{\oplus} \dots \overline{\oplus} X_{rl}).$$

Then $\prod(X) \in M_{\mathbf{m} \times \mathbf{s}}(A)$ with $\mathbf{m} = \sum_{i=1}^{r} \mathbf{m}_{i}$ and $\mathbf{s} = \sum_{j=1}^{l} \mathbf{s}_{j}$.

Let A and B be two \mathbb{F} -algebras. Let

$$X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1s} \\ x_{21} & x_{22} & \dots & x_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m1} & x_{m2} & \dots & x_{ms} \end{pmatrix} \text{ and } Y = \begin{pmatrix} y_{11} & y_{12} & \dots & y_{1s'} \\ y_{21} & y_{22} & \dots & y_{2s'} \\ \vdots & \vdots & \ddots & \vdots \\ y_{m'1} & y_{m'2} & \dots & y_{m's'} \end{pmatrix}$$

be an $m \times s$ -matrix over A and an $m' \times s'$ -matrix over B respectively. Then we define an $mm' \times ss'$ -matrix $X \otimes_{\mathbb{F}} Y$ over $A \otimes_{\mathbb{F}} B$ by

$$\begin{pmatrix} x_{11} \otimes y_{11} & \dots & x_{1s} \otimes y_{11} & \dots & x_{11} \otimes y_{1s'} & \dots & x_{1s} \otimes y_{1s'} \\ \vdots & \vdots & \vdots & \vdots & \dots & \vdots & \dots & \vdots \\ x_{m1} \otimes y_{11} & \dots & x_{ms} \otimes y_{11} & \dots & x_{m1} \otimes y_{1s'} & \dots & x_{ms} \otimes y_{1s'} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ x_{11} \otimes y_{m'1} & \dots & x_{1s} \otimes y_{m'1} & \dots & x_{11} \otimes y_{m's'} & \dots & x_{1s} \otimes y_{m's'} \\ \vdots & \dots & \vdots & \dots & \vdots & \dots & \vdots \\ x_{m1} \otimes y_{m'1} & \dots & x_{ms} \otimes y_{m'1} & \dots & x_{m1} \otimes y_{m's'} & \dots & x_{ms} \otimes y_{m's'} \end{pmatrix}$$

< □ > < ^[] >

Lemma

Let $X \in M_{m \times s}(A)$, $X_1 \in M_{s \times t}(A)$ and $Y \in M_{m' \times s'}(A)$, $Y_1 \in M_{s' \times t'}(B)$. Then $(X \otimes Y)(X_1 \otimes Y_1) = (XX_1) \otimes (YY_1)$.

Definition

- An (m, s)-type matrix X is called column-independent if for any (s, l)-type matrix $Y, XY = 0 \Rightarrow Y = 0$.
- Similarly, we define row-independent.
- An (s, t)-type matrix Y is a right universal annihilator of X if XY = 0 and $XM = 0 \Rightarrow M = YZ$ for a unique Z.
- Similarly, we define left universal annihilators.

Section 2

Construction of tensor categories from given data

 \bullet We will construct an abelian, Krull-Schmidt tensor category ${\cal C}$ from the data

$$(R, A, I, \{e_i \mid i \in I\}, \phi, \{a_{ijl} \mid i, j, l \in I\})$$

s.t.

- $R = r(\mathcal{C})$.
- A is the Auslander algebra of C.

• We will give a workable criterion when two such categories are tensor equivalent.

 \bullet We will construct an abelian, Krull-Schmidt tensor category ${\cal C}$ from the data

$$(R, A, I, \{e_i \mid i \in I\}, \phi, \{a_{ijl} \mid i, j, l \in I\})$$

s.t.

•
$$R = r(\mathcal{C})$$
.

- A is the Auslander algebra of C.
- We will give a workable criterion when two such categories are tensor equivalent.

- *R* is a unital \mathbb{Z}_+ -ring with finite unital basis $\{r_i\}_{i \in I}$ with $I = \{1, 2, ..., n\}$ and $r_1 = 1$ and $r_i r_j \neq 0$.
- A is a finite dimensional \mathbb{F} -algebra with a complete set of orthogonal primitive idempotents $\{e_i\}_{i \in I}$.
- \mathbb{F} is algebraically closed.
- (KS) $e_i A e_j A e_i \subset rad(e_i A e_i)$ for $i \neq j$.
- (Dec) Any (m, s)-type matrix can be written as the product of CI and RI matrices.
- (RUA) Any matrix has right universal annihilator.
- (LUA) Any matrix has left universal annihilator.
- (CI) If X is CI and Y a LUA of X, then X is RUA of Y.
- (RI) If X is RI and Y a RUA of X, then Y is LUA of X.

.

- *R* is a unital \mathbb{Z}_+ -ring with finite unital basis $\{r_i\}_{i \in I}$ with $I = \{1, 2, ..., n\}$ and $r_1 = 1$ and $r_i r_j \neq 0$.
- A is a finite dimensional \mathbb{F} -algebra with a complete set of orthogonal primitive idempotents $\{e_i\}_{i \in I}$.
- \mathbb{F} is algebraically closed.
- (KS) $e_i A e_j A e_i \subset rad(e_i A e_i)$ for $i \neq j$.
- (Dec) Any (m, s)-type matrix can be written as the product of CI and RI matrices.
- (RUA) Any matrix has right universal annihilator.
- (LUA) Any matrix has left universal annihilator.
- (CI) If X is CI and Y a LUA of X, then X is RUA of Y.
- (RI) If X is RI and Y a RUA of X, then Y is LUA of X.

- R is a unital \mathbb{Z}_+ -ring with finite unital basis $\{r_i\}_{i \in I}$ with $I = \{1, 2, \dots, n\}$ and $r_1 = 1$ and $r_i r_i \neq 0$.
- A is a finite dimensional F-algebra with a complete set of orthogonal primitive idempotents $\{e_i\}_{i\in I}$.
- F is algebraically closed.
- (KS) $e_i A e_i A e_i \subset rad(e_i A e_i)$ for $i \neq j$.
- (Dec) Any (m, s)-type matrix can be written as the product of CI and RI matrices.
- (RUA) Any matrix has right universal annihilator.
- (LUA) Any matrix has left universal annihilator.
- (CI) If X is CI and Y a LUA of X, then X is RUA of Y.
- (RI) If X is RI and Y a RUA of X, then Y is LUA of X.

We define a category $\ensuremath{\mathcal{C}}$ by

- Obj $(\mathcal{C}) := \mathbb{N}^{l};$
- Composition is usual matrix product.

_emma

- Let $\mathbf{m}, \mathbf{s} \in Obj(\mathcal{C})$, then $\mathbf{m} + \mathbf{s} \cong \mathbf{m} \oplus \mathbf{s}$.
- Moreover, C is an additive category over \mathbb{F} .
- $\mathbf{m} \cong \mathbf{s}$ if and only if $m = \mathbf{s}$.

We define a category $\ensuremath{\mathcal{C}}$ by

- Obj $(\mathcal{C}) := \mathbb{N}^{l};$
- Composition is usual matrix product.

Lemma

- Let $\mathbf{m}, \mathbf{s} \in \textit{Obj}(\mathcal{C})$, then $\mathbf{m} + \mathbf{s} \cong \mathbf{m} \oplus \mathbf{s}$.
- Moreover, C is an additive category over \mathbb{F} .
- $\mathbf{m} \cong \mathbf{s}$ if and only if $m = \mathbf{s}$.

∃ >

Image: A matrix and a matrix

Define $e_i:=(0,\ldots,0,1,0\ldots,0).$ Then for any $m\in \mathsf{Obj}(\mathcal{C}),$ we have

$$\mathbf{m} \cong \bigoplus_{i \in I} m_i \mathbf{e_i}.$$

Moreover, the \mathbf{e}_i 's are all non-isomorphic indecomposable objects.

Proposition

 \mathcal{C} is an abelian Krull-Schmidt category over \mathbb{F} .

Corollary

The following are equivalent:

- If \mathcal{C} is a semisimple category over \mathbb{F} ;
- $im_{\mathbb{F}}(A) = n;$
- $A \cong \mathbb{F}^n \text{ as } \mathbb{F}\text{-algebras.}$

イロト イヨト イヨト イヨト

Define $e_i:=(0,\ldots,0,1,0\ldots,0).$ Then for any $m\in \mathsf{Obj}(\mathcal{C}),$ we have

$$\mathbf{m} \cong \bigoplus_{i \in I} m_i \mathbf{e_i}.$$

Moreover, the \mathbf{e}_i 's are all non-isomorphic indecomposable objects.

Proposition

 \mathcal{C} is an abelian Krull-Schmidt category over \mathbb{F} .

Corollary

The following are equivalent:

- If \mathcal{C} is a semisimple category over \mathbb{F} ;
- $im_{\mathbb{F}}(A) = n;$
- $A \cong \mathbb{F}^n \text{ as } \mathbb{F}\text{-algebras.}$

Define $e_i:=(0,\ldots,0,1,0\ldots,0).$ Then for any $m\in \mathsf{Obj}(\mathcal{C}),$ we have

$$\mathbf{m} \cong \bigoplus_{i \in I} m_i \mathbf{e_i}.$$

Moreover, the \mathbf{e}_i 's are all non-isomorphic indecomposable objects.

Proposition

 \mathcal{C} is an abelian Krull-Schmidt category over \mathbb{F} .

Corollary

The following are equivalent:

() C is a semisimple category over \mathbb{F} ;

$$dim_{\mathbb{F}}(A) = n;$$

3 $A \cong \mathbb{F}^n$ as \mathbb{F} -algebras.

イロト イヨト イヨト イヨト

• Put
$$\mathbf{c}_{ij} = (c_{ij1}, \ldots, c_{ijn})$$
 with $r_i r_j = \sum_{k=1}^n c_{ijk} r_k$.

- We define $\mathbf{m} \otimes \mathbf{s} := \sum_{i,j}^{n} m_i s_j \mathbf{c}_{ij}$.
- Define an \mathbb{F} -algebra $M(R, A, I) := \bigoplus_{1 \le i, i', j, j' \le n} M_{\mathbf{c}_{i'j'} \times \mathbf{c}_{ij}}(A)$.
- If $X \in M_{c_{i'j'} \times c_{ij}}$, $Y \in M_{c_{i'j''} \times c_{i_1j_1}}$, then XY is the usual matrix product if (i, j) = (i'', j'')and zero otherwise.

Assumption

Assume that dim $(e_1Ae_1) = 1$ and $\exists \phi : A \otimes A \rightarrow M(R, A, I)$ s.t.

$$\ \ \, \bigcirc \ \ \, \phi(e_1\otimes a)=a=\phi(a\otimes e_1) \ \, \text{for all} \ \ a\in e_iAe_j.$$

- Put $\mathbf{c}_{ij} = (c_{ij1}, \ldots, c_{ijn})$ with $r_i r_j = \sum_{k=1}^n c_{ijk} r_k$.
- We define $\mathbf{m} \otimes \mathbf{s} := \sum_{i,j}^{n} m_i s_j \mathbf{c}_{ij}$.
- Define an \mathbb{F} -algebra $M(R, A, I) := \bigoplus_{1 \le i, i', j, j' \le n} M_{\mathbf{c}_{i'j'} \times \mathbf{c}_{ij}}(A).$
- If $X \in M_{\mathbf{c}_{i'j'} \times \mathbf{c}_{ij}}$, $Y \in M_{\mathbf{c}_{i'j''} \times \mathbf{c}_{ijj_1}}$, then XY is the usual matrix product if (i, j) = (i'', j'')and zero otherwise.

Assumption

Assume that dim $(e_1Ae_1) = 1$ and $\exists \phi : A \otimes A \to M(R, A, I)$ s.t.

$$\ \ \, \bigcirc \ \ \, \phi(e_1\otimes a)=a=\phi(a\otimes e_1) \ \, \text{for all} \ \ a\in e_iAe_j.$$

- Put $\mathbf{c}_{ij} = (c_{ij1}, \ldots, c_{ijn})$ with $r_i r_j = \sum_{k=1}^n c_{ijk} r_k$.
- We define $\mathbf{m} \otimes \mathbf{s} := \sum_{i,j}^{n} m_i s_j \mathbf{c}_{ij}$.
- Define an \mathbb{F} -algebra $M(R, A, I) := \bigoplus_{1 \le i, i', j, j' \le n} M_{\mathbf{c}_{i'j'} \times \mathbf{c}_{ij}}(A).$
- If $X \in M_{\mathbf{c}_{i'j'} \times \mathbf{c}_{ij}}$, $Y \in M_{\mathbf{c}_{i'j'} \times \mathbf{c}_{i_1j_1}}$, then XY is the usual matrix product if (i, j) = (i'', j'')and zero otherwise.

Assumption

Assume that dim $(e_1Ae_1) = 1$ and $\exists \phi : A \otimes A \to M(R, A, I)$ s.t.

- Put $\mathbf{c}_{ij} = (c_{ij1}, \ldots, c_{ijn})$ with $r_i r_j = \sum_{k=1}^n c_{ijk} r_k$.
- We define $\mathbf{m} \otimes \mathbf{s} := \sum_{i,j}^{n} m_i s_j \mathbf{c}_{ij}$.
- Define an \mathbb{F} -algebra $M(R, A, I) := \bigoplus_{1 \le i, i', j, j' \le n} M_{\mathbf{c}_{i'j'} \times \mathbf{c}_{ij}}(A).$
- If $X \in M_{c_{i'j'} \times c_{ij}}$, $Y \in M_{c_{i'j''} \times c_{i_1j_1}}$, then XY is the usual matrix product if (i, j) = (i'', j'')and zero otherwise.

Assumption

Assume that dim $(e_1Ae_1) = 1$ and $\exists \phi : A \otimes A \rightarrow M(R, A, I)$ s.t.

$$\ e_1 \otimes a) = a = \phi(a \otimes e_1) \text{ for all } a \in e_i A e_j.$$

Let $X \in Hom_{\mathcal{C}}(\mathbf{m}_1, \mathbf{s}_1), Y \in Hom_{\mathcal{C}}(\mathbf{m}_2, \mathbf{s}_2)$. We define $X \otimes Y$ over A by

- if $\mathbf{m}_1 \otimes \mathbf{m}_2 = \mathbf{0}$ and $\mathbf{s}_1 \otimes \mathbf{s}_2 = \mathbf{0}$, then $X \otimes Y := \mathbf{0} \in M_{1 \times 1}(A)$;
- if $\mathbf{m}_1 \otimes \mathbf{m}_2 = \mathbf{0}$ and $\mathbf{s}_1 \otimes \mathbf{s}_2 \neq \mathbf{0}$, then $X \otimes Y := \mathbf{0} \in M_{|\mathbf{s}_1 \otimes \mathbf{s}_2| \times 1}(A)$;
- if $\mathbf{m}_1 \otimes \mathbf{m}_2 \neq \mathbf{0}$ and $\mathbf{s}_1 \otimes \mathbf{s}_2 = \mathbf{0}$, then $X \otimes Y := \mathbf{0} \in M_{1 \times |\mathbf{m}_1 \otimes \mathbf{m}_2|}(A)$;
- if $\mathbf{m}_1 \otimes \mathbf{m}_2 \neq \mathbf{0}$ and $\mathbf{s}_1 \otimes \mathbf{s}_2 \neq \mathbf{0}$, then $X \otimes Y := \prod (\phi(X \otimes_{\mathbb{F}} Y))$.

Lemma

 $\begin{array}{l} X \otimes Y \in Hom_{\mathcal{C}}(\mathbf{m}_{1} \otimes \mathbf{m}_{2}, \mathbf{s}_{1} \otimes \mathbf{s}_{2}). \ \ Moreover \\ \bullet \ \ E_{\mathbf{m}} \otimes E_{\mathbf{s}} = E_{\mathbf{m} \otimes \mathbf{s}}; \\ \bullet \ \ E_{\mathbf{e}_{1}} \otimes X = X = X \otimes E_{\mathbf{e}_{1}}. \\ Finally, (X \otimes Y)(X_{1} \otimes Y_{1}) = (XX_{1} \otimes YY_{1}). \end{array}$

Let $X \in Hom_{\mathcal{C}}(\mathbf{m}_1, \mathbf{s}_1), Y \in Hom_{\mathcal{C}}(\mathbf{m}_2, \mathbf{s}_2)$. We define $X \otimes Y$ over A by

- if $\mathbf{m}_1 \otimes \mathbf{m}_2 = \mathbf{0}$ and $\mathbf{s}_1 \otimes \mathbf{s}_2 = \mathbf{0}$, then $X \otimes Y := \mathbf{0} \in M_{1 \times 1}(A)$;
- if $\mathbf{m}_1 \otimes \mathbf{m}_2 = \mathbf{0}$ and $\mathbf{s}_1 \otimes \mathbf{s}_2 \neq \mathbf{0}$, then $X \otimes Y := \mathbf{0} \in M_{|\mathbf{s}_1 \otimes \mathbf{s}_2| \times 1}(A)$;
- if $\mathbf{m}_1 \otimes \mathbf{m}_2 \neq \mathbf{0}$ and $\mathbf{s}_1 \otimes \mathbf{s}_2 = \mathbf{0}$, then $X \otimes Y := \mathbf{0} \in M_{1 \times |\mathbf{m}_1 \otimes \mathbf{m}_2|}(A)$;
- if $\mathbf{m}_1 \otimes \mathbf{m}_2 \neq \mathbf{0}$ and $\mathbf{s}_1 \otimes \mathbf{s}_2 \neq \mathbf{0}$, then $X \otimes Y := \prod (\phi(X \otimes_{\mathbb{F}} Y))$.

Lemma

 $X \otimes Y \in Hom_{\mathcal{C}}(\mathbf{m}_1 \otimes \mathbf{m}_2, \mathbf{s}_1 \otimes \mathbf{s}_2)$. Moreover

$$I E_{m} \otimes E_{s} = E_{m \otimes s};$$

$$e_1 \otimes X = X = X \otimes E_{\mathbf{e}_1}.$$

Finally, $(X \otimes Y)(X_1 \otimes Y_1) = (XX_1 \otimes YY_1)$.

(日) (同) (日) (日)

Set $Y^{\mathbf{m}}_{i,k} = (y_1,\ldots,y_{|\mathbf{m}|}) \in M_{\mathbf{e}_i imes \mathbf{m}}(A)$, where

$$y_j = egin{cases} e_i, & j = k + \sum_{1 \le l < i} m_l \\ 0 & ext{otherwise.} \end{cases}$$

Put $X_{i,k}^{m} = (Y_{i,k}^{m})^{T}$. Then $Y_{i,k}^{m}X_{i',k'}^{m} = E_{e_i}$ if (i,k) = (i',k') and zero otherwise, and

$$\sum_{i=1}^n \sum_{1 \le k \le m_i} X_{i,k}^{\mathbf{m}} Y_{i,k}^{\mathbf{m}} = E_{\mathbf{m}}.$$

Assumptions

There exists a family of matrices $a_{ijl} \in M_{\mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_l}(A)$ s.t.

a_{ijl} is invertible;

$$(x \otimes (y \otimes z))a_{ijl} = a_{i'j'l'}((x \otimes y) \otimes z) \text{ for } x \in e_{i'}Ae_i, y \in e_{j'}Ae_j, z \in e_{l'}Ae_l;$$

3
$$a_{i1j} = E_{\mathbf{c}_{ij}};$$

$$\sum_{j=1}^{n} \sum_{k=1}^{c_{i_2i_3j}} (e_{i_1} \otimes a_{i_2i_3i_4}(X_{jk}^{c_{i_2i_3}} \otimes e_{k_4})) a_{i_1j_4}((e_{i_1} \otimes Y^{c_{i_2i_3}}) a_{i_1i_2i_3} \otimes e_{i_4}) = \\\sum_{j,j'=1}^{n} \sum_{k=1}^{c_{i_3i_4j}} \sum_{k'=1}^{c_{i_1i_2j'}} (e_{i_1} \otimes (e_{i_2} \otimes X_{jk}^{c_{i_3i_4}})) a_{i_1i_2j}(X_{j'k'}^{c_{i_1i_2}} \otimes Y_{jk}^{c_{i_3i_4}}) \\ \cdot a_{j'i_3i_4}((Y_{j'k'}^{c_{i_1i_2}} \otimes e_{i_3}) \otimes e_{i_4}).$$

< ∃ >

< □ > < ^[] >

Theorem

 $(\mathcal{C}, \otimes, \mathbf{e}_1, \mathbf{a}, l = ld, r = ld)$ is a tensor category over \mathbb{F} , $r(\mathcal{C}) \cong R$ and $End_{\mathcal{C}}(\bigoplus_{i=1}^{n} \mathbf{e}_i) \cong A$ as \mathbb{F} -algebras.

Remark

In general e_1 is not simple, but TFAE:

- e₁ is a simple object of C;
- If $X \in M_{e_1 \times m}(A)$ is CI, then either m = 0 and X = 0, or $m = e_1$ and $X = \alpha e_1$ for some $\alpha \in \mathbb{F}_0$.

Theorem

 $(\mathcal{C}, \otimes, \mathbf{e}_1, \mathbf{a}, l = ld, r = ld)$ is a tensor category over \mathbb{F} , $r(\mathcal{C}) \cong R$ and $End_{\mathcal{C}}(\bigoplus_{i=1}^{n} \mathbf{e}_i) \cong A$ as \mathbb{F} -algebras.

Remark

In general e_1 is not simple, but TFAE:

- e₁ is a simple object of C;
- If $X \in M_{\mathbf{e}_1 \times \mathbf{m}}(A)$ is CI, then either $\mathbf{m} = 0$ and X = 0, or $\mathbf{m} = \mathbf{e}_1$ and $X = \alpha e_1$ for some $\alpha \in \mathbb{F}_0$.

 $\begin{cases} a_{ijl} \} \text{ and } \{a_{i'j''} \} \text{ are called equivalent if there exists a familiy of invertible matrices} \\ \eta_{i,j} \in M_{\mathbf{c}_{ij}}(A) \text{ s.t.} \\ \bullet \quad (x \otimes y)\eta_{i,j} = \eta_{i',j'}(x \otimes y); \\ \bullet \quad \sum_{t=1}^{n} \sum_{k=1}^{c_{ijt}} a_{ijl}(X_{tk}^{\mathbf{c}_{ij}} \otimes e_{l})\eta(t,l)(Y_{tk}^{\mathbf{c}_{ij}}\eta(i,j) \otimes e_{l}) \\ = \sum_{t=1}^{n} \sum_{k=1}^{c_{jit}} (e_{i} \otimes X_{tk}^{\mathbf{c}_{jl}})\eta(i,t)(e_{i} \otimes Y_{tk}^{\mathbf{c}_{jl}}\eta(j,l)a_{ijl}'). \end{cases}$

Proposition

 $(\mathcal{C}, \otimes, \mathbf{e}_1, a, l, r)$ and $(\mathcal{C}, \otimes, \mathbf{e}_1, a', l, r)$ are equivalent if $\{a_{ijl}\}$ and $\{a'_{iil}\}$ are equivalent.

 $\begin{cases} a_{ijl} \} \text{ and } \{a_{i'j't'} \} \text{ are called equivalent if there exists a familiy of invertible matrices} \\ \eta_{i,j} \in M_{c_{ij}}(A) \text{ s.t.} \\ \bullet \quad (x \otimes y)\eta_{i,j} = \eta_{i',j'}(x \otimes y); \\ \bullet \quad \sum_{t=1}^{n} \sum_{k=1}^{c_{ijt}} a_{ijl}(X_{tk}^{c_{ij}} \otimes e_l)\eta(t,l)(Y_{tk}^{c_{ij}}\eta(i,j) \otimes e_l) \\ = \sum_{t=1}^{n} \sum_{k=1}^{c_{jit}} (e_i \otimes X_{tk}^{c_{jl}})\eta(i,t)(e_i \otimes Y_{tk}^{c_{jl}}\eta(j,l)a_{ijl}').$

Proposition

 $(\mathcal{C}, \otimes, \mathbf{e}_1, a, l, r)$ and $(\mathcal{C}, \otimes, \mathbf{e}_1, a', l, r)$ are equivalent if $\{a_{ijl}\}$ and $\{a'_{ijl}\}$ are equivalent.

Theorem

 $(\mathcal{C}, \otimes, \mathbf{e}_1, a, l, r)$ and $(\mathcal{C}', \otimes_{\mathcal{C}'}, \mathbf{e}'_1, a', l', r')$ are tensor equivalent if and only if n = n' (l = l') and there exists a $\sigma \in S(l)$ such that:

- **2** there exists a \mathbb{F} -algebra map $\delta : A \to A'$ with $\delta(e_i) = e'_{\sigma(i)}$;

(a) there exists an $\alpha \in \mathbb{F}_0$ and a family of invertible elements $\phi_{i,j} \in M_{c'_{\sigma(i)\sigma(j)}}(A')$ s.t.

過き くまき くま

Section 3

Invariants of tensor categories

2

・ロト ・回ト ・ヨト ・ヨ

Let $\mathcal C$

- \bullet be an abelian, Krull-Schmidt tensor category over $\mathbb F;$
- have finitely many indecomposable objects;
- have finite-dimensional Hom-spaces;
- ullet be strict and the unit object $oldsymbol{1}$ be simple.

Let $\{V_i \mid i \in I\}$ be a set of representatives of the isomorphism classes of the indecomposable objects of C $(1 = V_1)$. We also assume that $U \otimes V \neq 0$ for all nonzero objects.

Goal of the section

We will associate data $(r(\mathcal{C}), A(\mathcal{C}), I, \{e_i \mid i \in I\}, \phi_{\mathcal{C}}, \{a_{ijl} \mid i, j, l \in I\})$ to C. By the previous section we can then construct a category \widehat{C} . We will show that \widehat{C} is tensor equivalent to C.

Definition

Let $V = \bigoplus_{i \in I} V_i$ and $A(\mathcal{C}) = \operatorname{End}_{\mathcal{C}}(V) = \operatorname{Hom}_{\mathcal{C}}(V, V)$. Then $A(\mathcal{C})$ is a finite-dimensional \mathbb{F} -algebra. Let $\pi_i : V \to V_i$ and $\tau_i : V_i \to V$ be the canonical projections and injections. Then $Id_V = \sum_{i \in I} \tau_i \circ \pi_i$ and

$$\pi_i \circ au_j = egin{cases} Id_{V_i}, & ext{if } i=j, \ 0, & ext{else.} \end{cases}$$

Let $\mathcal C$

- \bullet be an abelian, Krull-Schmidt tensor category over $\mathbb F;$
- have finitely many indecomposable objects;
- have finite-dimensional Hom-spaces;
- be strict and the unit object 1 be simple.

Let $\{V_i \mid i \in I\}$ be a set of representatives of the isomorphism classes of the indecomposable objects of C $(1 = V_1)$. We also assume that $U \otimes V \neq 0$ for all nonzero objects.

Goal of the section

We will associate data $(r(\mathcal{C}), A(\mathcal{C}), I, \{e_i \mid i \in I\}, \phi_{\mathcal{C}}, \{a_{ijl} \mid i, j, l \in I\})$ to C. By the previous section we can then construct a category \widehat{C} . We will show that \widehat{C} is tensor equivalent to C.

Definition

Let $V = \bigoplus_{i \in I} V_i$ and $A(\mathcal{C}) = \operatorname{End}_{\mathcal{C}}(V) = \operatorname{Hom}_{\mathcal{C}}(V, V)$. Then $A(\mathcal{C})$ is a finite-dimensional \mathbb{F} -algebra. Let $\pi_i : V \to V_i$ and $\tau_i : V_i \to V$ be the canonical projections and injections. Then $Id_V = \sum_{i \in I} \tau_i \circ \pi_i$ and

$$\pi_i \circ au_j = egin{cases} Id_{V_i}, & ext{if } i=j, \ 0, & ext{else.} \end{cases}$$

Let $\mathcal C$

- \bullet be an abelian, Krull-Schmidt tensor category over $\mathbb F;$
- have finitely many indecomposable objects;
- have finite-dimensional Hom-spaces;
- be strict and the unit object 1 be simple.

Let $\{V_i \mid i \in I\}$ be a set of representatives of the isomorphism classes of the indecomposable objects of C $(1 = V_1)$. We also assume that $U \otimes V \neq 0$ for all nonzero objects.

Goal of the section

We will associate data $(r(\mathcal{C}), A(\mathcal{C}), I, \{e_i \mid i \in I\}, \phi_{\mathcal{C}}, \{a_{ijl} \mid i, j, l \in I\})$ to C. By the previous section we can then construct a category \widehat{C} . We will show that \widehat{C} is tensor equivalent to C.

Definition

Let $V = \bigoplus_{i \in I} V_i$ and $A(\mathcal{C}) = \operatorname{End}_{\mathcal{C}}(V) = \operatorname{Hom}_{\mathcal{C}}(V, V)$. Then $A(\mathcal{C})$ is a finite-dimensional \mathbb{F} -algebra. Let $\pi_i : V \to V_i$ and $\tau_i : V_i \to V$ be the canonical projections and injections. Then $Id_V = \sum_{i \in I} \tau_i \circ \pi_i$ and

$$\pi_i \circ au_j = egin{cases} Id_{V_i}, & ext{if } i=j, \ 0, & ext{else.} \end{cases}$$

Let $\mathcal C$

- \bullet be an abelian, Krull-Schmidt tensor category over $\mathbb F;$
- have finitely many indecomposable objects;
- have finite-dimensional Hom-spaces;
- be strict and the unit object 1 be simple.

Let $\{V_i \mid i \in I\}$ be a set of representatives of the isomorphism classes of the indecomposable objects of C $(1 = V_1)$. We also assume that $U \otimes V \neq 0$ for all nonzero objects.

Goal of the section

We will associate data $(r(\mathcal{C}), A(\mathcal{C}), I, \{e_i \mid i \in I\}, \phi_{\mathcal{C}}, \{a_{ijl} \mid i, j, l \in I\})$ to C. By the previous section we can then construct a category \widehat{C} . We will show that \widehat{C} is tensor equivalent to C.

Definition

Let $V = \bigoplus_{i \in I} V_i$ and $A(\mathcal{C}) = \operatorname{End}_{\mathcal{C}}(V) = \operatorname{Hom}_{\mathcal{C}}(V, V)$. Then $A(\mathcal{C})$ is a finite-dimensional \mathbb{F} -algebra. Let $\pi_i : V \to V_i$ and $\tau_i : V_i \to V$ be the canonical projections and injections. Then $Id_V = \sum_{i \in I} \tau_i \circ \pi_i$ and

$$\pi_i \circ au_j = egin{cases} Id_{V_i}, & ext{if } i=j, \ 0, & ext{else.} \end{cases}$$

Proposition

The set $\{e_i \mid i \in I\}$ forms a complete set of orthogonal primitive idempotents of $A(\mathcal{C})$. Moreover, for all $i \neq j$, $e_iA(\mathcal{C})e_jA(\mathcal{C})e_i \subset rad(e_iA(\mathcal{C})e_i)$. Hence if $f \in Hom(V_i, V_j)$, $g \in Hom(V_j, V_i)$, then $gf \in End(V_i)$.

Proposition

- Let X be an (\mathbf{m}, \mathbf{s}) -matrix over $A(\mathcal{C})$, then
 - X has a right universal annihilator.
 - 2 X has a left universal annihilator.
 - **(3)** There is a CI (m,t)-matrix X_1 and a RI (t,s)-matrix X_2 s.t. $X = X_1X_2$.
 - If X is CI and Y is a LUA of X, then X is a RUA of Y.
 - If X is RI and Y is a RUA of X, then X is a LUA of Y.

< □ > < 同 > < 回 > < Ξ > < Ξ

Proposition

The set $\{e_i \mid i \in I\}$ forms a complete set of orthogonal primitive idempotents of $A(\mathcal{C})$. Moreover, for all $i \neq j$, $e_iA(\mathcal{C})e_jA(\mathcal{C})e_i \subset rad(e_iA(\mathcal{C})e_i)$. Hence if $f \in Hom(V_i, V_j)$, $g \in Hom(V_j, V_i)$, then $gf \in End(V_i)$.

Proposition

Let X be an (\mathbf{m}, \mathbf{s}) -matrix over $A(\mathcal{C})$, then

- **1** X has a right universal annihilator.
- X has a left universal annihilator.
- **③** There is a CI (\mathbf{m} , \mathbf{t})-matrix X_1 and a RI (\mathbf{t} , \mathbf{s})-matrix X_2 s.t. $X = X_1 X_2$.
- If X is CI and Y is a LUA of X, then X is a RUA of Y.
- If X is RI and Y is a RUA of X, then X is a LUA of Y.

We write $[V_i][V_j] = \sum_{k \in I} c_{ijk}[V_k]$ in $r(\mathcal{C})$. Let $\mathbf{c}_{ij} := (c_{ijk})_{k \in I} \in \mathbb{N}^I$. Define a vector space $M(\mathcal{C})$ by

$$\mathcal{M}(\mathcal{C}) := \bigoplus_{i,i',j,j' \in I} \mathcal{M}_{\mathbf{c}_{i'j'} \times \mathbf{c}_{ij}}(\mathcal{A}(\mathcal{C})).$$

Then $M(\mathcal{C})$ is an \mathbb{F} -algebra as before.

Proposition

There exists an algebra map $\phi_{\mathcal{C}} : A(\mathcal{C}) \otimes_{\mathbb{F}} A(\mathcal{C}) \to M(\mathcal{C})$ s.t.

We write $[V_i][V_j] = \sum_{k \in I} c_{ijk}[V_k]$ in $r(\mathcal{C})$. Let $\mathbf{c}_{ij} := (c_{ijk})_{k \in I} \in \mathbb{N}^I$. Define a vector space $M(\mathcal{C})$ by

$$\mathcal{M}(\mathcal{C}) := \bigoplus_{i,i',j,j' \in I} \mathcal{M}_{\mathbf{c}_{i'j'} \times \mathbf{c}_{ij}}(\mathcal{A}(\mathcal{C})).$$

Then $M(\mathcal{C})$ is an \mathbb{F} -algebra as before.

Proposition

There exists an algebra map $\phi_{\mathcal{C}} : A(\mathcal{C}) \otimes_{\mathbb{F}} A(\mathcal{C}) \to M(\mathcal{C})$ s.t.

• For $\mathbf{m} = (m_i)_{i \in I}$, $\mathbf{s} = (s_i)_{i \in I}$, we identify $\operatorname{Hom}_{\mathcal{C}}(\bigoplus_{i \in I} m_i V_i, \bigoplus_{i \in I} s_i V_i) = M_{\mathbf{s} \times \mathbf{m}}(A(\mathcal{C}))$.

• For $f \in \text{Hom}_{\mathcal{C}}(\bigoplus_{i \in I} m_i V_i, \bigoplus_{i \in I} s_i V_i)$, the corresponding matrix is

$$\begin{pmatrix} f_{11} & f_{12} & \dots & f_{1m} \\ f_{21} & f_{22} & \dots & f_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ f_{s1} & f_{s2} & \dots & f_{sm} \end{pmatrix}$$

where $f_{kl} = Y_{i,k_1}^{s} f X_{j,k_2}^{m}$ if $k = \sum_{t=1}^{i-1} s_t + k_1$ and $l = \sum_{t=1}^{j-1} m_t + k_2$.

- $Y_{i,k_1}^s \in \text{Hom}_{\mathcal{C}}(\bigoplus_{j \in I} s_j V_j, V_i)$ is the projection from $\bigoplus_{j \in I} s_j V_j$ to the k_1 -th V_i of the direct summand $s_i V_i$ of $\bigoplus_{j \in I} s_j V_j$.
- $X_{j,k_2}^{\mathbf{m}} \in \text{Hom}_{\mathcal{C}}(V_j, \bigoplus_{i \in I} m_i v_i)$ is the embedding of V_j into the k_2 -th V_j of the direct summand $m_j V_j$ of $\bigoplus_{i \in I} m_i V_i$.
- As before, let $\mathbf{m} \otimes \mathbf{s} = \sum_{i,j \in I} m_i s_j \mathbf{c}_{ij}$.
- Let $X \in M_{\mathbf{s}_1 \times \mathbf{m}_1}(A(\mathcal{C})), Y \in M_{\mathbf{s}_2 \times \mathbf{m}_2}(A(\mathcal{C}))$. then

$$X \in \operatorname{Hom}_{\mathcal{C}}(\bigoplus_{i \in I} m_{1i}V_i, \bigoplus_{i \in I} s_{1i}V_i), Y \in \operatorname{Hom}_{\mathcal{C}}(\bigoplus_{i \in I} m_{2i}V_i, \bigoplus_{i \in I} s_{2i}V_i).$$

- For $\mathbf{m} = (m_i)_{i \in I}$, $\mathbf{s} = (s_i)_{i \in I}$, we identify $\operatorname{Hom}_{\mathcal{C}}(\bigoplus_{i \in I} m_i V_i, \bigoplus_{i \in I} s_i V_i) = M_{\mathbf{s} \times \mathbf{m}}(A(\mathcal{C}))$.
- For $f \in \text{Hom}_{\mathcal{C}}(\bigoplus_{i \in I} m_i V_i, \bigoplus_{i \in I} s_i V_i)$, the corresponding matrix is

$$\begin{pmatrix} f_{11} & f_{12} & \dots & f_{1m} \\ f_{21} & f_{22} & \dots & f_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ f_{s1} & f_{s2} & \dots & f_{sm} \end{pmatrix}$$

where
$$f_{kl} = Y_{i,k_1}^{s} f X_{j,k_2}^{m}$$
 if $k = \sum_{t=1}^{i-1} s_t + k_1$ and $l = \sum_{t=1}^{j-1} m_t + k_2$.

- $Y_{i,k_1}^s \in \text{Hom}_{\mathcal{C}}(\bigoplus_{j \in I} s_j V_j, V_i)$ is the projection from $\bigoplus_{j \in I} s_j V_j$ to the k_1 -th V_i of the direct summand $s_i V_i$ of $\bigoplus_{j \in I} s_j V_j$.
- X^m_{j,k2} ∈ Hom_C(V_j, ⊕_{i∈1} m_iv_i) is the embedding of V_j into the k₂-th V_j of the direct summand m_jV_j of ⊕_{i∈1} m_iV_i.
- As before, let $\mathbf{m} \otimes \mathbf{s} = \sum_{i,j \in I} m_i s_j \mathbf{c}_{ij}$.
- Let $X \in M_{s_1 \times m_1}(A(\mathcal{C})), Y \in M_{s_2 \times m_2}(A(\mathcal{C}))$. then

$$X \in \operatorname{Hom}_{\mathcal{C}}(\bigoplus_{i \in I} m_{1i}V_i, \bigoplus_{i \in I} s_{1i}V_i), Y \in \operatorname{Hom}_{\mathcal{C}}(\bigoplus_{i \in I} m_{2i}V_i, \bigoplus_{i \in I} s_{2i}V_i).$$

- For $\mathbf{m} = (m_i)_{i \in I}$, $\mathbf{s} = (s_i)_{i \in I}$, we identify $\operatorname{Hom}_{\mathcal{C}}(\bigoplus_{i \in I} m_i V_i, \bigoplus_{i \in I} s_i V_i) = M_{\mathbf{s} \times \mathbf{m}}(A(\mathcal{C}))$.
- For $f \in \text{Hom}_{\mathcal{C}}(\bigoplus_{i \in I} m_i V_i, \bigoplus_{i \in I} s_i V_i)$, the corresponding matrix is

$$\begin{pmatrix} f_{11} & f_{12} & \dots & f_{1m} \\ f_{21} & f_{22} & \dots & f_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ f_{s1} & f_{s2} & \dots & f_{sm} \end{pmatrix}$$

where $f_{kl} = Y_{i,k_1}^{s} f X_{j,k_2}^{m}$ if $k = \sum_{t=1}^{i-1} s_t + k_1$ and $l = \sum_{t=1}^{j-1} m_t + k_2$.

- $Y_{i,k_1}^s \in \text{Hom}_{\mathcal{C}}(\bigoplus_{j \in I} s_j V_j, V_i)$ is the projection from $\bigoplus_{j \in I} s_j V_j$ to the k_1 -th V_i of the direct summand $s_i V_i$ of $\bigoplus_{j \in I} s_j V_j$.
- X^m_{j,k2} ∈ Hom_C(V_j, ⊕_{i∈1} m_iv_i) is the embedding of V_j into the k₂-th V_j of the direct summand m_jV_j of ⊕_{i∈1} m_iV_i.
- As before, let $\mathbf{m} \otimes \mathbf{s} = \sum_{i,j \in I} m_i s_j \mathbf{c}_{ij}$.
- Let $X \in M_{\mathbf{s}_1 \times \mathbf{m}_1}(A(\mathcal{C})), Y \in M_{\mathbf{s}_2 \times \mathbf{m}_2}(A(\mathcal{C}))$. then

$$X \in \operatorname{Hom}_{\mathcal{C}}(\bigoplus_{i \in I} m_{1i}V_i, \bigoplus_{i \in I} s_{1i}V_i), Y \in \operatorname{Hom}_{\mathcal{C}}(\bigoplus_{i \in I} m_{2i}V_i, \bigoplus_{i \in I} s_{2i}V_i).$$

一日、

- For $\mathbf{m} = (m_i)_{i \in I}$, $\mathbf{s} = (s_i)_{i \in I}$, we identify $\operatorname{Hom}_{\mathcal{C}}(\bigoplus_{i \in I} m_i V_i, \bigoplus_{i \in I} s_i V_i) = M_{\mathbf{s} \times \mathbf{m}}(A(\mathcal{C}))$.
- For $f \in \text{Hom}_{\mathcal{C}}(\bigoplus_{i \in I} m_i V_i, \bigoplus_{i \in I} s_i V_i)$, the corresponding matrix is

$$\begin{pmatrix} f_{11} & f_{12} & \dots & f_{1m} \\ f_{21} & f_{22} & \dots & f_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ f_{s1} & f_{s2} & \dots & f_{sm} \end{pmatrix}$$

where $f_{kl} = Y_{i,k_1}^{s} f X_{j,k_2}^{m}$ if $k = \sum_{t=1}^{i-1} s_t + k_1$ and $l = \sum_{t=1}^{j-1} m_t + k_2$.

- Y^s_{i,k1} ∈ Hom_C(⊕_{j∈I} s_jV_j, V_i) is the projection from ⊕_{j∈I} s_jV_j to the k₁-th V_i of the direct summand s_iV_i of ⊕_{j∈I} s_jV_j.
- X^m_{j,k2} ∈ Hom_C(V_j, ⊕_{i∈1} m_iv_i) is the embedding of V_j into the k₂-th V_j of the direct summand m_jV_j of ⊕_{i∈1} m_iV_i.
- As before, let $\mathbf{m} \otimes \mathbf{s} = \sum_{i,j \in I} m_i s_j \mathbf{c}_{ij}$.
- Let $X \in M_{\mathbf{s}_1 \times \mathbf{m}_1}(A(\mathcal{C})), Y \in M_{\mathbf{s}_2 \times \mathbf{m}_2}(A(\mathcal{C})).$ then

$$X \in \operatorname{Hom}_{\mathcal{C}}(\bigoplus_{i \in I} m_{1i} V_i, \bigoplus_{i \in I} s_{1i} V_i), Y \in \operatorname{Hom}_{\mathcal{C}}(\bigoplus_{i \in I} m_{2i} V_i, \bigoplus_{i \in I} s_{2i} V_i).$$

伺 ト イヨト イヨト

• Let $X \otimes Y$ denote the tensor product of X and Y in C. Then

$$X \otimes Y \in \operatorname{Hom}_{\mathcal{C}}((\bigoplus_{i \in I} m_{1i} V_i) \otimes (\bigoplus_{i \in I} m_{2i} V_i), (\bigoplus_{i \in I} s_{1i} V_i) \otimes (\bigoplus_{i \in I} s_{2i} V_i)).$$

Let X ⊗̃Y := ∏(φ_C(X ⊗_F Y)) ∈ M_{(s1⊗s2)×(m1⊗m2)}(A(C)). We now have two different tensor products!

Lemma

Let $x \in e_{i'} A(\mathcal{C})e_i$, $y \in e_{i'} A(\mathcal{C})e_i$. Then the following diagram commutes:

• Let $X \otimes Y$ denote the tensor product of X and Y in C. Then

$$X \otimes Y \in \mathsf{Hom}_{\mathcal{C}}((\bigoplus_{i \in I} m_{1i}V_i) \otimes (\bigoplus_{i \in I} m_{2i}V_i), (\bigoplus_{i \in I} s_{1i}V_i) \otimes (\bigoplus_{i \in I} s_{2i}V_i)).$$

Let X ⊗ Y := ∏(φ_C(X ⊗_F Y)) ∈ M_{(s1⊗s2)×(m1⊗m2)}(A(C)). We now have two different tensor products!

Lemma

Let $x \in e_{i'} A(\mathcal{C})e_i$, $y \in e_{i'} A(\mathcal{C})e_i$. Then the following diagram commutes:

• Let $X \otimes Y$ denote the tensor product of X and Y in C. Then

$$X\otimes Y\in \mathsf{Hom}_{\mathcal{C}}((\bigoplus_{i\in I}m_{1i}V_i)\otimes (\bigoplus_{i\in I}m_{2i}V_i), (\bigoplus_{i\in I}s_{1i}V_i)\otimes (\bigoplus_{i\in I}s_{2i}V_i)).$$

Let X ⊗ Y := ∏(φ_C(X ⊗_F Y)) ∈ M_{(s1⊗s2)×(m1⊗m2)}(A(C)). We now have two different tensor products!

Lemma

Let $x \in e_{i'}A(\mathcal{C})e_i$, $y \in e_{i'}A(\mathcal{C})e_i$. Then the following diagram commutes:

$$\begin{array}{c|c} V_i \otimes V_j & \xrightarrow{\theta_{ij}} \bigoplus_{k \in I} c_{ijk} v_k \\ \times \otimes y & \downarrow & \downarrow \\ V_{i'} \otimes V_{j'} & \xrightarrow{\theta_{i'j'}} \bigoplus_{k \in I} c_{i'j'k} V_k \end{array}$$

(日) (同) (日) (日)

Let $\mathbf{m} \in \mathbb{N}^{l}$, then we define $V^{(\mathbf{m})} := \bigoplus_{i \in I} m_{i}V_{i}$. For $\mathbf{m}_{1}, \mathbf{m}_{2} \in \mathbb{N}^{l}$, define a morphism $\theta(\mathbf{m}_{1}, \mathbf{m}_{2}) : V^{(\mathbf{m}_{1})} \otimes V^{(\mathbf{m}_{2})} \to V^{(\mathbf{m}_{1} \otimes \mathbf{m}_{2})}$ in C by

$$\theta(\mathbf{m}_1, \mathbf{m}_2) = \sum_{i,j=1}^n \sum_{k_1=1}^{m_{1j}} \sum_{k_2=1}^{m_{2j}} (X_{i,k_1}^{\mathbf{m}_1} \widetilde{\otimes} X_{j,k_2}^{\mathbf{m}_2}) \theta_{ij} (Y_{i,k_1}^{\mathbf{m}_1} \otimes Y_{j,k_2}^{\mathbf{m}_2})$$

Then $\theta(\mathbf{e}_i, \mathbf{e}_j) = \theta_{ij}$.

Lemma

Each $\theta(\mathbf{m}_1, \mathbf{m}_2)$ is an isomorphism. Moreover, the following diagram commutes:

$$\begin{array}{c|c} V^{(\mathbf{m}_1)} \otimes V^{(\mathbf{m}_2)} & \xrightarrow{\theta(\mathbf{m}_1, \mathbf{m}_2)} & V^{(\mathbf{m}_1 \otimes \mathbf{m}_2)} \\ & & \\ X \otimes Y & & & \\ V^{(\mathbf{s}_1)} \otimes V^{(\mathbf{s}_2)} & \xrightarrow{\theta(\mathbf{s}_1, \mathbf{s}_2)} & V^{(\mathbf{s}_1 \otimes \mathbf{s}_2)} \end{array}$$

Let $\mathbf{m} \in \mathbb{N}^{l}$, then we define $V^{(\mathbf{m})} := \bigoplus_{i \in I} m_{i}V_{i}$. For $\mathbf{m}_{1}, \mathbf{m}_{2} \in \mathbb{N}^{l}$, define a morphism $\theta(\mathbf{m}_{1}, \mathbf{m}_{2}) : V^{(\mathbf{m}_{1})} \otimes V^{(\mathbf{m}_{2})} \to V^{(\mathbf{m}_{1} \otimes \mathbf{m}_{2})}$ in C by

$$\theta(\mathbf{m}_1,\mathbf{m}_2) = \sum_{i,j=1}^n \sum_{k_1=1}^{m_{1j}} \sum_{k_2=1}^{m_{2j}} (X_{i,k_1}^{\mathbf{m}_1} \widetilde{\otimes} X_{j,k_2}^{\mathbf{m}_2}) \theta_{ij} (Y_{i,k_1}^{\mathbf{m}_1} \otimes Y_{j,k_2}^{\mathbf{m}_2}).$$

Then $\theta(\mathbf{e}_i, \mathbf{e}_j) = \theta_{ij}$.

Lemma

Each $\theta(\mathbf{m}_1, \mathbf{m}_2)$ is an isomorphism. Moreover, the following diagram commutes:

$$\begin{array}{c} V^{(\mathbf{m}_1)} \otimes V^{(\mathbf{m}_2^{\theta}(\underbrace{\mathbf{m}_1,\mathbf{m}_2})} V^{(\mathbf{m}_1\otimes\mathbf{m}_2)} \\ X \otimes Y \\ \downarrow \\ V^{(\mathbf{s}_1)} \otimes V^{(\mathbf{s}_2)} \xrightarrow{\theta^{(\mathbf{s}_1,\mathbf{s}_2)}} V^{(\mathbf{s}_1\otimes\mathbf{s}_2)} \end{array}$$

Define $a_{ijl} \in M_{\mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_l}(A(\mathcal{C})) = \operatorname{End}_{\mathcal{C}}(V^{(\mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_l)})$ by

 $a_{ijl} := \theta(\mathbf{e}_i, \mathbf{e}_j \otimes \mathbf{e}_l)(E_{\mathbf{e}_i} \otimes \theta(\mathbf{e}_j, \mathbf{e}_l))(\theta(\mathbf{e}_i, \mathbf{e}_j)^{-1} \otimes E_{\mathbf{e}_l})\theta(\mathbf{e}_i \otimes \mathbf{e}_j, \mathbf{e}_l)^{-1}.$

Proposition

The family $\{a_{ijl}\}\$ satisfies the four conditions encountered earlier w.r.t. the tensor product $\widetilde{\otimes}$.

Denote by \widehat{C} the category associated to the data $(r(\mathcal{C}), A(\mathcal{C}), I, \{e_i \mid i \in I\}, \phi_{\mathcal{C}}, \{a_{ijl} \mid i, j, l \in I\})$. The tensor products of \mathcal{C} and $\widehat{\mathcal{C}}$ are denoted by \otimes and $\widetilde{\otimes}$ respectively.

Theorem

 $\widehat{\mathcal{C}}$ and \mathcal{C} are tensor equivalent.

(日) (同) (日) (日)

Define $a_{ijl} \in M_{\mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_l}(A(\mathcal{C})) = \operatorname{End}_{\mathcal{C}}(V^{(\mathbf{e}_i \otimes \mathbf{e}_j \otimes \mathbf{e}_l)})$ by

 $a_{ijl} := \theta(\mathbf{e}_i, \mathbf{e}_j \otimes \mathbf{e}_l) (E_{\mathbf{e}_i} \otimes \theta(\mathbf{e}_j, \mathbf{e}_l)) (\theta(\mathbf{e}_i, \mathbf{e}_j)^{-1} \otimes E_{\mathbf{e}_l}) \theta(\mathbf{e}_i \otimes \mathbf{e}_j, \mathbf{e}_l)^{-1}.$

Proposition

The family $\{a_{ijl}\}$ satisfies the four conditions encountered earlier w.r.t. the tensor product $\widetilde{\otimes}$.

Denote by \widehat{C} the category associated to the data $(r(\mathcal{C}), A(\mathcal{C}), I, \{e_i \mid i \in I\}, \phi_{\mathcal{C}}, \{a_{ijl} \mid i, j, l \in I\})$. The tensor products of \mathcal{C} and $\widehat{\mathcal{C}}$ are denoted by \otimes and $\widetilde{\otimes}$ respectively.

Theorem

 $\widehat{\mathcal{C}}$ and \mathcal{C} are tensor equivalent.

Thank You!

2

・ロト ・回ト ・ヨト ・ヨト