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The Gauge Principle for the multi-phase two-dimensional non-linear
sigma model will be discussed from the vantage point of the model’s
lagrangean formulation. The rôle of the 2-category of equivariant
gerbes over the target space of the field theory in the construction of
the gauged sigma model will be emphasised, and an interpretation of
the gauge anomaly in terms of an obstruction to the existence of
topological defect networks implementing the gauge symmetry will
be given.



Goals:

1. Establishing a defect–duality correspondence through
transgression of cohomological (bi-brane) data of a conformal
world-sheet defect.

2. Deriving the Gauge Principle for global symmetries through
generalisation of the minimal-coupling recipe and local
reconstruction of the σ-model coupled to world-sheet gauge
fields of arbitrary topology using topological gauge-symmetry
defect networks, whence a symmetry-equivariant extension of
σ-model data ensues.



Part I

Preliminaries



A brief recap on the multi-phase 2d non-linear σ-model
The action functional of the model for patchwise C1-smooth maps

X :

world-sheet (Σ, η)
with defect quiver Γ ∼=

⊔
d∈D S1

↪→
geometric string background

requires the 2-category BGrb∇(F ) of bundle gerbes with connection
over the composite target space F :=

⊔
i∈I M(i) t

⊔
〈i,j〉∈I2 Q(i,j).

Γ splits the spacetime into domains Σi separated by defect lines `i,j ,

Σ =
⊔
i∈I

Σi t
⊔
〈i,j〉∈I2

`i,j

Domains support phases X : Σi −→ M(i) embedded C1-smoothly in
connected metric manifolds (M(i), g(i)) with gerbes G(i) subject to
the conformality constraints

βµν
(
g(i), Γ(g(i)), curv(G(i));α′

)
= 0 .



A brief recap on the multi-phase 2d non-linear σ-model – ctd.
Defect lines are loci of field discontinuity determined by C1-smooth
embeddings X : `i,j −→ Q(i,j) in manifolds Q(i,j) of curvatures
ω(i,j) ∈ Ω2(Q(i,j)), mapping smoothly

ι
(i,j)
1 : Q(i,j) −→ M(i) , ι

(i,j)
2 : Q(i,j) −→ M(j) ,

and equipped with gerbe bimodules
Φ(i,j) : ι

(i,j) ∗
1 G(i)

∼=−−→ ι
(i,j) ∗
2 G(j) ⊗ Iω(i,j) .

In what follows, we shall consider the composite target and bi-brane
M :=

⊔
i∈I

(M(i), g(i),G(i)) ≡ (M, g,G) , B :=
⊔
〈i,j〉∈I2

(Q(i,j), ι
(i,j)
α , ω(i,j),Φ(i,j)) ≡ (Q, ια, curv(B),Φ) .

(G,Φ) are a geometric realisation of the relative integral cohomology class
1

2π [(curv(G), curv(B))] ∈ H3(M,Q |∆Q) , ∆Q := ι∗2 − ι∗1
and as such they define a Cheeger–Simons differential character

Hol(G,Φ)(X | Γ) aka (decorated) surface holonomy.



A brief recap on the multi-phase 2d non-linear σ-model – ctd.

The string background B := (M,B) determines the action functional:

Sσ[(X | Γ); η] := −1
2

∫
Σ

g(dX∧, ?η dX )− i log Hol(G,Φ)(X | Γ)

that yields field equations for the phases alongside the Defect Gluing
Condition (DGC) over Γ 3 p (with tangent t̂ and normal n̂),

DGCcurv(B)(p|1, p|2,X ; V )(p) := p|1(ι1 ∗V )(p)− p|2(ι2 ∗V )(p)− curv(B)(X∗ t̂ ,V )(p)
!

= 0 ,

valid for p|α := g(X|α)(X|α ∗n̂, ·) and an arbitrary V ∈ TX(p)Q.

N.B. World-sheets with a non-empty boundary are described by
boundary defects with

M := M(1) t {•} , Q := D ⊂ M(1) , ι1 : D ↪→ M(1) ,

ι2 : D −→ {•} .



Part II

The defects’ anatomy and physique



Conformality

For the special choice V := X∗ t̂ , the DGC yields the continuity
equation

lim
σ→p−

T‖(σ) = lim
σ→p+

T‖(σ)

for the component T‖ of the energy-momentum tensor

T ab := − 1√
|det η|

δ
δηab

Sσ[(X | Γ); η]

that generates diffeomorphisms of Σ preserving Γ.

Conclusion: The world-sheet defects are conformal by construction.



The twisted sector

In the presence of (timelike) defect lines, we may extract from Sσ –
via first-order formalism – a canonical description of B-twisted states

q
n

1q

2
q

...

V1

V2 Vn

DGCω

ε

ε

T*Q

T*IM

.
Gawȩdzki’s transgression map

τ :
(
H2 (M,D(2)•M) , g

)
−→ H1 (Pσ,D(1)•Pσ

)
: ([G], g) 7−→ [Lσ]

also generalises to the relative-geometric setting,

τ∆Q :
(
H2 (F ,D(2)•F | ∆̌Q

)
, g
)
−→ H1

(
Ptw.
σ ,D(1)•Ptw.

σ

)
: ([(G,Φ)], g) 7−→ [Ltw.

σ ] ,

and thus captures geometric quantisation of the B-twisted sector
of the theory.



Fusion of twisted states and defect junctions

The splitting-joining interaction of (twisted) states
`1,3

`1,2 `2,3ψ1

ψ2

ψ3

entails fusion of defects, for which we need to inject defect junctions
of valence n in manifolds Tn mapping smoothly πk ,k+1

n : Tn −→ Q,
k ∈ Z/nZ and equipped with gerbe 2-isomorphisms

ϕn : ◦
k∈Z/nZ

πk ,k+1 ∗
n

(
Φεk,k+1

n ⊗ Id
) ∼=

==⇒ Id , εk ,k+1
n (in/out) = +1/− 1 .

Through transgression, these define twisted-loop fusion(
pr∗1Ltw.

σ ⊗ pr∗2Ltw.
σ

)
|Itw.

2→1

∼=−−→ pr∗3Ltw.
σ |Itw.

2→1

over an “interaction subspace” Itw.
2→1 ⊂ Ptw.

σ × Ptw.
σ × Ptw.

σ .



The general multi-phase σ-model
We may now conceive a theory of patchwise C1-smooth embeddings

X :

(Σ ⊃ Γ, η)

↪→
B = (M,B,J )

in a string background B composed of a target and a bi-brane as
before, and of an inter-bi-brane

J :=
⊔

n∈N≥3

(Tn, π
k ,k+1
n , ϕn)

The quantum Feynman amplitude

AF[(X | Γ); η] := exp
(
− i

2

∫
Σ

g(dX∧, ?η dX )

)
· Hol(G,Φ,ϕn)(X | Γ)

is defined in terms of the differential character associated with the
triple (G,Φ, ϕn) that realises the integral cohomology class

1
2π [Θ(B)] ∈ H3(M,Q,Tn |∆Q ,∆Tn ) , ∆Tn :=

∑
n∈Z/nZ

εk,k+1
n πk,k+1 ∗

n .

of the relative 3-cocycle Θ(B) := (curv(G), curv(B),0).



The general multi-phase σ-model – ctd.

Upshot: Classification of inequivalent mono-phase σ-models, defects
between them and defect junctions joining them in terms of relative
Deligne cohomology

H•
(
F ,D(2)•F | ∆̌Q, ∆̌Tn

)
,

to wit,

- inequivalent phases with fixed (M, g, curv(G)) are classified by
H2 (M,U(1));

- inequivalent defects between given phases with fixed
(Q, ια, curv(B)) are classified by H1 (Q,U(1));

- inequivalent data for an n-valent junction of given defects with
fixed (Tn, π

k ,k+1
n ) are classified by U(1)π0(Tn).



Part III

The defect-duality correspondence



Dualities from defects, . . .
In conformity with the obvious world-sheet intuition,

a defect sets in correspondence states from the phases separated by it.
Formally, the DGC defines an isotropic subspace

Dσ ⊂ (Pσ × Pσ, pr∗1Ωσ − pr∗2Ωσ)

composed of pairs ψα = (Xα,pα) ∈ T∗LM, α ∈ {1,2} related as

∃X∈LQ : Xα = ια ◦ X , DGCcurv(B)(p1,p2,X ; ·) = 0 .

Bi-brane data lift this (local) symplectomorphism to a (local) bundle
automorphism

pr∗2Lσ|Dσ ∼= pr∗1Lσ|Dσ .



Dualities from defects, . . . – ctd.

For a proper field-theoretic (self-)duality, we must further require that

- Dσ be a graph =⇒ the ια should be surjective submersions;

- the fundamental quantum charges of the states in correspondence
match =⇒ (pr∗2H − pr∗1H )|Dσ

!
= 0.

The last requirement, in conjunction with the DGC, translates into the
statement of topologicality of duality defects,

lim
σ→p−

T (σ) = lim
σ→p+

T (σ) .

Amidst topological defects, there are extendible defects, with

X̂ : U1 ∪ Γ ∪U2 −→ Q , X̂ |Γ = X |Γ ∧ ια ◦ X̂ |Uα = X |Uα ,

∆Qg(X̂ )(X̂∗û⊥,V )(σ) + curv(B)(X̂ )(X̂∗û,V ) = 0

for û ∈ TσΣ and σ ∈ U1 ∪ Γ ∪U2 arbitrary.



. . . and vice versa

Conversely, a large class of dualities (the so-called ∂aX|α-linear ones)
can be shown to induce bi-brane data. These include T-duality-type
defects and isometric defects with data

Q = (idM × F )(M)
ια=prα−−−−→ M , curv(B) = 0 , ΦF : pr∗1G

∼=−−→ pr∗2G

defined by arbitrary isometric diffeomorphisms F ∈ Iso(M, g).

N.B. The curvature of the bi-brane associated with an isometric defect
vanishes identically.



Part IV

The Gauge Principle



Generalities

Point of departure: A field theory with field bundle

π̂ : F̂ −→ Σ

of typical fibre π̂−1({σ}) ∼= F over spacetime Σ. Sections
X ∈ Γ(F̂ ) define Feynman amplitudes

AF[X ] = ei S[X ] ,

invariant under the action

` : G×F −→ F : (g,X ) 7−→ g.X

of a (global-)symmetry group G ⊂ Diff(F ).

Goal: Render the symmetry local by passing to another bundle
π̃ : F̃ −→ Σ of fibre isotype F and such that a bundle of groups
G̃ −→ Σ of fibre isotype G acts fibrewise on F̃ through
transformations that depend upon the point in the base. Use sections

of π̃ to write down the gauged field theory.



Generalities – ctd.
Idea: Extend F̂ 7−→ P×Σ F̂ by an arbitrary principal G-bundle
πP : P −→ Σ with principal G-connection A ∈ Ω1(P)⊗ g,
g := Lie G, and subsequently descend to the associated bundle,

P×Σ F̂ 7−→ (P×Σ F̂ )/G ,

admitting a fibrewise action of the adjoint bundle

(P× G)/G ≡ P×Ad G .

Challenges:
1. Extension to P×Σ F̂ of the metric and cohomological structure

from over F̂ entering the definition of AF, in a manner
structurally compatible with the amplitudes.

2. Descent of the extended structure to the smooth quotient
(P×Σ F̂ )/G, giving rise to a gauged field theory with this field

bundle and invariant with respect to P×Ad G.



Generalities – ctd.

Strategy:
1. Identification of the algebraic structure on the set of global

symmetries.

2. Coupling of a topologically trivial gauge field and derivation of
constraints for a consistent gauging (the gauge anomaly).

3. Motivation for and reconstruction (through local trivialisation) of
topologically nontrivial gauge bundles.

4. Extraction of a G-equivariant structure on the string background
and classification thereof.

5. The gauged σ-model and the coset theory.



Ad 1. The algebra of global symmetries

Symmetry transformations

G×F −→ F : (g,X ) 7−→ g.X , AF[g.X ] = AF[X ]

are described, on the infinitesimal level, by vector fields
K ∈ Γ(TF ) with local flows ψ· :]− ε, ε[×F −→ F such that

d
dt |t=0AF[ψt ◦ X ] = 0 .

These describe symmetries iff

−̃L K g = 0 ∧ ı̃K (curv(G), curv(B),0) = −d̃(κ, k ,0)

for some (κ, k ,0) ∈ Ω1(M,Q,Tn |∆Q,∆Tn ), the latter combining
with K to a σ-symmetric section K ⊕ (κ, k ,0) of the generalised
tangent bundles

EF := (TM ⊕ T∗M) t (TQ ⊕ (Q × R)) t
⊔
n≥3

(TTn ⊕ (Tn × R)0)→ F .



Ad 1. The algebra of global symmetries – ctd.
On Γ(EF ), there is an essentially unique bracket

[V ⊕ υ,W ⊕$]
Θ(B)
C := [V ,W ]⊕

(
−̃L V $ − −̃L W υ − 1

2 d̃(ι̃V $ − ι̃W υ) + ι̃V ι̃W Θ(B)
)

that closes on σ-symmetric sections Γσ(EF ) and gives rise to the
relative Θ(B)-twisted Courant algebroid

Cσ(B) :=
(

EF , [·, ·]Θ(B)
C , (·, ·)y, αTF

)
.

Cσ(B) furnishes a target-space model of the Poisson algebra of
Noether charges of the symmetry.

N.B. Cσ(B) is not a Lie algebroid (Jacobi and Leibniz fail).
In the fundamental basis

KA := KA ⊕ (κA, kA,0) ≡ KA ⊕ KA , [KA,KB] = fABC KC ,

we find
[KA,KB]

Θ(B)
C = fABC KC + 0⊕ αAB , with

αAB := −̃L KAKB − fABC KC − d̃(KA,KB)y .



Ad 2. The coupling of the trivial . . .
Begin with

P = Σ× G , A = AA ⊗ tA ∈ Ω1(Σ)⊗ g .

Analysis of a G-invariant tensorial string background leads to the
introduction of an extended string background BA with components:

(T) the extended target Σ×M with

gA := g2 − g(KA, ·)2 ⊗ AA
1 − AA

1 ⊗ g(KA, ·)2 + g(KA,KB)2 AA
1 ⊗ AB

1 and

GA := G2 ⊗ IρA , where ρA := κA 2 ∧ AA
1 −

1
2

(ιKAκB)2 AA
1 ∧ AB

2 ;

(BB) the extended bi-brane EΓ ×Q with

ωA := ω2∗ −∆QρA + dλA and ΦA := Φ2 ⊗ JλA , where λA := −kA 2 AA
1 ;

(IBB) the extended inter-bi-brane V
(n)
Γ × Tn with

ϕn A := ϕn 2 .



Ad 2. . . . and the obstruction
The gauged Feynman amplitude for extended maps φ = (idΣ,X ),

AF[(X | Γ); A, η] := exp
(
− i

2

∫
Σ

gA(dφ∧, ?η dφ)

)
Hol(GA,ΦA,ϕn A)(φ | Γ) ,

is invariant under small (id-homotopic) gauge transformations iff

SB :=

(dim g⊕
A=1

C∞(F ,R)KA, [·, ·]
Θ(B)
C , αTF

)
∼= gǹ F ≡ Lie (Gǹ F ) .

Conclusion: Cσ(B) encodes the Small Gauge Anomaly.

Question: Whence Gǹ F as the symmetry of the gauged σ-model?

Answer: Recall that data of the gauged σ-model are: a principal
G-bundle P −→ Σ with the property that P×G F −→ Σ admits a
global section. But we have equivalence of groupoids

G-Bun(Σ ‖F ) ∼= Gǹ F -Bun(Σ) with an intuitive interpretation . . .



The world-sheet of the gauged σ-model

Σ
Σi

Σj

σ

σ′

µi

µj

M

gij(σ).

µi(Σi)
µi (σ)

µi (σ
′)

(e, µi (σ
′))

µj(Σj)

µj (σ)

h−1.µi (σ
′)

g−1.µi (σ
′)

h−1
1 .µi (σ

′)

=h−1
2 .µi (σ

′)

(
g, g−1.µi (σ

′)
)



Ad 2. . . . and the obstruction – ctd.

Conclusions:
• The action groupoid Gǹ F captures the symmetries of the

gauged σ-model.

• We need topologically non-trivial gauge fields to account for the
existence of the G-twisted sector.

Goal: Get physical, i.e., account for connections on P and for the
metric and cohomological structure on F .

Idea: Local trivialisation in conjunction with results for the
topologically trivial case (TBC . . . ).



Ad 2. . . . and the obstruction – completed

The necessary and sufficient condition for the invariance of the
gauged Feynman amplitude under large (non-id-homotopic) gauge
transformations,

(X ,A) 7−→
(
χ.X ,AdχA− dχχ−1

)
, χ 6∼ id ,

is the existence of the gerbe 1-isomorphism

Υ : `∗G
∼=−−→ pr∗2G ⊗ IρθL

over G×M , and of the gerbe 2-isomorphism

Ξ : `∗Φ
∼=

==⇒
[(

(idG × ι2)∗Υ−1 ⊗ Id
)
◦ (pr∗2Φ⊗ Id) ◦ (idG × ι1)∗Υ

]
⊗ JλθL

over G×Q, subject to additional coherence constraints

`∗ϕn = αn • pr∗2ϕ • βn • ◦
k∈Z/nZ

(idG × πk ,k+1
n )∗

(
Ξε

k,k+1
n ⊗ Id

)
over the G× Tn.



Ad 3. The reconstruction . . .

Having understood the necessity of incorporating topologically
nontrivial gauge fields into the description, we may piece the
corresponding gauged σ-model together from its local trivialisations,

τi : π−1
P (Oi) −→ Oi × G , OΣ := {Oi} ⊂ TΣ ,

Xi : Oi −→ F , Ai ∈ Ω1(Oi)⊗ g ,

related on double intersections Oi ∩ Oj =: Oij 3 σ as

Xi(σ) = gij(σ).Xj(σ) , Ai(σ) = Adgij (σ)Aj(σ)− dgij(σ) gij(σ)−1 ≡ gijAj(σ)

in terms of transition maps

gij ∈ C∞(Oij ,G) , (δ̌g)ijk = e .

To this end, we associate to OΣ a Γ-transversal and Γ-simple oriented
trivalent graph ΓOΣ

⊂ Σ . . .



Ad 3. . . . through Trivialisation

Σi

Σj

Σk Σl

Σm

Σn

Σo

DAn
DAn

J ++−
An

DAl

DAo

Jglm,gmo

DAn

Dgmn

Dgom

Jgom,gmn

Dglo

Dgon
Dgon

Jgon,An

Dglm

Dglo
Jglo,Ao

Dgkl

Jgkl,glo
DgkoDgjk

Dgjo

Jgjk,gko

Dgoi

Dgni

Jgon,gni

Jgjo,goi

Dgjieji

vlmo

pj

pi

con

n

sn

vomn

1



Ad 3. RtT: Data assignment

To a free edge eji ∈ ΓOΣ
, we pull back the (flat) transition bi-brane

Bgji :=
(
{gji} × Oij ×M,Lgji , idOij×M ,0, (gji × idM)∗Υ =: Υgji

)

eji

Dgji

(Xj ,Aj)
= (gji .Xi ,

gjiAi)
(Xi ,Ai)

pj piLgji

The ensuing transition defect Dgji is manifestly extendible within Oij ,
and hence topological.



Ad 3. RtT: Data assignment – ctd.
To a Γ-crossing con ∈ ΓOΣ

∩ Γ, we pull back the trans-defect transition
inter-bi-brane Jgon;An :=

(
{gon} × Oon ×Q, π̃k ,k+1

4 , (gon × idQ)∗Ξ
)

DAn

(Xn|1,An)

(gon.Xn|1,
gonAn)

(Xn|2,An)

(gon.Xn|2,
gonAn)

Dgon

Ξgon

con

Ξgon := (gon × idQ)∗Ξ : L∗gon ΦgonAn

∼=
==⇒

(
(idG × ι2)∗Υ−1

gon ⊗ Id
)
◦ (ΦAn ⊗ Id) ◦ (idG × ι1)∗Υgon ,

π̃1,2
4 (gon, σ, q) = (σ, gon(σ).q) , π̃2,3

4 (gon, σ, q) = (gon, σ, ι2(q)) ,

π̃3,4
4 (gon, σ, q) = (σ, q) , π̃4,1

4 (gon, σ, q) = (gon, σ, ι1(q)) .



Ad 3. RtT: Coherence

Independence of the gauged Feynman amplitudes of the arbitrary
choices made along the way is tantamount to the topologicality of the
gauge defect network and the existence of extra structure . . .



Ad 3. RtT: Coherence – ctd.
We need the (elementary) transition inter-bi-brane

J ++−
(gjo,goi )

:=
(
{(gjo,goi )} × Ojoi ×M, d̃ (2)

• , ((gjo,goi )× idM)∗ γ =: γ(gjo,goi )

)
Dgji

(
gji .Xi ,

gjiAi
)

(Xi ,Ai)

Lgji

Lgjo Lgoi

(goi .Xi ,
goiAi)

Dgjo Dgoi

Jgjo,goi

carrying the data of the gerbe 2-isomorphism (over G2 ×M)

γ :
(

d (2) ∗
0 Υ⊗ Id

)
◦ d (2) ∗

2 Υ
∼=−−→ d (2) ∗

1 Υ . . .



Ad 3. RtT: Coherence – ctd.

. . . and satisfying the coherence (associativity) condition

εL

Dgjo

Dgon

Dgni

Dgji

Dgjn
γgjn,gni

gni .γgjo,gon
εL→0
−−−−→

Dgjo

Dgon

Dgni

Dgji

u3
gjo,gon,gni ;Ai

εR→0
←−−−− εR

Dgjo

Dgon

Dgni

Dgji

Dgoi
γgjo,goi

γgon,gni

with u3
gjo,gon,gni ;Ai

= δ
(2)
C∞(Ojoni ,G)γgjo,gon,gni

!
= 1 ,

which enforces the cocycle condition (over G3 ×M)

d (3) ∗
1 γ •

(
Id ◦ d (3) ∗

3 γ
)

= d (3) ∗
2 γ •

((
d (3) ∗

0 γ ⊗ Id
)
◦ Id
)
.



Ad 3. RtT: Coherence – ctd.

Similar consistency considerations in the vicinity of Γ,

Dgon

Dgmn DgomDAn

εL ι
(2) ∗
2 γ]gom,gmn

Ξgon

εL→0
−−−−−−→

Dgon

Dgmn
Dgom

DAn

u2
gom,gmn ;An

εi
R→0

←−−−−−−

Dgon

Dgmn

Dgom

DAn

ι
(2) ∗
1 γgom,gmn Ξgmn

gmn.Ξgom

ε1
R

ε2
R

ε3
R

yield

u2
gom,gmn ;An :=

(
Id ◦ ι∗1 γgom,gmn

)
•
(

Id ◦
(

Ξgmn ⊗ Id
)
◦ Id

)
• L∗gmn Ξgom • Ξ−1

gon •
((
ι
∗
1 γ
]
gom,gmn ⊗ Id

)
◦ Id

)−1 !
= 1 ,

and thus enforce (over G2 ×Q)((
ι
(1) ∗
2 γ] ⊗ Id

)
◦ Id
)
• d (2) ∗

1 Ξ =
(
Id ◦ ι(1) ∗

1 γ
)
•
(
Id ◦

(
d (2) ∗

0 Ξ⊗ Id
)
◦ Id
)
• d (2) ∗

2 Ξ .



Ad 3. RtT: Coherence – ctd.

Finally, coherence constraints imposed in the topologically trivial
setting remove the obstruction u1

gij ;Ai
against

Dgij

D
(1)
Ai

D
(2)
Ai

D
(3)
Ai

ε1
L

ε2
L

ε3
L

π
1,2 (1) ∗
3 Ξgij

π
2,3 (1) ∗
3 Ξgij

π
3,1 (1) ∗
3 Ξ]−1

gij

ϕ3

ε4
L ε5

L

εi
L→0

−−−−−−→

Dgij

D
(1)
Ai

D
(2)
Ai

D
(3)
Ai

u1
gij ;Ai

εR→0
←−−−−−−

Dgij

D
(1)
Ai

D
(2)
Ai

D
(3)
Ai

gij .ϕ3
εR

and thus bring the reconstruction procedure to a completion.

Upshot: The data

(G,Υ, γ) , (Φ,Ξ) , (ϕn)n∈N≥3 ,

subject to the coherence conditions listed compose
a G-equivariant string background.



Ad 4. Extraction and classification

Formally, a G-equivariant structure on B is a geometric realisation of
the class in the G-cohomology extension of the relative Čech–Deligne
cohomology extending [(G,Φ, ϕn)]. Thus, answers to questions of its
existence and uniqueness are neatly captured by the cohomology of
the 4-complex

Č•
(
O,Ω•(G• ×M •)

)
.

As has been demonstrated and shall be argued further in what follows,
these answers translate into classificatory statements about gauged
σ-models (more on this in the WZNW context in C. Tauber’s talk).



Ad 5. The gauged σ-model . . .

We formulate the theory in the presence of an arbitrary principal
G-bundle P −→ Σ as in the topologically trivial setting through
replacements Σ×F 7−→ P×F , A 7−→ A .

Theorem: [Gawȩdzki,Waldorf,rrS] The P-extended string background
B̃A descends to P×G F (through Stevenson’s Categorial Descent)

if

B carries an arbitrary G-equivariant structure. In this case,

Sgauge
σ [(ζ | Γ); η] := −1

2

∫
Σ

gA(dζ∧, ?η dζ)− i log HolBA(ζ | Γ)

where ζ ∈ Γ(P×G F ) (global) and $̂∗P×FBA := B̃A (unique).
The model is invariant wrt. an action of the gauge group P×Ad G.
The obstruction to the existence of the G-equivariant structure on B

is termed the Large Gauge Anomaly.



Ad 5. . . . and the coset theory

In topologically favourable circumstances (in particular, for
F −→ F/G a principal G-bundle), the multi-phase gauged σ-model
induces a multi-phase σ-model on the quotient F/G through
integration of the Lagrange multipliers A.



Part V

Conclusions & Outlook



Conclusions

• We have established an algebroidal interpretation of the Small
Gauge Anomaly, consistent with the groupoidal geometry
underlying the (dual) data of the gauged σ-model.

• We have reinterpreted the Large Gauge Anomaly as the
obstruction to the existence of a topological gauge defect
network implementing a local trivialisation of the gauged
σ-model coupled to a topologically nontrivial gauge field.

• We have demonstrated the necessity of the existence of a
full-fledged symmetry-equivariant structure on the string
background of the σ-model.



Outlook

• Construction of intrinsically non-Abelian bi-branes of the type
originally considered by Gawȩdzki in the context of the orbifold
boundary WZNW σ-model, and of the associated inter-bi-branes.

• Comparison with the relevant predictions of the categorial
quantisation scheme.

• Application of the gauge principle in the study of T-duality in the
context of the gerbe theory of the σ-model.

• A world-sheet construction of the σ-model on an orbispace of a
target space with respect to the action of bona fide dualities,
based on the defect-duality correspondence (e.g., T-folds).
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