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The Gauge Principle for the multi-phase two-dimensional non-linear
sigma model will be discussed from the vantage point of the model’s
lagrangean formulation. The role of the 2-category of equivariant
gerbes over the target space of the field theory in the construction of
the gauged sigma model will be emphasised, and an interpretation of
the gauge anomaly in terms of an obstruction to the existence of
topological defect networks implementing the gauge symmetry will
be given.




Goals:

1. Establishing a defect—duality correspondence through
transgression of cohomological (bi-brane) data of a conformal
world-sheet defect.

2. Deriving the Gauge Principle for global symmetries through
generalisation of the minimal-coupling recipe and local
reconstruction of the o-model coupled to world-sheet gauge
fields of arbitrary topology using topological gauge-symmetry
defect networks, whence a symmetry-equivariant extension of
o-model data ensues.




Part I

Preliminaries




A brief recap on the multi-phase 2d non-linear o-model

The action functional of the model for patchwise C'-smooth maps

= W
world-sheet (£, 7) geometric string background

with defect quiver [ 2 | |, p S'

requires the 2-category %étbv(ﬁ ) of bundle gerbes with connection
over the composite target space F := | |;; My ULl e Qqij)-

I splits the spacetime into domains ¥; separated by defect lines ¢; j,
— |_| YEpL |_| 5,'7j
iel (if)elrP
Domains support phases X : ¥; — M;) embedded C'-smoothly in
connected metric manifolds (M;), g(;)) with gerbes Gy;) subject to
the conformality constraints

Buw (&(iy» T(&(1))> curv(Gpy): )
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A brief recap on the multi-phase 2d non-linear o-model - ctd.

Defect lines are loci of field discontinuity determined by C'-smooth
embeddings X : {;; — Q) in manifolds ;) of curvatures
w(ij) € QZ(Q(,- j))» mapping smoothly
,1) @)

Qi) — Mgy, "+ Quj) — My,

and equlpped with gerbe bimodules
. () * =, ()=
P 4TG0 2l G © by -

In what follows, we shall consider the composite target and bi-brane

M :=| |(Ma), g0y, 96) = M, g,G), B:= || (0(/‘,/)7L( D Wiy i) = (Q, Lo, curv(B), @)
icl (ijyer

(G, @) are a geometric realisation of the relative integral cohomology class

o [(curv(G), curv(B))] € H* (M. Q| Ag),  Dg:=13—4

and as such they define a Cheeger—Simons differential character
Holg ¢)(X|T) aka (decorated) surfae€™holonomy.
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A brief recap on the multi-phase 2d non-linear o-model - ctd.

The string background B := (M, B) determines the action functional:
SRl ] = —% /): g(dX” %, dX) — i log Hol(g ¢)(X |T)

that yields field equations for the phases alongside the Defect Gluing
Condition (DGC) over I > p (with tangent { and normal n),

DGCoury(s) (Pj1: Pj2s X V)(P) := Pj1 (¢4« V)(P) — Pja(i2. V)(p) — curv(B)(X.E, V)(p) = O,

valid for pj, 1= g(Xjo)(Xa .N,-) and an arbitrary V € Tx(p) Q-

N.B. World-sheets with a non-empty boundary are described by
boundary defects with

M = M(1)|_J{O}, QSZDCM(1), L D‘—>M(1),

o D — {e}.
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Part 11

The defects’ anatomy and physique




Conformality

For the special choice V := X,t, the DGC yields the continuity
equation

o—pt

o—p~
for the component T of the energy-momentum tensor

T Kol

S S S A(X Ml

that generates diffeomorphisms of ¥ preserving I.

Conclusion: The world-sheet defects are conformal by construction.




The twisted sector

In the presence of (timelike) defect lines, we may extract from S, — /
via first-order formalism — a canonical description of 5-twisted states

aT*Q

U;T*IM

Gawedzki’s transgression map

7 : (H*(M,D(2)}y),g) — H' (P,,D(1)3,) : ([9].8) — [Lo]

nccw

also generalises to the relative-geometric setting,
e ¢ (H? (#,D(2)% | Ko) g) — H' (P, D(D3y.) : (I(G, @) 2) — [£37),

and thus captures geometric quantisation of the B-twisted sector
m  Of the theory.



Fusion of twisted states and defect junctions

The splitting-joining interaction of (twisted) states

entails fusion of defects, for which we need to inject defect junctions
of valence n in manifolds T, mapping smoothly 7r,/§’k+1 :Th — Q,
k € Z/nZ and equipped with gerbe 2-isomorphisms

R S kT (<I>€l’(”k+1 ® Id) = 1d, e (infout) =41/ =1.
KeZ/nZ

Through transgression, these define twisted-loop fusion

* PtW. * PLW. = * Ptw.
(pr1£a @ praly )’3‘2";1 L |3'2Vg1

over an “interaction subspace” ~t2w_>1 S=REETD X P
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The general multi-phase o-model

We may now conceive a theory of patchwise C'-smooth embeddings

(X>T1,n)
in a string background ‘B composed of a target and a bi-brane as

before, and of an inter-bi-brane
el e el

The quantum Feynman amplitude nelig

Sr[(X|T);n] :=exp <—é /): g(dX” dX)) “Hol(g ¢ ) (X |T)

18 defined in terms of the differential character associated with the
triple (G, ®, ¢n) that realises the integral cohomology class

[O(B)] € H(M,Q, Th|Ag, A7),  Ar,i= Y e apktl~,
neZ/nZ —

n




The general multi-phase o-model - ctd.

Upshot: Classification of inequivalent mono-phase o-models, defects
between them and defect junctions joining them in terms of relative
Deligne cohomology

H* (ﬁ,D(Z)é | AQ, AT,,) :
to wit,

- inequivalent phases with fixed (M, g, curv(G)) are classified by
H? (M, U(1));

- inequivalent defects between given phases with fixed
(Q, Lo, curv(B)) are classified by H' (Q,U(1));

- inequivalent data for an n-valent junction of given defects with
fixed (Th, ok ) are classified by U(1)m(Tn),




Part III

The defect-duality correspondence




Dualities from defects, ...

In conformity with the obvious world-sheet intuition,

a defect sets in correspondence states from the phases separated by it.
Formally, the DGC defines an isotropic subspace

DaRE < Py, priQ, —prsQ,)
composed of pairs ¥, = (Xu,Pa) € T'LM, a € {1,2} related as
dxeLa : Xo =taoX, DGCcurv(B)(p1 » P2, X; ) =0.

Bi-brane data lift this (local) symplectomorphism to a (local) bundle
automorphism
pr;‘ca|90 = prT’CU |©O‘ >




Dualities from defects, ...- ctd.

For a proper field-theoretic (self-)duality, we must further require that
- ®, be agraph —> the ¢, should be surjective submersions;
- the fundamental quantum charges of the states in correspondence
match = (pr35¢ — pr;i€)|s, = 0.

The last requirement, in conjunction with the DGC, translates into the
statement of topologicality of duality defects,

lim T(o)= lm T(o).
o—pt

a—p—

Amidst topological defects, there are extendible defects, with
}\(:%]UFU%Q—>Q7 5\(||—:X‘r A Lao)A(\%:X\%,
Ae(X)(X,T*, V(o) + curv(B)(X)(X.T, V) = 0

for U € T,X and o € % UT U %, arbitfary.
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...and vice versa

Conversely, a large class of dualities (the so-called 05X, -linear ones)
can be shown to induce bi-brane data. These include T-duality-type
defects and isometric defects with data

Q=(idy x F)M) 225 M,  curv(B)=0, @ : priG —> priG

defined by arbitrary isometric diffeomorphisms F € Iso(M, g).

N.B. The curvature of the bi-brane associated with an isometric defect
vanishes identically.




Part IV

The Gauge Principle




Generalities

Point of departure: A field theory with field bundle
e f — ¥

of typical fibre 7~ '({o}) = .Z over spacetime Y. Sections
X € I(#) define Feynman amphtudes
%[X] i eiS[X] :

invariant under the action
L "GXF— F : (9, X)—9X
of a (global-)symmetry group G C Diff(.%).

Goal: Render the symmetry local by passing to another bundle

BT F —» ¥ of fibre isotype .# and such that a bundle of groups
G —» ¥ of fibre isotype G acts fibrewise on F through
transformations that depend upon the point in the base. Use sections
of 7 to write down the gauged field theory=™




Generalities — ctd.

Idea: Extend 7 —3 P Xy Z by an arbitrary principal G-bundle
7p : P — ¥ with principal G-connection A € Q'(P) ® g,
g := Lie G, and subsequently descend to the associated bundle,

Pxs.Z —s (P x5 7)/G,
admitting a fibrewise action of the adjoint bundle
PG/ G=P X g G"

Challenges:

1. Extension to P x5y .# of the metric and cohomological structure
from over .% entering the definition of .o, in a manner
structurally compatible with the amplitudes.

2. Descent of the extended structure to the smooth quotient
s ) /G, giving rise to a gauged field theory with this field
bundle and invariant with respect to P Xad G.
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Generalities — ctd.

Strategy:

1. Identification of the algebraic structure on the set of global
symmetries.

2. Coupling of a topologically trivial gauge field and derivation of
constraints for a consistent gauging (the gauge anomaly).

3. Motivation for and reconstruction (through local trivialisation) of
topologically nontrivial gauge bundles.

4. Extraction of a G-equivariant structure on the string background
and classification thereof.

5. The gauged o-model and the coset theory.




Ad 1. The algebra of global symmetries

Symmetry transformations
Gx ¥ — % :(9,X)—g.X, o7p[9.X] = o[ X]

are described, on the infinitesimal level, by vector fields
A € [(TF) with local flows 9. ;] — €,e[x.# — % such that

& |0 [tr 0 X] = 0.
These describe symmetries iff

%g = 0 A T (curv(G), curv(B),0) = —d(k, k, 0)

for some (x, k,0) € Q'(M, Q, T | Ag, At,), the latter combining
with J£ to a o-symmetric section J£ & (k, k,0) of the generalised
tangent bundles

TMoTM)U(TQ® (QxR)U| | (TTh& (Tpx R)o) = Z-

n>3




Ad 1. The algebra of global symmetries — ctd.

On [(E.%), there is an essentially unique bracket
Y ou,¥ o=lS™® =, ¥]e (_Tsé;w ~-Zyv- iy —Twv) + rﬁwe(%))
that closes on o-symmetric sections ,(E.#) and gives rise to the
relative ©(*8)-twisted Courant algebroid
o(®B
€(B) = (EZ, [ 10™, () 015)
¢, (B) furnishes a target-space model of the Poisson algebra of
Noether charges of the symmetry.

N.B. €,(B) is not a Lie algebroid (Jacobi and Leibniz fail).
In the fundamental basis
Ra = Hp D (ka ka,0) = X ©Kap, [#a, #B] = fagc Hc

we find o(®B) 3
[Ra, RBlc" ' = faBc Ric + 0 D aas, with

e

aag. = £ Kp — fapcKc — d(Ra, R5). .




Ad 2. The coupling of the trivial ...
Begin with
P=YxG, A=A'@he'(Dog.

Analysis of a G-invariant tensorial string background leads to the
introduction of an extended string background B, with components:

(T) the extended target ¥ x M with
ga = g2 — 8(Hn, )2 ® AT — AT ® g(Ha, )2 + 8(Ha, #B)2 AT © AT and

1
G 0581, ; where™ py = nAgAAf—E(LJgA/QB)gAf‘/\AzB;

(BB) the extended bi-brane & x Q with
wa ‘=wpx — Agpa +dAa and Pp =P ®Jy,, where A = —Kao A’14;

(IBB) the extended inter-bi-brane QI(rn) x Tp with

PnA ‘= Pn2- —
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Ad 2. ...and the obstruction
The gauged Feynman amplitude for extended maps ¢ = (idyx, X),

D (; [ eatdst d¢)) 2375 et TN

is invariant under small (id-homotopic) gauge transformations iff

dim g
Sy = (@ C>(Z,R) Ra, [',']?(%)’Oém‘) & gxpF = Lie (G F).
A=1

Conclusion: €,(8) encodes the Small Gauge Anomaly.

Question: Whence Gxy.# as the symmetry of the gauged o-model?

Answer: Recall that data of the gauged o-model are: a principal
G-bundle P — ¥ with the property that P xg .# — ¥ admits a
global section. But we have equivalence of groupoids

- Bun(X || .F) = G 7 -Bun(X) with an intuitive interpretatiori .
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The world-sheet of the gauged o-model

T ~eh ! (o)

J h ' pie”)
| l{ “Se=hy (o),




Ad 2. ...and the obstruction — ctd.

Conclusions: -
e The action groupoid Gix,.% captures the symmetries of the
gauged o-model.

e We need topologically non-trivial gauge fields to account for the
existence of the G-twisted sector.

Goal: Get physical, i.e., account for connections on P and for the
metric and cohomological structure on .%.

Idea: Local trivialisation in conjunction with results for the
topologically trivial case (TBC....).
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Ad 2. ...and the obstruction — completed

The necessary and sufficient condition for the invariance of the
gauged Feynman amplitude under large (non-id-homotopic) gauge
transformations,

PG s (X.x, AdyA — dy x”) S .
is the existence of the gerbe 1-isomorphism
T : G = prig ® o
over G x M, and of the gerbe 2-isomorphism
= ro—= K(idc, x 1) T ® Id) o (pry® © 1d) o (idg x m*ﬂ ® g,

over G x Q, subject to additional coherence constraints

Kok+1
L'on=anpeprypefpe o (idg X 7rl,§’k+1)* (EE" . & Id)
KeZ/nZ

—
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Ad 3. The reconstruction...

Having understood the necessity of incorporating topologically
nontrivial gauge fields into the description, we may piece the
corresponding gauged o-model together from its local trivialisations,

T e (O) — O0;x G, Of :={0;} c'%,
X 0 — &, A €Q(O)®g,
related on double intersections O; N O; =: Ojj > o as
Xi(0) = Gi(0)-X(0),  Ailo) = AdgAi(e) — dgj(o) gj(0) " = TA(0)
in terms of transition maps
gij € C>(0j,G), (6g)jic=...

To this end, we associate to Oy a [-transversal and ["-simple oriented -
trivalent graph Mo, C X ...




. through Trivialisation

Ad3. ..



Ad 3. RtT: Data assignment

To a free edge €ji € [0y, we pull back the (flat) transition bi-brane

By, = ({91} x Oy x M, Ly, ido,m, 0, (g x idw)* T =: Tg,)




Ad 3. RtT: Data assignment — ctd.

To a I-crossing Con € o NI, we pull back the trans-defect transition

; : ~k,k+1 Y

inter-bi-brane AT ({gon} X Opp @i s , (Qon x idQ) :)
‘@goni E@Anv . ]

Con

(gOanH , gonAn)i(gon'Xf”z? gonAn)

o

Zgon = (Gon X id@)*= & L, Pgony, —> ((idG A ®1d) o (®a, ®1d) o (idg X t1)*Tgpn »

%l’z(goma, q) = (0,9on().9) , 7~T42,’3(90n,ﬁ, q) = (gon, 7, 2(9)) ,
-

% 7o (9o, 0,9) = (0,9), 7y (gon, 7, @) = (gon, 7, 11(Q)) -
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Ad 3. RtT: Coherence

Independence of the gauged Feynman amplitudes of the arbitrary
choices made along the way is tantamount to the topologicality of the
gauge defect network and the existence of extra structure . ..




Ad 3. RtT: Coherence — ctd.

We need the (elementary) transition inter-bi-brane

Tt g = ({(Go, 9o)} X Opor x M, 682, ((gjo, Gor) X idm)" ¥ = Vgora))

carrying the data of the gerbe 2-isomorphism (over G% x M)

(67T ®14) 0 o T =5 Pl
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Ad 3. RtT: Coherence — ctd.

...and satisfying the coherence (associativity) condition /
Dg;

3
ugjo »Jon IniiAjl

e —0 ep—0
L CEai (o Ll

2 ni Z jo
Z 9on 2 Gon 7 9on

with 3

_ 5@ )
Ugf07g0n7gni;Ai -TF 5C°°(O/on;,G)rij07gomgni = 1 ’

which enforces the cocycle condition (over G2 x M)

oy e (1dodg™"y) = "y o (o7 "y ©1d) 01a).



Ad 3. RtT: Coherence — ctd.

Similar consistency considerations in the vicinity of I,

2N Doy Dgom D

Domy

n

\

2
:~9om

Dgon

X, X,

yield

2 =4 = ] -1
U miAn = (1d © 3 Ygom,gmn) ® (Id o (Egy, ®1d) o1d) e L;mn:gvm °=on® ((AT’Ygommen ® Id) o Id) =il

and thus enforce (over G2 x Q)

(12777 @ 1d) 0 1d) @ A= = (1d 04{""7) o (1do(df? = @1d) 0 1d) # &P *=.




Ad 3. RtT: Coherence — ctd.

Finally, coherence constraints imposed in the topologically trivial
setting remove the obstruction u;ij. A, against

;-@gy 3 :ggu lel
% NG g e
gjjiAj ; :gij*PS
S TN i TN
1,2(1) k= \ - 31 (M) s -1 CL y | g R y | .
s (1) =) ("3 S = / A \ —_ / A \
A ¥ ATy S
! : ! ! ! ! ! ! !
%(\1) _@'/(\2/‘) _@‘/(\af) @’/(\1[) %@ %\3) @’/(\? @'/(5) 9/(\3)

and thus bring the reconstruction procedure to a completion.

Upshot: The data

(ga T’ ’7) ) ((D, E) P (@n)neNzg )

subject to the coherence conditions listed compose
a G-equivariant string background.




Ad 4. Extraction and classification

Formally, a G-equivariant structure on B is a geometric realisation of
the class in the G-cohomology extension of the relative Cech—Deligne
cohomology extending [(G, P, ©p)]. Thus, answers to questions of its
existence and uniqueness are neatly captured by the cohomology of
the 4-complex

Cs (O,Q’(G‘ x M%) .

As has been demonstrated and shall be argued further in what follows,
these answers translate into classificatory statements about gauged
o-models (more on this in the WZNW context in C. Tauber’s talk).




Ad 5. The gauged o-model ...

We formulate the theory in the presence of an arbitrary principal
G-bundle P — ¥ as in the topologically trivial setting through

replacements ¥ x F+ P x &, Al

rl:heorem: [Gawedzki,Waldorf,rrS] The P-extended string background
B 4 descends to P xg & (through Stevenson’s Categorial Descent)
if

% carries an arbitrary G-equivariant structure. In this case,
SEE(¢ M) == =3 /z g4(d¢” xy dC) — i log Holss , (¢ |T)

where ¢ € (P xg &) (global) and @ph, B4 = B 4 (unique).

The model is invariant wrt. an action of the gauge group P xaq G.

The obstruction to the existence of the G-equivariant structure on ‘B
is termed the Large Gauge Anomaly. g




Ad 5. ...and the coset theory

In topologically favourable circumstances (in particular, for

F — 7 /G aprincipal G-bundle), the multi-phase gauged o-model
induces a multi-phase o-model on the quotient .% /G through
integration of the Lagrange multipliers A.




Part V

Conclusions & Outlook




Conclusions

e We have established an algebroidal interpretation of the Small
Gauge Anomaly, consistent with the groupoidal geometry
underlying the (dual) data of the gauged o-model.

e We have reinterpreted the Large Gauge Anomaly as the
obstruction to the existence of a topological gauge defect
network implementing a local trivialisation of the gauged
o-model coupled to a topologically nontrivial gauge field.

e We have demonstrated the necessity of the existence of a
full-fledged symmetry-equivariant structure on the string
background of the o-model.




Outlook

e Construction of intrinsically non-Abelian bi-branes of the type
originally considered by Gawedzki in the context of the orbifold
boundary WZNW ¢-model, and of the associated inter-bi-branes.

e Comparison with the relevant predictions of the categorial
quantisation scheme.

e Application of the gauge principle in the study of T-duality in the
context of the gerbe theory of the o-model.

e A world-sheet construction of the o-model on an orbispace of a
target space with respect to the action of bona fide dualities,
based on the defect-duality correspondence (e.g., T-folds).
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