2d Spin TFTs from defect TFTs

Sebastian Novak

13.2.2013

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Outline

Motivation

The state sum construction for 2d TFTs

Algebraic data Geometric construction Independence of Triangulation and Extra data

The state sum construction for 2d Spin TFTs

Spin structures on surfaces Geometric construction New algebraic data

2d Spin Field Theory via 2d Field Theory with Defects

Outlook

Motivation

2d Field theories 2d Field theories on Super Riemann on Spin surfaces Surfaces 2d Field theories 2d Field theories with with particular defects defect network

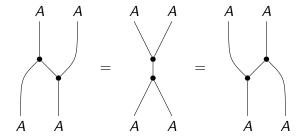
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

algebraic data l

 \mathcal{C} : symmetric monoidal category (i.e. $\mathcal{C} = \mathbf{Vect}_{\mathbb{C}}$ or $\mathcal{C} = \mathbf{SVect}_{\mathbb{C}}$). $(A, \mu, \eta, \Delta, \varepsilon)$: symmetric Δ -separable Frobenius algebra in C. $\mathbf{1}_{\mathcal{C}}$ **1**_C μ η associative unital algebra coassociative counital coalgebra

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

algebraic data II: Frobenius algebra relations

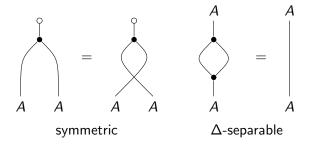


Frobenius relation.

イロト 不得 トイヨト イヨト

æ

algebraic data III



◆□ > ◆□ > ◆ 三 > ◆ 三 > 三 のへで

Geometric construction: Overview

State sum construction for 2d Topological Field Theory from this algebraic data:

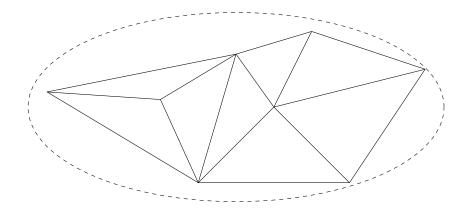
[Bachas Petropoulos '92][Fukuma Hosono Kawai '92][Lauda Pfeiffer '06]

- 1. Triangulate (oriented) surface Σ .
- 2. Use simplicial structure to construct a morphism $Z(\Sigma)$ in C.

3. Show independence of the triangulation by using Pachner moves.

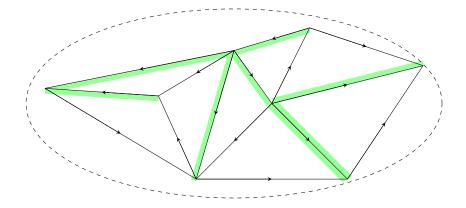
Focus now on closed surfaces, then $Z(\Sigma) : \mathbf{1}_{\mathcal{C}} \to \mathbf{1}_{\mathcal{C}}$. For $\mathcal{C} = \textbf{Vect}_{\mathbb{C}} : Z(\Sigma) \in \mathbb{C}^{\times}$.

Step 1: Triangulate Surface



◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

Step 2: Extra data

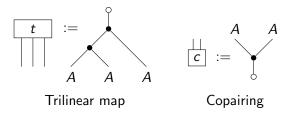


・ロト ・回ト ・ヨト ・ヨト

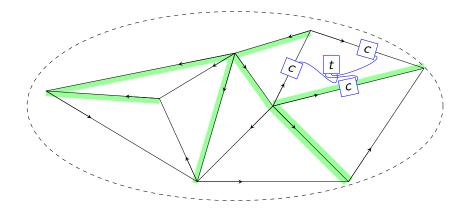
э

- Pick direction for each edge.
- Mark edge for each triangle.

Two morphisms in $\ensuremath{\mathcal{C}}$



Step 3:Construction of morphism



▲□> ▲圖> ▲目> ▲目> 二目 - のへで

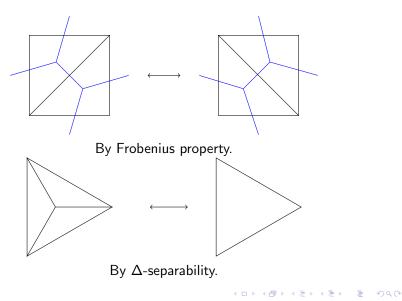
Independence of Extra data

- Edge direction: Symmetry of (co-)pairing.
- Marked edge: Cyclicity of trilinear map t. Follows from symmetry.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Independence of Triangulation

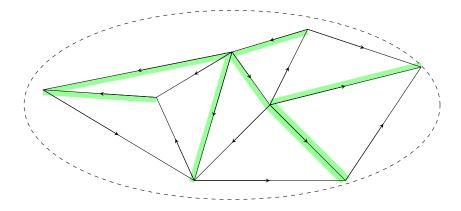
Invariance of morphism under 2d Pachner moves



State sum construction for spin surfaces.

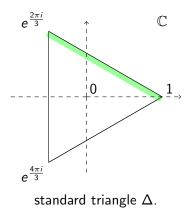
- Spin structure: Double cover of bundle of oriented frames (nontrivial on each fiber).
- No metric.
- Spin TFT can depend only on isomorphism class of spin surface.

Step 1: Triangulation + Extra data



- Smooth triangulation: φ : |C| → Σ (C: simplicial complex). (Choice 1)
- Same extra data on triangulation as before. (Choice 2)

Step 2: Computation of spin indices



(日)、

æ

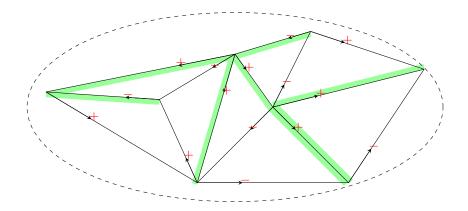
Step 2: Computation of spin indices

- ► Triangulation + Extra data ⇒ char. map χ_σ : Δ → Σ for each triangle σ ∈ C.
- Pick spin lifts $\tilde{\chi}_{\sigma}$ for char. maps. (*Choice 3*).
- Transition functions $((\chi_{\sigma})^{-1} \circ \chi'_{\sigma})$ are "rotations".
- Pick spin lifts for rotations $\mathbb{C} \to \mathbb{C}$.
- Comparison of spin transition functions ((χ̃_σ)⁻¹ ∘ χ̃'_σ) with chosen lifts of rotations:

 \Rightarrow spin index $s_e = \pm 1$ for each edge e.

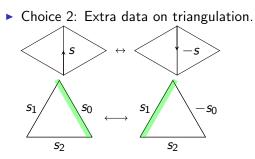
The spin structure can be reconstructed (up to isomorphism) from these indices.

Triangulation with spin indices



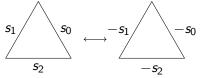
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Index dependence on choices

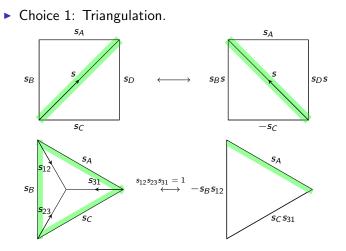


• Choice 3: Spin lifts for characteristic maps.

(日)、

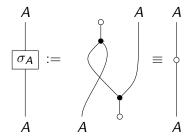


Index dependence on extra data II



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Nakayama automorphism



- Always Frobenius algebra automorphism.
- Natural in the Frobenius algebra A.
- If the Frobenius algebra is symmetric, then $\sigma = id_A$.

イロト 不得 トイヨト イヨト

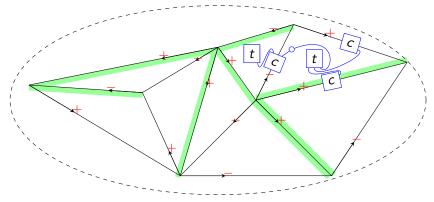
э

 $(A, \mu, \eta, \Delta, \varepsilon)$: Δ -separable Frobenius algebra with $(\sigma \circ \sigma) = id_A$. Examples:

- Symmetric Frobenius algebras.
- Twist of counit of a symmetric Frobenius algebra with an element whose inner automorphism is an involution.

I.e. $t \in A$ such an element, $\varepsilon'(x) = \varepsilon(t \cdot x)$ for all $x \in A$.

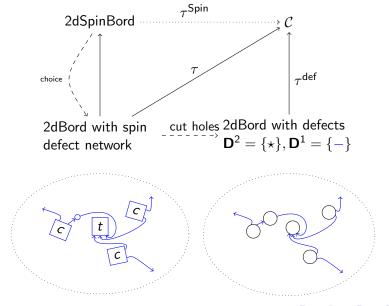
Step 3: Construction of morphism



Same construction as before, but Nakayama automorphism is inserted once for each edge with a minus sign.

Algebraic data ensures invariance under moves, thus invariance under choices 1-3.

2d Spin TFT via 2d TFT with Defects

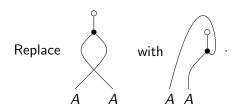


(日)

2d Spin TFT via 2d TFT with Defects

▶ 2d def. TFT $\tau^{\text{def}} \Rightarrow$ pivotal monoidal category of defects $\mathcal{D}_{\tau^{\text{def}}}$.

[Davydov Kong Runkel '11][Carqueville Runkel '12]



Pick Δ-separable Frobenius algebra with σ² = id in D_{τ^{def}}.
⇒ Spin TFT by use of choices to get the defect network.

Outlook

- Rational 2dCFTs
- Relation to other descriptions of 2dSpinTFT

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Other geometric structures on surfaces

Thank You!

◆□ → < □ → < Ξ → < Ξ → < Ξ → < ○ < ○</p>