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Motivation

2d Field theories
on Spin surfaces

2d Field theories
on Super Riemann
Surfaces

2d Field theories
with particular
defect network

2d Field theories with
defects



algebraic data I

C: symmetric monoidal category (i.e. C = VectC or C = SVectC).
(A, µ, η,∆, ε): symmetric ∆-separable Frobenius algebra in C.
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associative unital algebra coassociative counital coalgebra



algebraic data II: Frobenius algebra relations
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A A

=
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Frobenius relation.



algebraic data III
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A A A
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symmetric ∆-separable



Geometric construction: Overview

State sum construction for 2d Topological Field Theory from this
algebraic data:
[Bachas Petropoulos ’92][Fukuma Hosono Kawai ’92][Lauda Pfeiffer ’06]

1. Triangulate (oriented) surface Σ.

2. Use simplicial structure to construct a morphism Z (Σ) in C.

3. Show independence of the triangulation by using Pachner
moves.

Focus now on closed surfaces, then Z (Σ) : 1C → 1C .
For C = VectC: Z (Σ) ∈ C×.



Step 1: Triangulate Surface



Step 2: Extra data

I Pick direction for each edge.

I Mark edge for each triangle.



Two morphisms in C

t :=

A A A

c :=

A A

Trilinear map Copairing



Step 3:Construction of morphism

c

c

c t



Independence of Extra data

I Edge direction: Symmetry of (co-)pairing.

I Marked edge: Cyclicity of trilinear map t. Follows from
symmetry.



Independence of Triangulation

I Invariance of morphism under 2d Pachner moves

By Frobenius property.

By ∆-separability.



State sum construction for spin surfaces.

I Spin structure: Double cover of bundle of oriented frames
(nontrivial on each fiber).

I No metric.

I Spin TFT can depend only on isomorphism class of spin
surface.



Step 1: Triangulation + Extra data

I Smooth triangulation: ϕ : |C| → Σ (C: simplicial complex).
(Choice 1)

I Same extra data on triangulation as before. (Choice 2)



Step 2: Computation of spin indices

e
2πi
3

e
4πi
3

10

C

standard triangle ∆.



Step 2: Computation of spin indices

I Triangulation + Extra data ⇒ char. map χσ : ∆→ Σ for
each triangle σ ∈ C.

I Pick spin lifts χ̃σ for char. maps. (Choice 3).

I Transition functions ((χσ)−1 ◦ χ′σ) are “rotations”.

I Pick spin lifts for rotations C→ C.

I Comparison of spin transition functions ((χ̃σ)−1 ◦ χ̃′σ) with
chosen lifts of rotations:
⇒ spin index se = ±1 for each edge e.

I The spin structure can be reconstructed (up to isomorphism)
from these indices.



Triangulation with spin indices
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Index dependence on choices

I Choice 2: Extra data on triangulation.

s −s

s0s1

s2

−s0s1

s2

I Choice 3: Spin lifts for characteristic maps.

s0s1

s2

−s0−s1

−s2



Index dependence on extra data II

I Choice 1: Triangulation.
sA

sB

sC

sD
s

sA

sB s

−sC

sDs
s

s12

s23

s31
sB

sC

sA

−sB s12

sC s31

sA

s12s23s31 = 1



Nakayama automorphism

σA

A

A

:=

A

A

≡

A

A

I Always Frobenius algebra automorphism.

I Natural in the Frobenius algebra A.

I If the Frobenius algebra is symmetric, then σ = idA.



new algebraic data

(A, µ, η,∆, ε): ∆-separable Frobenius algebra with (σ ◦ σ) = idA.
Examples:

I Symmetric Frobenius algebras.

I Twist of counit of a symmetric Frobenius algebra with an
element whose inner automorphism is an involution.
I.e. t ∈ A such an element, ε′(x) = ε(t · x) for all x ∈ A.



Step 3:Construction of morphism
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c

c

c ttt

Same construction as before, but Nakayama automorphism is
inserted once for each edge with a minus sign.
Algebraic data ensures invariance under moves, thus invariance
under choices 1-3.



2d Spin TFT via 2d TFT with Defects

2dSpinBord C

2dBord with spin
defect network

2dBord with defects
D2 = {?},D1 = {−}

choice

τSpin

τ
τdef

cut holes

c

c

c t



2d Spin TFT via 2d TFT with Defects

I 2d def. TFT τdef ⇒ pivotal monoidal category of defects
Dτdef .
[Davydov Kong Runkel ’11][Carqueville Runkel ’12]

Replace

A A

with

A A

.

I Pick ∆-separable Frobenius algebra with σ2 = id in Dτdef .
⇒ Spin TFT by use of choices to get the defect network.



Outlook

I Rational 2dCFTs

I Relation to other descriptions of 2dSpinTFT

I Other geometric structures on surfaces



Thank You!
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