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”Certain defects are necessary for the existence of individuality”

Johann Wolfgang von Goethe

2D WZ actions and gerbes
boundaries and walls

- junctions

Warnings:

- gerbes will be abelian
- applications will concern low dim. field theories

- descriptions will be somewhat impressionistic




Examples of theories under consideration:

general 2D sigma models with a Wess-Zumino (WZ) term

in the action corresponding to a closed 3-form [/ on target M

Wess-Zumino-Witten (WZW) models with a Lie group G
as the target (examples of CFT)

coset models of CFT viewed as gauged WZW models

Chern-Simons (CS) topological gauge theory (viewed as a 3D sigma

model with background Pontryagin closed 4—forms) - not here




Common features of these models:

e Feynman amplitudes receive contributions from

higher Abelian holonomies

generalizing the case of standard Abelian holonomy

for the electromagnetic field

® They may be treated using

e Deligne cohomology

e Cheeger-Simons differential characters

e Murray’s bundle gerbes




e Standard Abelian holonomy for the electromagnetic field:

e A al-formon M

o dA = F “field strength” - a 2-form

e ¢! a lcyclein M

exp[i/&A} = Hol,(c)

top. Feyn. ampl./r line bundle over M

e RHS makes sense for any line bundle £ with connection

of curvature F’

e Such bundles exist iff F' is a closed 2-form with periods in 277

(Dirac’s quantization of magnetic charge)




® Degree 2 Abelian holonomy for the Kalb-Ramond field:

e B a 2-form over M

e dB = H 7torsion” 3-form @ i
e ¢ a 2cyclein M 2

C

exp [z/ B} = Holg(c?)
A 2
top. Feyn. ampl. gerbe over M

e RHS makes sense for any bundle gerbe ( with connection

of curvature H (called below a gerbe, for short)

e Such gerbes exist iff H is a closed 3-form with periods in 27Z




e Field theory application:

Gerbe holonomy defines the Wess-Zumino contribution to
the Feynman amplitudes of 2D sigma model fields
@ : 2. — M for closed oriented worldsheets X:

exp [i Swz(p)] = Holg(v(X))

where ( is a fixed gerbe with curvature H

’
’
’
’
’
’
’

e Standard example:

WZW model with M =G - a Lie group - and

k _
H=H, = 15-tr(g Ldg)?




Main property of the line-bundle holonomy:
Holy(0c¢*) = exp [z/ F}

2

C

i.,e. Holy is a degree 2 Cheeger-Simons differential character

Main property of the gerbe holonomy:

Holg(dc®) = exp [Z/CSH}

i.e. Holg is a degree 3 Cheeger-Simons differential character

Remark: RHSs determine LHSs if Hi(M)=0 or H2(M) =0,

respectively, and l.-bdles and gerbes are an overkill in such cases




What are gerbes?

®¢ Line bundles with connections may be presented by local data

(Au, gap) W.r.t. to an open covering (Og)

dAg = F', Ag — Aq = idIngag, gaﬁg;q%gﬁfyzla

(Aa,gap) and (Agt,ggtﬁ) representing isomorphic l.-bdles iff

Al — Ay = —idln fq, 9&59;51 = fafﬁ—l

isomorphism classes of  degree 2 classes of smooth
l.—bdles (with connection) Deligne cohomology

e But line bundles possess also a geometric description L




Similarly:

e Gerbes (with connection) may be presented by local data
(BO” Aaﬁ,gaﬁfy) with

dB, = H , BB—BQ :dAaﬁ, AQB—AQV—FAB,Y :idlngaﬁfya
—1 = 1
JaByY9aps 9avd 9~5 —

and (Ba, Aag,gap~y) and (B&’A;B’g;tﬁv) representing (1-)isomorphic
gerbes iff

B(’X—Ba:dna’ ;B—AQB:HB—HQ—ZCHHXQB,

R | —1
JapyIapy = XapXa1Xgy

(1—)isomorphism classes of =~ degree 3 classes of smooth
gerbes (with connection) Deligne cohomology




e But gerbes possess also a geometric description due to Murray (1994)

L

line bundle
with conn.
90

Y xuY=YP® — v

01

l surjective
s

submersion

M

e L IY equipped with groupoid multiplication & bilinear on fibers

and preserving connection

e Y isequipped with a curving 2-form B s.t. OB — 5B

e dB = 7w*H




Example (relating local data (B, Ang, gap~) to geom. definition):

Y = U0, = M

YRl = U 0,n053 =Y
(o, 8)

line bundle £ = Y2l x C

with connection form A|Oaﬂ05 Anp
curving form B|Oa = B,

groupoid multiplication 1 in L given by multiplication by 9a B~




Facts about (bundle) gerbes (with connection)

® gerbes over manifold M form a 2-category with l-morphisms

between them and 2-morphisms between 1-morphisms

l-morphism « : Gy — Go:

g gZ:(}Q)LZ)M’LaBZ)a Q{:(pL—)Y:Yl XMY27/0)

e L is a l.-bdle of curvature By — B
e p:L1®Ly — Log® Lo is an isomorphism of l.-bdles over y (2]

associative w.r.t. [;

2-morphism [ : a1 = ag for «; : G1 — G2

e an isomorphism of l.-bdles [ of «; intertwining p’s




Facts about gerbes (cont’d)

e gerbes have duals (with opposite curvature), tensor products (with

curvatures adding) and pullbacks (with curvatures pulling back)

e For two gerbes §i and Gs with same curvature G1 ® G5 is flat

flat gerbes (i.e. with zero curvature) are classified up to 1l-isomorphism

by cohomology classes in HQ(M, U(1l)) - “discrete torsion”

For o: 2 —+ M

Holg(¢(2) = ([2), [¢"G])

and such holonomy determines G up to l-isomorphism




Facts about gerbes (cont’d)

e a 2-form B defines a gerbe Zp with curvature dB and holonomy

Holz, (c®) = exp [z/ B]

o2
® Transgression functor:

e gerbes over M induce line bundles over the loop space LM

G —> Lg

with curv(L;)(£) = {Lé curv(Gg) for L€ LM

e l-isomorphisms « : Gy — G5 isduces 1l.-bdle isomorphisms




Application to (non-diagonal) WZW field theory:

e For (G compact, simple, 71 (G) arbitrary, and Hj = %tr (g_ldg)?’

e HHj;. has periods in 27wZ for discrete values of “level” k

e explicit constructions of gerbes ;. with curvature Hj known

e WZW theory for such (G may be quantized by gerbe transgression and

Borel-Weil-Segal-Presley construction of affine algebra representations

= modular-invariant partition fcts (Felder-G.-Kupiainen 1988)

¢ WZW correlation functions may be found using geometric arguments

via the scalar product of conformal blocks (G. 1989)




What about WZ actions on open worldsheets?

e For ¥ with 0 =SS! and ¢: X — M

Holg (90) - (ﬁg)

vlox

e To compensate, use G-brane O = (Q, B, a) s.t.

e L:QQ > M
e B isa2formon () s.t. ["H=dB
e a:."G —Tp is a gerbe 1-isomorphism
For loops ¢ : ST — (Q the connection of l.-bdle L of «

permits to define Hol, (¢(S')) € (ﬁf*g)¢| . (»CE)LO¢
S




e Upon imposing the boundary condition g0|32 — 10 ¢ the amplitude

Holg (p(Z)) Hol (¢(S1))

becomes a number (Kapustin 2000, Carey-Johnson-Murray 2002,
G.-Reis 2002)




WZW example (Alekseev-Schomerus 1998, G. 2004 for w1 (G) # {1})

M =G, G a gerbe over (G with curvature Hjp = % tr (g_ldg)3

On conjugacy classes ¢ :C — G

% — Ad _
V*Hy|c = dBy for =~ 31 (g 1d9) ijAdg (g 1d9)

Gr-branes (C, Bp,a}) exist for a discret series of C' C G

are called symmetric branes as they preserve the diagonal
affine-algebra symmetries of the WZW model: JL = JBR on 9%

The open-sector gerbe transgression allows unambiguous quantization
of the boundary WZW theory

— explicit boundary partition functions and boundary OPE!




Coset (GG/H models example:

For H C G one gauges the g — hgh™!' symmetry of the group G
WZW model

In general an H-equivariant structure on gerbe (. is needed for that
(G.-Suszek-Waldorf 2012)

There exists a family of branes with

L

Q = (CCxCH)y = G, ug,h)=gh

B(g,h) = By(g) + By(h) + 7= tr(g~ *dg)(hdh ™)

(G. 2002, Elitzur-Sarkissian 2002)

Such branes exist also in ungauged WZW model breaking the diagonal

affine symmetry to the one corresponding to H




Wall-defects

(Oshikawa-AfHleck 1997,
Petkova-Zuber 2001,
Bachas-de Boer-Dijkgraaf-Ooguri 2002,

® One may compensate the holonomy of a
surface > (connected or not) obtained

by cutting surface 2. along a circular defect

with a jump of the field ¢ using a G-bibrane O = (Q,w,a) s.t.
o 12 Q — M

e B isa2formon @ s.t. i7H —;H =dB

e a:L]G —15GR®Ip is a gerbe l-isomorphism t12:Q — M

For loops ¢ : S' — @ the connection of l.-bdle L of «

permits to define Hol, (¢(S')) € (ﬁZ‘Tg) ® (ﬁbgg)

¢|S]_ ¢|Sl




® Upon imposing the boundary conditions

Plog,g =110,  @|_g55=1t200¢

the amplitude
Holg (¢(2)) Holo (6(S1))

becomes a number (Fuchs-Schweigert-Waldorf 2008)




Folding trick (Wong-Affleck 1994)

e Bi-branes correspond to branes on M X M with gerbe G ®g§

=5 Q % MxM

l

brane

folding




WZW examples:

For a conjugacy class C C (G from the same discrete class take

L1

Q@ = {(91792)€GXG|9192_1€C} % G

B(g1,92) = Bir(g195 ") — 2= tr(g; "91)(95 "dg2)

These gives rise to topological defects with continuity of J%, Jf and
TEL THE across it

Such defects give rise to symmetries of the boundary CFT
Upon folding (and replacement ¢go > 92_1 ) they correspond to

symmetric permutation branes (Figueroa-O’Farrill-Stanciu 2000)

in G XG WZW model with ) = {(91,92) | g192 € C'}




Junctions

® One may consider nets of wall-defects with defect junctions
(Frohlich-Fuchs-Runkel-Schweigert 2007, Runkel-Suszek 2009)

3,

folding

junction

(Schwarz 1996, ---, Bachas-de Boer-Dijkgraaf-Ooguri 2002,
Oshikawa-Chamon-AfHleck 2003)




® The latter junctions were studied in strings and in integrable (1 4+ 1)D

QFT and, recently, in CFT, as models of contacts of quantum wires

e The wires are modeled by bosonic free fields at * > 0 s.t.

J,L-L (t,0) = > S,L.j JJR (t,0) S orthogonal
J

One looks for charge transport in response to change of potentials or

temperatures in the wires or for non-equilibrium steady states

The Green-Kubo formula of linear response gives for the zero-
oI,

temperature conductivity GZJ = =
j

Gij — % (1 +x2)2<JiL(t,x1)Jf(t,a:2)>

(Rahmani-Hou-Feiguin-Chamon-Affleck 2010)

e A steady state for wires in different temperatures has been constructed
recently (Mintchev-Sorba 2012, see also Bernard-Doyon 2012)




WZW examples

One has to consider appropriate branes in group G WZW model.

e Symmetric permutation branes with Q={(g1,..,9») € G" |g1--- gn € C}

give

Jz‘L(ta 0) = J,ﬁ_l(t,())

e More interesting coset-type G /diag((G) branes with
Q = {(917--7971) e G"|gi = hivy, hy € C;, v € C} lead to

JE(t,0) = Ad ) J(t,0) + %j;u — Ad. 1)) JE(t,0)

in classical theory, with overall conservation of charge and energy:
> JS(t0) = > JiH(t,0) ST (t,0) = > Tt 0)

e Quantization: work in progress with Clément Tauber




Conclusions and Ramifications
Bundel gerbes are useful tools to handle topological ambiguities in low
dimensional field theories, e.g. WZW models with 7 (G) # {1}

With some additional refinements they work as well in the presence
of boundaries and defects

They promise to be helpful in nascent non-equilibrium CFT where

new type of (Minkowskian) defects appears

Gerbes help handle global anomalies in 2D sigma models (Clément
Tauber’s talk)

They play an important role, omitted here, in twisted K -theory
and its applications to strings (brane charges) and classification

of topological insulators in condensed matter




