Topological defects in perturbed CFTs

David Bücher

Fachbereich Mathematik Universität Hamburg

joint work with I. Runkel and C. Meneghelli

Workshop on Field Theories with Defects

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

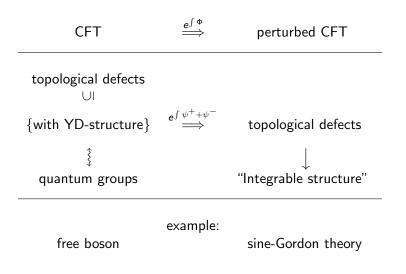
Motivation

- Understand/generalise the Bazhanov-Lukyanov-Zamolodchikov (BLZ) construction of integrals of motion in (perturbed) CFTs
- π_{λ} : representation of a quantum group

$$\begin{aligned} \mathbf{T}_{\pi}(\lambda) &= \mathrm{tr}_{\pi_{\lambda}} \left(e^{2i\pi P \otimes \pi_{\lambda}(H)} \mathcal{P} \exp \left(\int_{0}^{2\pi} d\theta \left(:e^{-2\varphi^{+}(\theta)} : \otimes \pi_{\lambda}(E_{0}^{+}) \right. \right. \right. \\ &+ :e^{2\varphi^{+}(\theta)} : \otimes \pi_{\lambda}(E_{1}^{+}) \right) \right) \end{aligned}$$

・ロト・日本・モート モー うへぐ

Overview



◆□ > ◆□ > ◆三 > ◆三 > 三 - のへで

Field theories with topological defects

Definition (For the purpose of this talk)

A field theory with topological defects is a functor

$$ft: \operatorname{Cyl}_{D,\mathcal{F}} \to \operatorname{tVect}$$

where

- tVect is some category of topological vector spaces
- ► *D* is an involutive monoid ("of topological defect conditions")

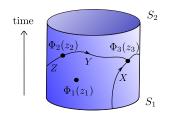
- $\{\mathcal{F}_{A,B}\}_{A,B\in D}$ is a family of vector spaces ("defect fields")
- ► Cyl_{D,F} is the category of two dimensional Lorentzian cylinders with defects and field insertions, i.e. ...

Field theories with topological defects

$$\operatorname{Cyl}_{\mathcal{D},\mathcal{F}} := \begin{cases} \operatorname{objects:} \\ \operatorname{Hom}(S_1, S_2) : \\ \end{cases}$$

circles with oriented points labelled by D: cylinders with oriented defect network, field insertions and embeddings of S_1 , S_2 , into the boundary, modulo isotopies and fusion of defect lines

. . .



$$\begin{array}{ll} X,Y,Z\in D, & \Phi_{1}\in \mathcal{F}_{1,1}, \\ \Phi_{2}\in \mathcal{F}_{Z,Y}, & \Phi_{3}\in \mathcal{F}_{YX,Z} \end{array}$$

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

Construction [cf. Fuchs, Runkel, Schweigert et al.]

Let C be the category of primary fields of a given chiral theory, equip it with the braiding given by analytic continuation of correlators. Then there is a full conformal field theory with topological defects, where

- D is the monoid of iso-classes of C,
- ► $\mathcal{F}_{A,B} := \{ (F^+, F^-, m) | F^\pm \in \mathcal{C}, m \in \operatorname{Hom}_{\mathcal{C}}(F^+ \otimes A \otimes F^-, B) \}$

Conformal field theories (CFTs)

Example: free boson

- Primaries: {V_α(z) := :e^{iαφ⁺(z)}:}_{α∈ℝ} Chiral correlators: ⟨V_{α1}(z₁)V_{α2}(z₂)⟩ := (z₁ - z₂)^{α₁α₂} for ℜz_i > ℜz_j (i > j), for other values defined by analytic continuation
- Category C = H-Mod_{Vec} where H is the quasitriangular Hopf algebra

$$H = \begin{cases} \overline{\mathbb{C}[h]}, & \mathcal{R} = e^{\pi i h \otimes h} ,\\ \Delta(h) = h \otimes 1 + 1 \otimes h , \end{cases}$$

simple objects \mathbb{C}_{α} : *h* acting on \mathbb{C} by $h.\xi := \alpha \cdot \xi$ braiding: $\mathbb{C}_{\alpha} \otimes \mathbb{C}_{\beta} \to \mathbb{C}_{\beta} \otimes \mathbb{C}_{\alpha}$, $1 \otimes 1 \mapsto e^{\pi i \alpha \beta} \cdot 1 \otimes 1$

Perturbed CFT

▶ let $\Phi \in \mathcal{F}_{1,1}$

consider the theory determined by the perturbed Hamiltonian

$$H=H_{\rm CFT}+\int_0^{2\pi}\Phi(u)\,du.$$

• amounts to inserting a factor of $e^{\int \Phi}$ into each correlator

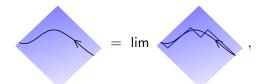
$$e^{i\Phi}$$
 = + $\int \Phi(u_1) du_1 + \frac{1}{2} \int \Phi(u_1) du_1 du_2 + \dots$

Example: sine-Gordon theory

- ► H_{CFT} the Hamiltonian of the free boson theory, $\Phi(u) = :\cos(\alpha\varphi(u)): = :e^{i\alpha\varphi(u)}: + :e^{-i\alpha\varphi(u)}:$
- one can show that the above series converges for sufficiently small α [cf. Fröhlich '76].

Perturbing defects

- ▶ let $X \in D$ and $\psi_X^{\pm} \in \mathcal{F}_{X,X}$ be chiral/anti-chiral defect fields
- define a perturbed defect by approximating a defect line



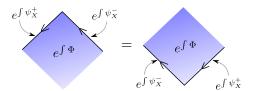
then inserting factors "exp $(\int \psi_X^{\pm})$ " into correlators

< = ► = <> <<

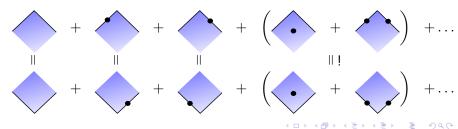
and taking the limit

can be shown to exist in sine-Gordon theory [BMR]

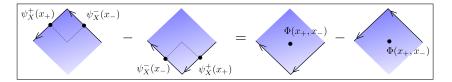
- Q: When is a perturbed defect topological in the perturbed theory?
- Necessary condition:



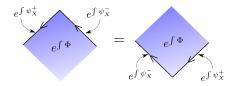
expand:



X a defect condition, ψ_X^{\pm} defect fields on X; suppose

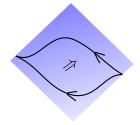


then:



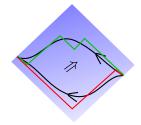
\rightsquigarrow Topological (left-directed) defects in the perturbed theory:

If (X, ψ_X^{\pm}) satisfy the "commutation condition", the defect X perturbed by ψ_X^{\pm} is topological in the perturbed theory:



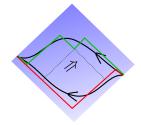
\rightsquigarrow Topological (left-directed) defects in the perturbed theory:

If (X, ψ_X^{\pm}) satisfy the "commutation condition", the defect X perturbed by ψ_X^{\pm} is topological in the perturbed theory:

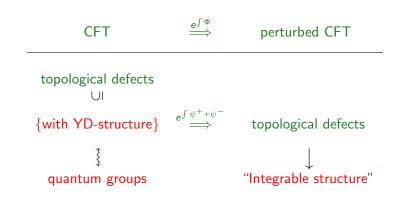


\rightsquigarrow Topological (left-directed) defects in the perturbed theory:

If (X, ψ_X^{\pm}) satisfy the "commutation condition", the defect X perturbed by ψ_X^{\pm} is topological in the perturbed theory:



so far...



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Now: "translate into algebra."

In the context of the Fuchs-Runkel-Schweigert construction:

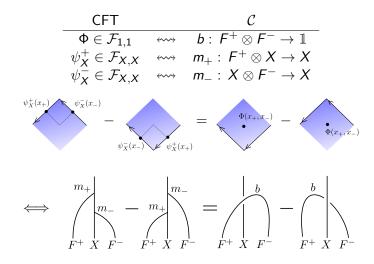
recall: $\mathcal{F}_{A,B} := \{ (F^+, F^-, m) \mid m \in \operatorname{Hom}_{\mathcal{C}}(F^+ \otimes A \otimes F^-, B) \}$

CFT		${\mathcal C}$
$\Phi\in\mathcal{F}_{1,1}$	\longleftrightarrow	$b: F^+ \otimes F^- \to \mathbb{1}$
$\psi_X^+ \in \mathcal{F}_{X,X}$	\longleftrightarrow	$m_+: F^+ \otimes X \to X$
$\psi_{\mathbf{X}}^{-} \in \mathcal{F}_{\mathbf{X},\mathbf{X}}$	\longleftrightarrow	$m_{-}: X \otimes F^{-} \to X$

"Commutation condition" +---> Yetter-Drinfeld condition

In the context of the Fuchs-Runkel-Schweigert construction:

recall: $\mathcal{F}_{A,B} := \{ (F^+, F^-, m) \mid m \in \operatorname{Hom}_{\mathcal{C}}(F^+ \otimes A \otimes F^-, B) \}$



"Commutation condition" $\leftrightarrow \rightarrow$ Yetter-Drinfeld condition Tensor algebras

$$F \in \mathcal{C} \rightsquigarrow \text{ if } T(F) := \bigoplus_{n \ge 0} \underbrace{F \otimes \cdots \otimes F}_{n \text{ times}}$$
 exists, it comes equipped

with

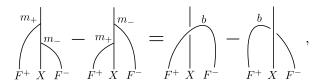
► algebra structure:
$$\underbrace{F \otimes \cdots \otimes F}_{n \text{ times}} \otimes \underbrace{F \otimes \cdots \otimes F}_{m \text{ times}} \xrightarrow{\text{id}} \underbrace{F \otimes \cdots \otimes F}_{n+m \text{ times}}$$

► coalgebra structure: induced by $\Delta|_F = id_F \otimes id_1 + id_1 \otimes id_F$

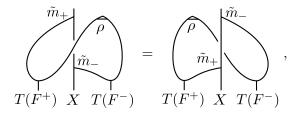
 b: F⁺ ⊗ F⁻ → 1 → extends to ρ: T(F⁺) ⊗ T(F⁻) → 1 (Hopf pairing)

$\label{eq:constraint} \begin{array}{c|c} \mbox{In terms of modules over tensor algebras:} \\ \hline \hline $ CFT & \mathcal{C} & $T(F^{\pm})$ \\ \hline $ \Phi \in \mathcal{F}_{1,1}$ & $b: $F^+ \otimes F^- \to 1$ & $\rho: $T(F^+) \otimes $T(F^-) \to 1$ \\ $ \psi^+_X \in \mathcal{F}_{X,X}$ & $m_+: $F^+ \otimes X \to X$ & $X \in $T(F^+)$-Mod}$ \\ $ \psi^-_X \in \mathcal{F}_{X,X}$ & $m_-: $X \otimes F^- \to X$ & $X \in Mod-$T(F^-)$ \\ \hline $ T(F^+) \otimes T(F^-) \otimes$

"Commutation condition" +---- Yetter-Drinfeld condition



...translating this into a condition for $T(F^+)$ -left and $T(F^-)$ -right modules [BR '12]:



(the Yetter-Drinfeld/crossed module condition in the sense of Bespalov/Majid)

YD-condition <---> quantum groups

"Bosonisation" [Radford]

Let $C = \operatorname{Rep} H$ be the (braided) representation category of a quasitriangular Hopf algebra H and $T \in C$ be a braided Hopf algebra. Then there is a Hopf algebra B(T) := T # H such that B(T)-Mod_{Vec} $\cong_{\otimes} T$ -Mod_C.

Example:

Let

$$H = \begin{cases} \overline{\mathbb{C}[h]}, & \mathcal{R} = e^{\pi i h \otimes h}, \\ \Delta(h) = h \otimes 1 + 1 \otimes h, \end{cases} \qquad T = T(\mathbb{C}_{\alpha}), \quad \alpha \in \mathbb{C}, \end{cases}$$

where $\mathbb{C}_{\alpha} \in \operatorname{Rep} H$ is \mathbb{C} with *h*-action $h.\zeta = \alpha \cdot \zeta$. Then $B(T) = U_{\hbar}(\mathfrak{sl}_2)^+ = \langle h, e^+ \rangle / ([h, e^+] = \alpha e^+)$ with coproduct $\Delta(e^+) = e^+ \otimes 1 + e^{\pi i \alpha h} \otimes e^+$

YD-condition <---> quantum groups

"Double-Bosonisation" [Majid]

Let $C = \operatorname{Rep} H$ be the (braided) representation category of a quasitriangular Hopf algebra $H, T^+, T^- \in C$ be braided Hopf algebras and $\rho: T^+ \otimes T^- \to \mathbb{1}$ be a Hopf pairing. Then there is a Hopf algebra $D(T^+, T^-, \rho)$ such that $D(T^+, T^-, \rho)$ -Mod $_{\operatorname{Vec}} \cong_{\otimes} T^+$ -YD $_{\mathcal{C}}^{\rho}$ -T⁻.

Example:

H as before, $T^+ := T(\mathbb{C}_{\alpha})$, $T^- := T(\mathbb{C}_{-\alpha})$ and ρ the Hopf pairing induced $\mathbb{C}_{\alpha} \otimes \mathbb{C}_{-\alpha} \to \mathbb{1} = \mathbb{C}_0$, $1 \otimes 1 \mapsto 1$:

$$D = \boxed{U_{\hbar}(\mathfrak{sl}_2)} = \frac{\langle h, e^+, e^- \rangle}{([h, e^\pm] = \pm \alpha e^\pm, \underbrace{[e^+, e^-] = e^{\pi i \alpha h} - e^{-\pi i \alpha h}}_{F^+ X, F^-}}$$

YD-condition <----> quantum groups

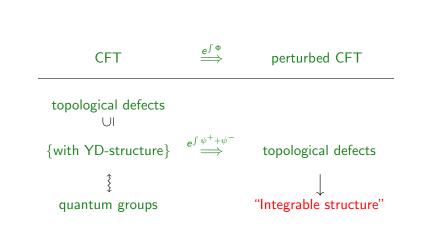
Example: sine-Gordon theory

Similarly, for sine-Gordon theory:

$$\Phi(u) = :e^{i\alpha\varphi(u)}: + :e^{-i\alpha\varphi(u)}: \quad \iff \quad T^+ = T^- := T(\mathbb{C}_{\alpha} \oplus \mathbb{C}_{-\alpha})$$
$$\rightsquigarrow \boxed{U_{\hbar}(L\mathfrak{sl}_2)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

what's left...



...means, in particular, to have

infinitely many

commuting

integrals of motion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

...means, in particular, to have

infinitely many

commuting

integrals of motion

Integrals of motion as defect operators from topological defects:

$$\mathcal{O}(X) := \operatorname{cft}\left(\underbrace{e^{\int (\psi_X^+ + \psi_X^-)}}_{\checkmark}\right) : \mathcal{H} \to \mathcal{H}$$

...means, in particular, to have

• infinitely many $\leftarrow \exists$ infinitely many non-isomorphic,

Integrals of motion as defect operators from topological defects:

$$\mathcal{O}(X) := \operatorname{cft}\left(\underbrace{e^{\int (\psi_X^+ + \psi_X^-)}}_{\checkmark}\right) : \mathcal{H} \to \mathcal{H}$$

- ...means, in particular, to have $(U_{\hbar}(L\mathfrak{sl}_2))$ provides an example)
- infinitely many

commuting

integrals of motion

- $\label{eq:constraint} \Leftarrow \exists \text{ infinitely many non-isomorphic,} \\ U_\hbar(L\mathfrak{sl}_2)\text{-irreps are evaluation} \\ \text{representations}$
- $\leftarrow \text{ commuting (in tensor product up to} \\ \text{ iso; or in Grothendieck ring)} \\ \mathcal{K}_0(U_\hbar(L\mathfrak{sl}_2))\text{-Mod is commutative}$

 $\leftarrow \quad \forall exter-Drinfeld modules \\ U_{\hbar}(L\mathfrak{sl}_2)\text{-modules are "double bosonisations"}$

Integrals of motion as defect operators from topological defects:

$$\mathcal{O}(X) := \mathsf{cft}\left(\underbrace{e^{\int (\psi_X^+ + \psi_X^-)}}_{\checkmark}\right) : \mathcal{H} \to \mathcal{H}$$

Integrability: the BLZ construction

Get commuting integrals of motion for a free boson by

$$egin{aligned} \mathbf{T}_{\pi}(\lambda) &= ext{tr}_{\pi_{\lambda}}\left(e^{2i\pi P\otimes\pi_{\lambda}(H)}\mathcal{P}\expiggl(\int_{0}^{2\pi}d heta\left(:e^{-2arphi^{+}(heta)}:\otimes\pi_{\lambda}(E_{0}^{+})
ight) + :e^{2arphi^{+}(heta)}:\otimes\pi_{\lambda}(E_{1}^{+})iggr)
ight), \end{aligned}$$

where $\lambda \in \mathbb{C}^{\times}$ and π_{λ} is an evaluation representation of $U_{\hbar}(L\mathfrak{sl}_2)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

This formula is fully reproduced by our prescription.

Thank you!

