Singularities of scattering amplitudes from cluster algebras & their generalizations

Niklas Henke

ZMP Seminar 2021

02.12.2021

based on [JHEP 08 (2020) 005, JHEP 10 (2021) 007] (with Georgios Papathanasiou

Outline

- 1. Scattering amplitudes, multiple polylogarithms and symbols
- 2. Cluster algebras
- 3. Six- and seven-particle amplitudes
- 4. Tropical cluster algebras
- 5. Eight-particle & nine-particle amplitudes
- 6. Infinite mutation sequences
- 7. Conclusions & Outlook
- 8. Bonus material

Outline

1. Scattering amplitudes, multiple polylogarithms and symbols

2. Cluster algebras

- 3. Six- and seven-particle amplitudes
- 4. Tropical cluster algebras
- 5. Eight-particle & nine-particle amplitudes
- 6. Infinite mutation sequences
- 7. Conclusions & Outlook
- 8. Bonus material

Scattering amplitudes

Amplitudes

Scattering amplitudes are fundamental **observables**, quantities which can be measured, that give the probability for certain outcomes in the interaction of fundamental particles.

Scattering amplitudes

Amplitudes

Scattering amplitudes are fundamental **observables**, quantities which can be measured, that give the probability for certain outcomes in the interaction of fundamental particles.

Computing amplitudes

Conventionally, amplitudes are computed as a perturbative expansion:

 $\bigcirc - + -\bigcirc -\bigcirc - + -\bigcirc -\bigcirc -\bigcirc - + \cdots$

Scattering amplitudes

Amplitudes

Scattering amplitudes are fundamental **observables**, quantities which can be measured, that give the probability for certain outcomes in the interaction of fundamental particles.

Computing amplitudes

Conventionally, amplitudes are computed as a perturbative expansion:

-0- + -0-0- + -0-0-0- + ...

But: The leading term of eg. $g + g \rightarrow 8g$ requires millions of diagrams!

4/61

Modern amplitudes methods

Computing amplitudes (efficiently)

Scattering amplitudes have intricate mathematical structures, that can be exploited to skip the perturbative expansion entirely!

Modern amplitudes methods

Computing amplitudes (efficiently)

Scattering amplitudes have intricate mathematical structures, that can be exploited to skip the perturbative expansion entirely!

- Amplitudes & maths

In this way, amplitudes bridge from experimental and theoretical physics to pure mathematics, by eg. asking the questions:

- What numbers / functions can appear?
- What are the algebraic / analytic properties of these functions?
- Can general mathematical statements about the functions in turn be used to compute amplitudes?
- Do (geometric) structures exist, that capture the amplitude without relying on a perturbative expansion?

Planar $\mathcal{N} = 4$ super Yang-Mills

$-\mathcal{N}=4$ super Yang-Mills theory

We consider the gauge theory with color group $SU(N_c)$, coupling constant g, and maximal amount of $\mathcal{N} = 4$ supersymmetries – the *simplest* interacting gauge theory – to answer these questions.

$\mathcal{N}=4$ super Yang-Mills theory

We consider the gauge theory with color group $SU(N_c)$, coupling constant g, and maximal amount of $\mathcal{N} = 4$ supersymmetries – the *simplest* interacting gauge theory – to answer these questions.

– Planar limit

Taking the number of colors $N_c \rightarrow \infty$ while keeping the 't Hooft coupling $\lambda = g^2 N_c$ constant, only planar Feynman graphs contribute to the amplitude – which makes our job much less complicated!

For $\mathcal{N}=4$ pSYM, the *color-ordered* amplitude is given by

$$\mathcal{A}_n \propto \sum_{L=0}^{\infty} \sum_{k=0}^{n-4} (g^2 N_c)^L \mathcal{A}_{n,k}^{(L)}(x_1, \ldots, x_{3n-15})$$

where

- n number of particles
- L number of loops / order in pertrubative expansion
- k helicity configuration (all but k + 2 particles with positive helicity)
- x_i , $i = 1, \ldots, x_{3n-15}$ variables of the space of kinematics

Kinematics of $\mathcal{N}=4$ amplitudes & Grassmannians

Momentum twistors

The kinematics can be parameterised in terms of momentum twistors $Z_i \in \mathbb{CP}^3$, i = 1, ..., n. These transform in the fundamental representation of SL(4, \mathbb{C}), which corresponds to dual conformal symmetry. The basic SL(4, \mathbb{C})-invariants are the *Plücker variables*

$$\langle ijkl \rangle = \epsilon_{ABCD} Z_i^A Z_j^B Z_k^C Z_l^D \equiv \det (Z_i Z_j Z_k Z_l)$$

Kinematics of $\mathcal{N}=4$ amplitudes & Grassmannians

Momentum twistors

The kinematics can be parameterised in terms of momentum twistors $Z_i \in \mathbb{CP}^3$, i = 1, ..., n. These transform in the fundamental representation of SL(4, \mathbb{C}), which corresponds to dual conformal symmetry. The basic SL(4, \mathbb{C})-invariants are the *Plücker variables*

$$\langle ijkl \rangle = \epsilon_{ABCD} Z_i^A Z_j^B Z_k^C Z_l^D \equiv \det (Z_i Z_j Z_k Z_l)$$

Kinematic space

The kinematic space is the configuration space of *n* points in \mathbb{CP}^3 , or

$$\operatorname{Conf}(\mathbb{P}^3) \simeq \operatorname{Gr}(4, n) / (\mathbb{C}^*)^{n-1} =: \widetilde{\operatorname{Gr}}(4, n),$$

with the Grassmannian Gr(k, n) being the space of k-dimensional planes in a *n*-dimensional vector space.

8/61

Functions of $\mathcal{N}=4$ pSYM loop amplitudes

Observation

All known L-loop amplitudes are multiple polylogarithms of weight 2L.

Functions of $\mathcal{N}=4$ pSYM loop amplitudes

Observation

All known L-loop amplitudes are multiple polylogarithms of weight 2L.

Definition (differential)

A multiple polylogarithm (MPL) F_w of weight w is recursively defined as

$$dF_w = \sum_{\varphi_lpha} F^lpha_{w-1} \cdot d\log \varphi_lpha \,,$$

for a collection of rational functions φ_{α} and MPLs F_{w-1}^{α} of weight w-1.

9/61

Functions of $\mathcal{N}=4$ pSYM loop amplitudes

Observation

All known L-loop amplitudes are multiple polylogarithms of weight 2L.

Definition (differential)

A multiple polylogarithm (MPL) F_w of weight w is recursively defined as

$$dF_w = \sum_{\varphi_lpha} F^lpha_{w-1} \cdot d\log \varphi_lpha \,,$$

for a collection of rational functions φ_{α} and MPLs F_{w-1}^{α} of weight w-1.

Definition (integral)

Multiple polylogarithms can equivalently be defined as iterated integrals. A weight w MPL I_w is given by

$$I_{w}(a_{0};a_{1},\ldots,a_{w};a_{w+1}) = \int_{a_{0}}^{a_{w+1}} \frac{dt}{t-a_{w}} I_{w-1}(a_{0};a_{1},\ldots,a_{w-1};t) ,$$

Symbols and alphabets

Definition

The symbol map on polylogarithms is defined via

$$\mathcal{S}\left[\textit{F}_{\textit{w}}
ight] = \sum_{arphi_{lpha}} \mathcal{S}\left[\textit{F}_{\textit{w}-1}^{lpha}
ight] \otimes \log arphi_{lpha}$$

with the **letters** φ_{α} encoding the branch-cut structure of the function.

Symbols and alphabets

- Definition

The symbol map on polylogarithms is defined via

$$\mathcal{S}\left[\mathcal{F}_{w}
ight] = \sum_{arphi_{lpha}} \mathcal{S}\left[\mathcal{F}_{w-1}^{lpha}
ight] \otimes \log arphi_{lpha}$$

with the **letters** φ_{α} encoding the branch-cut structure of the function.

- Example

The dilogarithm is of weight 2 and is given by

$$\mathsf{Li}_2(x) = -\int_0^x \frac{\log{(1-t)}}{t} dt$$

The symbol of the dilogarithm is

$$S[Li_2] = -\log(1-x) \otimes \log(x)$$
.

Hopf algebra

Definition

A coalgebra is a K-vector space V, which is equipped with a coproduct $\Delta: V \to V \otimes V$ and counit $\epsilon: V \to K$ satisfying

$$(\mathrm{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathrm{id}) \circ \Delta$$
(1)

$$(\mathrm{id} \otimes \epsilon) \circ \Delta = \mathrm{id} = (\epsilon \otimes \mathrm{id}) \circ \Delta$$
(2)

Hopf algebra

Definition

A coalgebra is a K-vector space V, which is equipped with a coproduct $\Delta: V \to V \otimes V$ and counit $\epsilon: V \to K$ satisfying

$$(\mathrm{id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathrm{id}) \circ \Delta \tag{1}$$
$$(\mathrm{id} \otimes \epsilon) \circ \Delta = \mathrm{id} = (\epsilon \otimes \mathrm{id}) \circ \Delta \tag{2}$$

Definition

A Hopf algebra is a K-vector space \mathcal{H} which is both an algebra and a coalgebra, with certain compatibility conditions such as

$$\Delta(a\cdot b)=\Delta(a)\cdot\Delta(b)\,,$$

and is further equipped with an antipode map $S:\mathcal{H}\to\mathcal{H}$ satisfying

$$S(a \cdot b) = S(b) \cdot S(a)$$
, $\mu(\operatorname{id} \otimes S) \circ \Delta = \mu(S \otimes \operatorname{id}) \circ \Delta = 0$.

Claim

The space of all MPLs ${\mathcal H}$ forms a Hopf algebra graded by weight

$$\mathcal{H}=\bigoplus_{n=0}^\infty\mathcal{H}_n\,,$$

where $\mathcal{H}_0 = \mathbb{Q}$ and \mathcal{H}_n consists of MPLs of weight *n*.

Hopf algebra of MPLs (shuffle product)

The product formula The product of two MPLs of weight *n* and *m* is given by $I_n(a; z_1, ..., z_n; b) \cdot I_m(a; z_{n+1}, ..., z_{n+m}; b) =$ $\sum_{\sigma \in \Sigma_{m,n}} I_{n+m}(a; z_{\sigma(1)}, ..., z_{\sigma(n+m)}; b)$ where $\Sigma_{m,n}$ are all permutations that separately respect the ordering of 1, ..., n and n + 1, ..., n + m.

Hopf algebra of MPLs (shuffle product)

Shuffle product formula

The product of two MPLs of weight n and m is given by

$$I_n(a; z_1, \ldots, z_n; b) \cdot I_m(a; z_{n+1}, \ldots, z_{n+m}; b) = \sum_{\sigma \in \Sigma_{m,n}} I_{n+m}(a; z_{\sigma(1)}, \ldots, z_{\sigma(n+m)}; b)$$

where $\Sigma_{m,n}$ are all permutations that separately respect the ordering of $1, \ldots, n$ and $n + 1, \ldots, n + m$.

Example

The product of a generic weight-2 with a weight-1 MPL is given by

$$l_2(a; z_1, z_2; b) \cdot l_1(a; z_3; b) = \\ l_3(a; z_3, z_1, z_2; b) + l_3(a; z_1, z_3, z_2; b) + l_3(a; z_1, z_2, z_3; b)$$

Hopf algebra of MPLs (coproduct)

Hopf algebra of MPLs (coproduct)

– Example

The coproduct of the Dilogarithm $Li_2(x)$ is given by

 $\Delta\left(\mathsf{Li}_2(x)\right) = 1 \otimes \mathsf{Li}_2(x) + \mathsf{Li}_2(x) \otimes 1 - \log\left(1 - x\right) \otimes \log(x)$

Symbol map

- Coproduct & grading

The coproduct respects the grading of the algebra of MPLs

$$\Delta: \mathcal{H}_n \to \bigoplus_{p+q=n} \mathcal{H}_p \otimes \mathcal{H}_q, \quad \Delta = \sum_{p+q=n} \Delta_{p,q}$$

Symbol map

– Coproduct & grading

The coproduct respects the grading of the algebra of MPLs

$$\Delta: \mathcal{H}_n \to \bigoplus_{p+q=n} \mathcal{H}_p \otimes \mathcal{H}_q, \quad \Delta = \sum_{p+q=n} \Delta_{p,q}$$

- **Iterative application**
Applying the coproduct multiple times, we split up the MPLs as

$$\mathcal{H}_n \xrightarrow{\Delta} \bigoplus_{p+q=n} \mathcal{H}_p \otimes \mathcal{H}_q \xrightarrow{\Delta \otimes \mathrm{id}} \bigoplus_{p+q+r=n} \mathcal{H}_p \otimes \mathcal{H}_q \otimes \mathcal{H}_r \xrightarrow{\Delta \otimes \mathrm{id} \otimes \mathrm{id}} \cdots$$

Symbol map

- Coproduct & grading

The coproduct respects the grading of the algebra of MPLs

$$\Delta: \mathcal{H}_n \to \bigoplus_{p+q=n} \mathcal{H}_p \otimes \mathcal{H}_q, \quad \Delta = \sum_{p+q=n} \Delta_{p,q}$$

- Iterative applicationApplying the coproduct multiple times, we split up the MPLs as $\mathcal{H}_n \xrightarrow{\Delta} \bigoplus_{p+q=n} \mathcal{H}_p \otimes \mathcal{H}_q \xrightarrow{\Delta \otimes \mathsf{id}} \bigoplus_{p+q+r=n} \mathcal{H}_p \otimes \mathcal{H}_q \otimes \mathcal{H}_r \xrightarrow{\Delta \otimes \mathsf{id} \otimes \mathsf{id}} \cdots$

Symbol

The symbol is the (1, ..., 1)-component of the (n - 1)-fold application of the coproduct

$$\mathcal{S} = \Delta_{1,...,1} \mod \pi$$

$\mathcal{N}=4$ pSYM loop amplitudes & cluster algebras

Key observation

The letters φ_{α_i} of $\mathcal{N} = 4$ pSYM loop amplitudes for n = 6, 7 are cluster \mathcal{A} -variables of the *cluster algebra* associated to Gr(4, n). [Golden, Goncharov, Spradlin, Vergu, Volovich '13]

$\mathcal{N}=4$ pSYM loop amplitudes & cluster algebras

Key observation

The letters φ_{α_i} of $\mathcal{N} = 4$ pSYM loop amplitudes for n = 6, 7 are cluster \mathcal{A} -variables of the *cluster algebra* associated to Gr(4, n). [Golden, Goncharov, Spradlin, Vergu, Volovich '13]

Crucial input for cluster bootstrap:

- 1. "Guess" the collection of letters, the *alphabet*, of the amplitude
- 2. Construct the space of all weight 2L symbols
- 3. Fix amplitude with consistency conditions and physical constraints
- 4. "Integrate" the symbol to obtain the amplitude as a function

see eg. [2005.06735, 1108.4461, 1111.1704, 1308.2276, 1402.3300, 1407.4724, 1412.3763, 1612.08976, 1812.04640, ...]

$\mathcal{N}=4$ pSYM loop amplitudes & cluster algebras

Key observation

The letters φ_{α_i} of $\mathcal{N} = 4$ pSYM loop amplitudes for n = 6, 7 are cluster \mathcal{A} -variables of the *cluster algebra* associated to Gr(4, n). [Golden, Goncharov, Spradlin, Vergu, Volovich '13]

Crucial input for cluster bootstrap:

- 1. "Guess" the collection of letters, the *alphabet*, of the amplitude
- 2. Construct the space of all weight 2L symbols
- 3. Fix amplitude with consistency conditions and physical constraints
- 4. "Integrate" the symbol to obtain the amplitude as a function

see eg. [2005.06735, 1108.4461, 1111.1704, 1308.2276, 1402.3300, 1407.4724, 1412.3763, 1612.08976, 1812.04640, ...]

Cluster algebra structures at the level of the integrand were previously discovered by Arkani-Hamed et al in [1215.5605].

Outline

1. Scattering amplitudes, multiple polylogarithms and symbols

2. Cluster algebras

- 3. Six- and seven-particle amplitudes
- 4. Tropical cluster algebras
- 5. Eight-particle & nine-particle amplitudes
- 6. Infinite mutation sequences
- 7. Conclusions & Outlook
- 8. Bonus material

Grassmannian cluster algebras

Grassmannian cluster algebras

Grassmannian cluster algebras: a simple example

 ${\rm Gr}(2,5)\simeq A_2$

 $a_1 \rightarrow a_2$

19/61

Grassmannian cluster algebras: a simple example

 ${\rm Gr}(2,5)\simeq A_2$

19/61
${\rm Gr}(2,5)\simeq A_2$

 ${\rm Gr}(2,5)\simeq A_2$

 $Gr(2,5) \simeq A_2$

 $Gr(2,5) \simeq A_2$

Cluster polytope

The *cluster polytope* is a geometric description of the cluster algebra, where

$$\begin{array}{l} \mathsf{Vertex} \longleftrightarrow \mathsf{Cluster} \\ \mathsf{Edge} \longleftrightarrow \mathsf{Mutation} / (n-1) \text{-dim subalgebra} \\ \cdots \\ \mathsf{Facet} \longleftrightarrow \mathsf{Variable} / 1 \text{-dim subalgebra} \\ \\ \mathsf{Niklas \, Henke} \ (\mathsf{ZMP \, Seminar \, 2021}) \\ \end{array}$$

Cluster polytope & fan

Outline

1. Scattering amplitudes, multiple polylogarithms and symbols

2. Cluster algebras

3. Six- and seven-particle amplitudes

- 4. Tropical cluster algebras
- 5. Eight-particle & nine-particle amplitudes
- 6. Infinite mutation sequences
- 7. Conclusions & Outlook
- 8. Bonus material

Using the mutation rules, the new variable p is given by $p = \frac{\langle 1245 \rangle \langle 3456 \rangle + \langle 1456 \rangle \langle 2345 \rangle}{\langle 1345 \rangle} \,.$

Using the mutation rules, the new variable p is given by

$$p=rac{\left<1245
ight>\left<3456
ight>+\left<1456
ight>\left<2345
ight>}{\left<1345
ight>}$$

However, the Plücker variables are related by *Plücker relations* such as

$$\left< 1245 \right> \left< 3456 \right> + \left< 1456 \right> \left< 2345 \right> - \left< 1345 \right> \left< 2456 \right> = 0$$

Using the mutation rules, the new variable p is given by

$$p=rac{\left<1245
ight>\left<3456
ight>+\left<1456
ight>\left<2345
ight>}{\left<1345
ight>}$$

However, the Plücker variables are related by Plücker relations such as

$$\left<1245\right>\left<3456\right>+\left<1456\right>\left<2345\right>-\left<1345\right>\left<2456\right>=0$$

so that we conclude that

$$p = \langle 2456
angle$$
 .

• The cluster variables of Gr(4,6) are the 14 Plücker variables, split into the 9 unfrozen variables

 $\left\{ \left< 1235 \right>, \left< 1245 \right>, \left< 1345 \right>, \left< 1246 \right>, \left< 1346 \right>, \left< 1356 \right>, \left< 2346 \right>, \left< 2356 \right>, \left< 2456 \right> \right\} \right\}$

and the 6 frozen variables

 $\left\{ \left< 1234 \right>, \left< 1236 \right>, \left< 1256 \right>, \left< 1456 \right>, \left< 3456 \right>, \left< 2345 \right> \right\} \right.$

• The cluster variables of Gr(4,6) are the 14 Plücker variables, split into the 9 unfrozen variables

 $\left\{ \left< 1235 \right>, \left< 1245 \right>, \left< 1345 \right>, \left< 1246 \right>, \left< 1346 \right>, \left< 1356 \right>, \left< 2346 \right>, \left< 2356 \right>, \left< 2456 \right> \right\} \right\}$

and the 6 frozen variables

 $\left\{ \left< 1234 \right>, \left< 1236 \right>, \left< 1256 \right>, \left< 1456 \right>, \left< 3456 \right>, \left< 2345 \right> \right\} \right.$

• Out of these 15 variables, we can form the 9 dual conformally invariant cross ratios

$$\frac{\langle 1450\rangle \langle 1234\rangle}{\langle 1346\rangle \langle 1245\rangle}, \quad \frac{\langle 1250\rangle \langle 2345\rangle}{\langle 1245\rangle \langle 2356\rangle}, \quad \dots$$

• The cluster variables of Gr(4,6) are the 14 Plücker variables, split into the 9 unfrozen variables

 $\left\{ \left< 1235 \right>, \left< 1245 \right>, \left< 1345 \right>, \left< 1246 \right>, \left< 1346 \right>, \left< 1356 \right>, \left< 2346 \right>, \left< 2356 \right>, \left< 2456 \right> \right\} \right\}$

and the 6 frozen variables

 $\left\{ \left\langle 1234 \right\rangle, \left\langle 1236 \right\rangle, \left\langle 1256 \right\rangle, \left\langle 1456 \right\rangle, \left\langle 3456 \right\rangle, \left\langle 2345 \right\rangle \right\}$

• Out of these 15 variables, we can form the 9 dual conformally invariant cross ratios

$$\frac{\langle 1456 \rangle \langle 1234 \rangle}{\langle 1346 \rangle \langle 1245 \rangle}, \quad \frac{\langle 1256 \rangle \langle 2345 \rangle}{\langle 1245 \rangle \langle 2356 \rangle}, \quad \dots$$

Hexagon alphabet

The 9 DCI-invariant letters from Gr(4,6) precisely correspond to the alphabet known to describe six-particle amplitudes!

• With the knowledge of the hexagon alphabet, as well as physical constraints, the six-particle amplitude was bootstrapped with up to seven loops

- With the knowledge of the hexagon alphabet, as well as physical constraints, the six-particle amplitude was bootstrapped with up to seven loops
- One powerful class of constraints are the *Steinmann relations*, which pose limits on the appearance of double discontinuities of the amplitude (see eg. the review [2005.06735])

- With the knowledge of the hexagon alphabet, as well as physical constraints, the six-particle amplitude was bootstrapped with up to seven loops
- One powerful class of constraints are the *Steinmann relations*, which pose limits on the appearance of double discontinuities of the amplitude (see eg. the review [2005.06735])
- In terms of the symbol, which describes the singularities of its function, these relations translate to conditions on which letters can appear next to each other.

- With the knowledge of the hexagon alphabet, as well as physical constraints, the six-particle amplitude was bootstrapped with up to seven loops
- One powerful class of constraints are the *Steinmann relations*, which pose limits on the appearance of double discontinuities of the amplitude (see eg. the review [2005.06735])
- In terms of the symbol, which describes the singularities of its function, these relations translate to conditions on which letters can appear next to each other.

Cluster adjacency

Two letters can only appear next to each other in the symbol, if there exists a cluster that contains both of them. Geometrically, these pairs correspond to codimension-2 faces of the cluster polytope. (see eg. [1710.10953, 1810.08149])

Cluster adjacency (example)

27 / 61

Cluster adjacency (example)

• Initial cluster of Gr(4,7) cluster algebra is given by

• Initial cluster of Gr(4,7) cluster algebra can be brought into the E_6 form

see eg. [1412.3763, 1612.0876, 1812.04640, ...]

• Initial cluster of Gr(4,7) cluster algebra can be brought into the E_6 form

• The (homogeneous) *A*-coordinates contain the Plücker variables as well as bilinears such as

$$a_{61}=rac{\left<1356
ight>\left<1247
ight>-\left<1237
ight>\left<1456
ight>}{\left<1234
ight>\left<1567
ight>}$$

see eg. [1412.3763, 1612.0876, 1812.04640, ...] Niklas Henke (ZMP Seminar 2021) Scattering amplitudes & cluster algebras

• Initial cluster of Gr(4,7) cluster algebra can be brought into the E_6 form

• The (homogeneous) *A*-coordinates contain the Plücker variables as well as bilinears such as

$$\mathsf{a}_{61} = rac{\left<1356
ight>\left<1247
ight> - \left<1237
ight>\left<1456
ight>}{\left<1234
ight>\left<1567
ight>}$$

Heptagon alphabet

Together with the cyclic images a_{ij} obtained from the shifts $Z_m \rightarrow Z_{m+j-1}$, the alphabet of seven-particle scattering consists of the 42 A-coordinates of the cluster algebra.

 see eg.
 [1412.3763, 1612.0876, 1812.04640, ...]

 Niklas Henke
 (ZMP Seminar 2021)
 Scattering amplitudes & cluster algebras
 02.

1. Scattering amplitudes are experimentally relevant and mathematically beautiful

- 1. Scattering amplitudes are experimentally relevant and mathematically beautiful
- 2. The functions of $\mathcal{N}=4$ pSYM amplitudes are given by MPLs

- 1. Scattering amplitudes are experimentally relevant and mathematically beautiful
- 2. The functions of $\mathcal{N}=4$ pSYM amplitudes are given by MPLs
- 3. Cluster algebras give the symbol alphabet for n = 6, 7

- 1. Scattering amplitudes are experimentally relevant and mathematically beautiful
- 2. The functions of $\mathcal{N}=4$ pSYM amplitudes are given by MPLs
- 3. Cluster algebras give the symbol alphabet for n = 6, 7
- 4. Cluster adjacency further restricts how letters can appear next to each other in the symbol

- 1. Scattering amplitudes are experimentally relevant and mathematically beautiful
- 2. The functions of $\mathcal{N}=4$ pSYM amplitudes are given by MPLs
- 3. Cluster algebras give the symbol alphabet for n = 6, 7
- 4. Cluster adjacency further restricts how letters can appear next to each other in the symbol
- 5. Together, this provides crucial information to compute the symbol and ultimately the actual function of the amplitude

- 1. Scattering amplitudes are experimentally relevant and mathematically beautiful
- 2. The functions of $\mathcal{N}=4$ pSYM amplitudes are given by MPLs
- 3. Cluster algebras give the symbol alphabet for n = 6, 7
- 4. Cluster adjacency further restricts how letters can appear next to each other in the symbol
- 5. Together, this provides crucial information to compute the symbol and ultimately the actual function of the amplitude

Long-standing open questions

- 1. Cluster algebras of Gr(4, n) become infinite for $n \ge 8 \implies$ no bootstrap
- 2. Cluster algebras cannot describe non-rational letters known to appear in alphabets for $n\geq 8$

Outline

- 1. Scattering amplitudes, multiple polylogarithms and symbols
- 2. Cluster algebras
- 3. Six- and seven-particle amplitudes

4. Tropical cluster algebras

- 5. Eight-particle & nine-particle amplitudes
- 6. Infinite mutation sequences
- 7. Conclusions & Outlook
- 8. Bonus material

Tropical geometry: definition

– In essence

Tropical geometry is the algebraic geometry over the tropical semifield $(\mathbb{R} \cup \{\infty\}, \oplus, \otimes)$, where

 $a \oplus b = \min(a, b)$, $a \otimes b = a + b$.

31/61

Tropical geometry: definition

– In essence

Tropical geometry is the algebraic geometry over the tropical semifield $(\mathbb{R} \cup \{\infty\}, \oplus, \otimes)$, where

$$a \oplus b = \min(a, b)$$
, $a \otimes b = a + b$.

Definition

The *tropical polynomial* Trg for some polynomial g is obtained by replacing addition with taking the minimum and multiplication by addition:

$$g = \sum_{a} c_a \cdot x_1^{a_1} \cdots x_n^{a_n} \longrightarrow \operatorname{Tr} g = \min_{a} \left\{ a_1 \cdot x_1 + \cdots + a_n \cdot x_n \right\}$$

Tropical geometry: definition

– In essence

Tropical geometry is the algebraic geometry over the tropical semifield $(\mathbb{R} \cup \{\infty\}, \oplus, \otimes)$, where

$$a \oplus b = \min(a, b)$$
, $a \otimes b = a + b$.

Definition

The *tropical polynomial* Trg for some polynomial g is obtained by replacing addition with taking the minimum and multiplication by addition:

$$g = \sum_{a} c_a \cdot x_1^{a_1} \cdots x_n^{a_n} \longrightarrow \operatorname{Tr} g = \min_{a} \{a_1 \cdot x_1 + \cdots + a_n \cdot x_n\}$$

Definition

The *tropical hypersurface* V(Trg) is given by the points, where Trg passes between regions of linearity. The *tropical variety* of a polynomial ideal is the intersection of all tropical hypersurfaces.

Tropical geometry: example

Tropicalise the polynomial g:

$$g(x, y) = 2x^3 + x^{-1}y - y^2 \longrightarrow \text{Tr} g = \min(3x, -x + y, 2y)$$

The tropical hypersurface is given by the union of the equations:

$$3x = -x + y \le 2y$$
, $3x = 2y \le -x + y$, $2y = -x + y \le 3x$.

The affine variety of g on the left, the tropical variety on the right:

Kinematic space (revisited)

- Definition

The *Grassmannian* Gr(k, n) is the space of k-dimensional planes through the origin in an *n*-dimensional space.

Kinematic space (revisited)

Definition

The *Grassmannian* Gr(k, n) is the space of k-dimensional planes through the origin in an *n*-dimensional space.

Definition

Can be realized as $k \times n$ matrices Z modulo GL(k). The minors of Z are the *Plücker variables*

$$p_{i_1,\ldots,i_k} = \det \left(Z_{i_1} \cdots Z_{i_k} \right) \,,$$

which obey the Plücker relations

$$p_{i_1...i_r[i_{r+1}...i_k}p_{j_1...j_{r+1}]j_{r+2}...j_k} = 0.$$

Kinematic space (revisited)

Definition

The *Grassmannian* Gr(k, n) is the space of k-dimensional planes through the origin in an *n*-dimensional space.

Definition

Can be realized as $k \times n$ matrices Z modulo GL(k). The minors of Z are the *Plücker variables*

$$p_{i_1,\ldots,i_k} = \det\left(Z_{i_1}\cdots Z_{i_k}\right)\,,$$

which obey the Plücker relations

$$p_{i_1...i_r[i_{r+1}...i_k}p_{j_1...j_{r+1}]j_{r+2}...j_k} = 0.$$

- Definition

The positive kinematic space $\widetilde{\text{Gr}}_+(k, n)$ is obtained by quotiening out rescalings of columns and restricting to $p_{i_1,...,i_k} \ge 0$.

Parameterising the positive kinematic space

Theorem

 $\widetilde{\text{Gr}}_+(k,n)$ can be parameterised in terms of (k-1)(n-k-1) independent parameters x_i by the web-parameterisation [Speyer, Williams '05].

Example

Consider for example $\widetilde{Gr}_+(2,5)$, which is of dimension 2. The matrices $Z \in Gr(2,5)$ can be parameterised as

$$Z = \begin{pmatrix} 1 & 0 & -1 & -1 - x_1 & -1 - x_1 - x_1 x_2 \\ 0 & 1 & 1 & 1 & 1 \end{pmatrix}$$

This implies a parameterisation for the Plücker variables, eg.

$$p_{25} = 1 + x_1 + x_1 x_2$$

1. Start with the parameterisation of $\widetilde{\text{Gr}}_+(k, n)$, e.g. for $\widetilde{\text{Gr}}_+(2, 5)$

 $p_{25} = 1 + x_1 + x_1 x_2 \,.$

1. Start with the parameterisation of $\widetilde{\mathrm{Gr}}_+(k,n)$, e.g. for $\widetilde{\mathrm{Gr}}_+(2,5)$

$$p_{25} = 1 + x_1 + x_1 x_2 \,.$$

2. Tropicalise (any subset of) the Plücker variables p_{ij} , eg.

$$p_{25} \rightarrow w_{25} = \min(0, x_1, x_1 + x_2)$$

1. Start with the parameterisation of $\widetilde{\mathrm{Gr}}_+(k,n)$, e.g. for $\widetilde{\mathrm{Gr}}_+(2,5)$

$$p_{25} = 1 + x_1 + x_1 x_2$$
.

2. Tropicalise (any subset of) the Plücker variables p_{ij} , eg.

 $\begin{array}{ll} \mbox{addition} & \rightarrow \mbox{minimum} \\ \mbox{multiplication} & \rightarrow \mbox{addition} \end{array} \quad p_{25} \rightarrow w_{25} = \mbox{min} \left(0, x_1, x_1 + x_2 \right) \end{array}$

3. Tropical kin. space: union of all tropical hypersurfaces, given by eg.

 $w_{25}: x_1 = 0 \le x_1 + x_2 \ \lor \ x_1 = x_1 + x_2 \le 0 \ \lor \ x_1 + x_2 = 0 \le x_1 \,.$

1. Start with the parameterisation of $\widetilde{\mathrm{Gr}}_+(k,n)$, e.g. for $\widetilde{\mathrm{Gr}}_+(2,5)$

$$p_{25} = 1 + x_1 + x_1 x_2 \, .$$

2. Tropicalise (any subset of) the Plücker variables p_{ij} , eg.

 $\begin{array}{ll} \mbox{addition} & \rightarrow \mbox{minimum} \\ \mbox{multiplication} & \rightarrow \mbox{addition} \end{array} \quad p_{25} \rightarrow w_{25} = \mbox{min} \left(0, x_1, x_1 + x_2 \right) \end{array}$

3. Tropical kin. space: union of all tropical hypersurfaces, given by eg.

 $w_{25}: x_1 = 0 \le x_1 + x_2 \ \lor \ x_1 = x_1 + x_2 \le 0 \ \lor \ x_1 + x_2 = 0 \le x_1 \,.$

Tropical fan

Tropicalising (a subset of) all Plücker variables gives the fan $(p)F_{k,n}$ of $(p)\widetilde{Tr}_+(k,n)$, whose cones are the regions, where all tropicalised Plückers are linear.

Tropical kinematic space & cluster algebras

see eg. [Speyer, Williams '05], [Drummond, Foster, Gürdoğan, Kalousios '19]

Tropical kinematic space & cluster algebras Fan $F_{2.5}$ of $\widetilde{Tr}_{+}(2,5)$: Cluster fan of Gr(2, 5): a_1 a_5 a_4 a_2 Observation The cluster fan triangulates the tropical fan, in this case they are equivalent! see eg. [Speyer, Williams '05], [Drummond, Foster, Gürdoğan, Kalousios '19]

Outline

- 1. Scattering amplitudes, multiple polylogarithms and symbols
- 2. Cluster algebras
- 3. Six- and seven-particle amplitudes
- 4. Tropical cluster algebras
- 5. Eight-particle & nine-particle amplitudes
- 6. Infinite mutation sequences
- 7. Conclusions & Outlook
- 8. Bonus material

- Problem

Cluster algebra of Gr(4,8) predicts infinitely many singularities for A_8 .

- Problem

Cluster algebra of Gr(4,8) predicts infinitely many singularities for \mathcal{A}_8 .

Solution

The positive tropical kinematic space $\widetilde{Tr}_+(4,8)$ comes to the rescue via a selection rule for the cluster algebra!

- Problem

Cluster algebra of Gr(4,8) predicts infinitely many singularities for \mathcal{A}_8 .

Solution

The positive tropical kinematic space $\widetilde{Tr}_+(4,8)$ comes to the rescue via a selection rule for the cluster algebra!

Revisiting the triangulation of $F_{k,n}$:

- The cluster fan triangulates the tropical fan.
- This triangulation may contain redundant rays, infinitely triangulating an already triangular cone.

- Problem

Cluster algebra of Gr(4,8) predicts infinitely many singularities for \mathcal{A}_8 .

Solution

The positive tropical kinematic space $\widetilde{Tr}_+(4,8)$ comes to the rescue via a selection rule for the cluster algebra!

Revisiting the triangulation of $F_{k,n}$:

- The cluster fan triangulates the tropical fan.
- This triangulation may contain redundant rays, infinitely triangulating an already triangular cone.

Selection rule

Stop mutating the cluster algebra, whenever you encounter a cluster containing redundant rays.

Rational alphabet of eight-particle amplitudes

70 (70 for partial tropicalisation) letters of degree one, the Plückers (*ijkl*),
120 (120) letters of degree two, e.g.

 $\left<1457\right>\left<2367\right>-\left<1237\right>\left<4567\right>\,,$

• 132 (90) letters of degree three, e.g.

 $\left< 1236 \right> \left< 1578 \right> \left< 3457 \right> - \left< 1237 \right> \left< 1578 \right> \left< 3456 \right> - \left< 1235 \right> \left< 1678 \right> \left< 3457 \right> \ ,$

- 32 (0) letters of degree four,
- 10 (0) letters of degree five.

Rational 8-particle alphabet

These form 356 (272) dual conformally invariant rational letters. All known rational letters appearing in eight-particle amplitudes included in the partial alphabet.

[NH, Papathanasiou '19], [Drummond, Foster, Gürdoan, Kalousious '19], [Arkani-Hamed, Lam, Spradlin '19], [Zhang, Li, He '19]

Niklas Henke (ZMP Seminar 2021)

Scattering amplitudes & cluster algebras

02.12.2021

Rational alphabet of nine-particle amplitudes

– Infinite cluster algebra

Similar to eight particles, the cluster algebra of Gr(4,9) is infinite but now also contains infinitely many inequivalent quivers.

Rational alphabet of nine-particle amplitudes

Infinite cluster algebra

Similar to eight particles, the cluster algebra of Gr(4,9) is infinite but now also contains infinitely many inequivalent quivers.

- Finite subset

Using the same selection rule as before, with the partial tropicalisation

$$\widetilde{\mathsf{pTr}}_+(4,9)$$
: tropicalise $\left\{ \left\langle \textit{ii}+1\textit{jj}+1 \right\rangle, \left\langle \textit{ij}-1\textit{jj}+1 \right\rangle \right\}$

we obtain a finite subset with 3078 rational letters in 24,102,954 clusters.

Rational alphabet of nine-particle amplitudes

– Infinite cluster algebra

Similar to eight particles, the cluster algebra of Gr(4,9) is infinite but now also contains infinitely many inequivalent quivers.

Finite subset

Using the same selection rule as before, with the partial tropicalisation

$$\widetilde{\mathsf{pTr}}_+(4,9)$$
: tropicalise $\left\{\left\langle \textit{ii}+1\textit{jj}+1
ight
angle,\left\langle \textit{ij}-1\textit{jj}+1
ight
angle
ight\}$

we obtain a finite subset with $3078\ rational$ letters in $24,102,954\ clusters.$

Rational 9-particle alphabet

Our proposed rational alphabet for 9-particle scattering amplitudes contains **3078** letters, which include the 531 rational letters known in the literature [He, Li, Zhang '20].

Outline

1. Scattering amplitudes, multiple polylogarithms and symbols

2. Cluster algebras

- 3. Six- and seven-particle amplitudes
- 4. Tropical cluster algebras
- 5. Eight-particle & nine-particle amplitudes
- 6. Infinite mutation sequences
- 7. Conclusions & Outlook
- 8. Bonus material

Square roots in the alphabet

Cluster variables

A-variables of a cluster algebra are always rational functions of the initial variables (eg. Plücker variables $\langle ijkl \rangle$) due to the mutation relation

$$\mathsf{a}_j o \mathsf{a}_j' = rac{\prod_{i o j} \mathsf{a}_i + \prod_{j o i} \mathsf{a}_i}{\mathsf{a}_j}$$

Square roots in the alphabet

Cluster variables

 \mathcal{A} -variables of a cluster algebra are always rational functions of the initial variables (eg. Plücker variables $\langle ijkl \rangle$) due to the mutation relation

$$\mathsf{a}_j o \mathsf{a}_j' = rac{\prod_{i o j} \mathsf{a}_i + \prod_{j o i} \mathsf{a}_i}{\mathsf{a}_j}$$

Square-root letters

Cluster algebras hence cannot describe square-root letters, such as $\sqrt{\Delta_{ijkl}}$ whereas

$$\begin{split} \Delta_{ijkl} &= (f_{ij}f_{kl} - f_{ik}f_{jl} - f_{il}f_{jk})^2 - 4f_{ij}f_{kl}f_{kl}f_{il}, \\ f_{ij} &= \langle ii + 1jj + 1 \rangle \end{split}$$

which is known to appear in the symbol of eight-particle amplitudes! (see eg. [He, Li, Zhang '19'20; Li, Zhang '21])

Infinite mutation sequences & square-root letters

For the infinite mutation sequence of the affine $A_1^{(1)}$ cluster algebra

$$a_1 \rightrightarrows a_2 \xrightarrow{\mu_1} a_3 \rightleftharpoons a_2 \xrightarrow{\mu_2} a_3 \rightrightarrows a_4 \xrightarrow{\mu_2} \cdots$$

we get a recursion relation for the variables a_i , which can be solved for

$$\lim \frac{a_i}{a_{i-1}} = \frac{a_2}{2a_1} \left(1 + x_1 + x_1 x_2 + \sqrt{(1 + x_1 + x_1 x_2)^2 - 4x_1 x_2} \right) \,,$$

where $x_1 = 1/a_2^2, x_2 = a_1^2$. [Canakci, Schiffler '16]

Infinite mutation sequences & square-root letters

For the infinite mutation sequence of the affine $A_1^{(1)}$ cluster algebra

$$a_1 \rightrightarrows a_2 \xrightarrow{\mu_1} a_3 \rightleftharpoons a_2 \xrightarrow{\mu_2} a_3 \rightrightarrows a_4 \xrightarrow{\mu_2} \cdots$$

we get a recursion relation for the variables a_i , which can be solved for

$$\lim \frac{a_i}{a_{i-1}} = \frac{a_2}{2a_1} \left(1 + x_1 + x_1 x_2 + \sqrt{(1 + x_1 + x_1 x_2)^2 - 4x_1 x_2} \right) \,,$$

where $x_1 = 1/a_2^2, x_2 = a_1^2$. [Canakci, Schiffler '16]

Square-root letters

Including (the limit of) infinite mutation sequences, we obtain generalised cluster variables that correspond to the square-root letters of the amplitude.

(see eg. [NH, Papathanasiou '19],[Arkani-Hamed, Lam, Spradlin '19],[Drummond, Foster, Gürdoğan, Kalousios '19]) Niklas Henke (ZMP Seminar 2021) Scattering amplitudes & cluster algebras 02.12.2021

43 / 61

Algebraic alphabet of eight-particle amplitudes

Origin clusters

In the cluster algebra of Gr(4,8) truncated by $\widetilde{pTr}_+(4,8)$, we find 3200 $A_1^{(1)}$ origin clusters of the following type

$$\cdots - b_1 \xrightarrow{i} a_1 \xleftarrow{b_2} b_2 \cdots$$

Of these origin clusters, 32 are distinct with respect to the limit for each of the 2 limit rays.

Algebraic alphabet of eight-particle amplitudes

Origin clusters

In the cluster algebra of Gr(4,8) truncated by $\widetilde{pTr}_+(4,8)$, we find 3200 $A_1^{(1)}$ origin clusters of the following type

$$\cdots - b_1 \xrightarrow{i} a_1 \xleftarrow{b_2} \cdots$$

Of these origin clusters, 32 are distinct with respect to the limit for each of the 2 limit rays.

Algebraic 8-particle alphabet

The 64 origin clusters give rise to 128 algebraic letters which can be reduced to the **18 multiplicatively independent algebraic letters** previously found.

[NH, Papathanasiou '19], [Drummond, Foster, Gürdoan, Kalousious '19], [Zhang, Li, He '19]

Niklas Henke (ZMP Seminar 2021)

Scattering amplitudes & cluster algebras

Consider the following A_2 cluster algebra with two frozen variables f_1, f_2 .

Consider the following A_2 cluster algebra with two frozen variables f_1, f_2 .

After mutating at the node of a_2 , we get the new variable a'_2 as

$$a_2' = rac{f_1 a_1 + f_2}{a_2}$$

Consider the following A_2 cluster algebra with two frozen variables f_1, f_2 .

After mutating at the node of a_2 , we get the new variable a'_2 as

$$a_2' = rac{f_1 a_1 + f_2}{a_2}$$

Had we chosen different frozen variables, the new variable a_2'' would be

Consider the following A_2 cluster algebra with two frozen variables f_1, f_2 .

After mutating at the node of a_2 , we get the new variable a'_2 as

$$a_2' = rac{f_1 a_1 + f_2}{a_2}$$

Had we chosen different frozen variables, the new variable a_2'' would be

 \Rightarrow Using so-called *coefficients* instead of frozen variables solves this issue!

Cluster algebras with coefficients

Coefficients

For a cluster with variables a_1, \ldots, a_n and frozen variables f_{n+1}, \ldots, f_{n+m} , and adjacency matrix b_{ij} , the *coefficients* y_1, \ldots, y_n are

$$\gamma_i = \prod_{j=n+1}^{n+m} f_j^{b_{ji}}$$

- Mutation (coefficients)

When mutating at node j, coefficients mutate as

$$y_j
ightarrow y_j^{-1}, \quad y_i
ightarrow y_i y_j^{\mathsf{max}(0,b_{ji})} \left(1 \hat{\oplus} y_j
ight)^{-b_{ji}} ext{ if } i
eq j$$

where the cluster-tropical addition is defined on the frozen variables as

$$\prod_{i} (f_i)^{b_i} \widehat{\oplus} \prod_{j} (f_j)^{c_j} = \prod_{i} (f_i)^{\min(b_i, c_i)}$$

Cluster algebras with coefficients

Coefficients

For a cluster with variables a_1, \ldots, a_n and frozen variables f_{n+1}, \ldots, f_{n+m} , and adjacency matrix b_{ij} , the *coefficients* y_1, \ldots, y_n are

$$v_i = \prod_{j=n+1}^{n+m} f_j^{b_{ji}}$$

J

– Mutation (*A*-variables)

The mutation rule of the $\mathcal A\text{-variables}$ under a mutation at node j is changed to

$$\mathsf{a}_{j} = rac{\mathsf{y}_{j}\prod_{i
ightarrow j}\mathsf{a}_{i}^{\mathsf{b}_{ij}}+\prod_{j
ightarrow i}\mathsf{a}_{i}^{\mathsf{b}_{ij}}}{\left(1\hat{\oplus}\mathsf{y}_{j}
ight)\mathsf{a}_{j}}$$

Cluster algebras with coefficients (example)

The coefficients of the initial cluster are given by

$$\begin{aligned} y_1 &= f_1^{-1}, \quad y_2 &= f_1 f_2^{-1}, \\ 1 &\oplus y_1 &= f_1^{-1}, \quad 1 &\oplus y_2 &= f_2^{-1} \end{aligned} \qquad \qquad y_1 &= f_1^{-1}, \quad y_2 &= f_1^{-1} f_2^{-1}, \\ 1 &\oplus y_1 &= f_1^{-1}, \quad 1 &\oplus y_2 &= f_2^{-1} \end{aligned}$$

Cluster algebras with coefficients (example)

The coefficients of the initial cluster are given by

$$\begin{aligned} y_1 &= f_1^{-1}, \quad y_2 = f_1 f_2^{-1}, \\ 1 &\oplus y_1 = f_1^{-1}, \quad 1 &\oplus y_2 = f_2^{-1} \end{aligned} \qquad \qquad y_1 = f_1^{-1}, \quad y_2 = f_1^{-1} f_2^{-1}, \\ 1 &\oplus y_1 = f_1^{-1}, \quad 1 &\oplus y_2 = f_2^{-1} \end{aligned}$$

After mutation, we get the modified coefficients as

$$y'_{1} = y_{1}(1 \oplus y_{2}) = f_{1}^{-1} f_{2}^{-1}, \qquad y'_{1} = y_{1}(1 \oplus y_{2}) = f_{1}^{-1}, y'_{2} = y_{2}^{-1} = f_{1}^{-1} f_{2} \qquad y'_{2} = y_{2}^{-1} = f_{1} f_{2}$$

Cluster algebras with coefficients (example)

The coefficients of the initial cluster are given by

$$\begin{aligned} y_1 &= f_1^{-1}, \quad y_2 = f_1 f_2^{-1}, \\ 1 &\oplus y_1 = f_1^{-1}, \quad 1 &\oplus y_2 = f_2^{-1} \end{aligned} \qquad \qquad y_1 = f_1^{-1}, \quad y_2 = f_1^{-1} f_2^{-1}, \\ 1 &\oplus y_1 = f_1^{-1}, \quad 1 &\oplus y_2 = f_2^{-1} \end{aligned}$$

After mutation, we get the modified coefficients as

$$y'_{1} = y_{1}(1 \oplus y_{2}) = f_{1}^{-1} f_{2}^{-1}, \qquad y'_{1} = y_{1}(1 \oplus y_{2}) = f_{1}^{-1}, y'_{2} = y_{2}^{-1} = f_{1}^{-1} f_{2} \qquad y'_{2} = y_{2}^{-1} = f_{1} f_{2}$$

and the new \mathcal{A} -variable as

$$a_{2}' = \frac{y_{2}a_{1} + 1}{a_{2}(1 \oplus y_{2})} = \frac{f_{1}a_{1} + f_{2}}{a_{2}} \qquad \qquad a_{2}' = \frac{y_{2}a_{1} + 1}{a_{2}(1 \oplus y_{2})} = \frac{a_{1} + f_{1}f_{2}}{a_{2}}$$

Niklas Henke (ZMP Seminar 2021)

Scattering amplitudes & cluster algebras

Affine rank-2 cluster algebra $A_1^{(1)}$

Recursion relation

The variables and coefficients along the sequence are related by

$$\begin{aligned} a_{2;j+1} &= \frac{a_{2;j}^2}{a_{1;j}} \frac{1 + x_{1;j}}{1 \oplus y_{1;j}}, \quad a_{1;j+1} = a_{2;j}, \\ y_{1;j+1} &= \frac{y_{2;j} y_{1;j}^2}{\left(1 \oplus y_{1;j}\right)^2}, \quad y_{2;j+1} = (y_{1;j})^{-1} \end{aligned}$$

We also introduce the auxiliary sequence

$$\gamma_j = 1 \oplus y_{1;j} \oplus y_{1;j} (y_{1;j-1})^{-1}$$

Scattering amplitudes & cluster algebras

02.12.2021
Affine rank-2 cluster algebra $A_1^{(1)}$

Invariants and solution of $A_1^{(1)}$

Invariants

Along the sequence, the following two quantities are invariant

$$\begin{split} & \mathcal{K}_{1} = \left(\gamma_{0}\gamma_{j}^{-1}\beta_{0}^{-1}\beta_{j}\right)\left[1 + x_{1;j} + x_{1;j}(x_{1;j-1})^{-1}\right] = 1 + x_{1;0} + x_{1;0}x_{2;0} \,, \\ & \mathcal{K}_{2} = \left(\gamma_{0}\gamma_{j}^{-1}\beta_{0}^{-1}\beta_{j}\right)^{2}\left[x_{1;j}(x_{1;j-1})^{-1}\right] = x_{1;0}x_{2;0} \,, \end{split}$$

with respect to the two \mathcal{X} -variables x_1, x_2 of $A_1^{(1)}$ within the *origin cluster*.

Invariants and solution of $A_1^{(1)}$

Invariants

Along the sequence, the following two quantities are invariant

$$\begin{split} & \mathcal{K}_{1} = \left(\gamma_{0}\gamma_{j}^{-1}\beta_{0}^{-1}\beta_{j}\right)\left[1 + x_{1:j} + x_{1:j}(x_{1:j-1})^{-1}\right] = 1 + x_{1:0} + x_{1:0}x_{2:0} \,, \\ & \mathcal{K}_{2} = \left(\gamma_{0}\gamma_{j}^{-1}\beta_{0}^{-1}\beta_{j}\right)^{2}\left[x_{1:j}(x_{1:j-1})^{-1}\right] = x_{1:0}x_{2:0} \,, \end{split}$$

with respect to the two \mathcal{X} -variables x_1, x_2 of $A_1^{(1)}$ within the *origin cluster*.

Solution

The recursion relation is solved for $a_{1;j}$ by

$$\begin{aligned} \mathbf{a}_{1:j} &= (\gamma_0 \cdots \gamma_{j-1}) \left[C_+ (\beta_+)^j + C_- (\beta_-)^j \right] \,, \\ C_\pm &= \mathbf{a}_{1:0} \frac{\pm 2 \mp K_1 + \sqrt{K_1^2 - 4K_2}}{2\sqrt{K_1^2 - 4K_2}} \,, \, \beta_\pm = \frac{\mathbf{a}_{2:0}}{\mathbf{a}_{1:0}} \frac{K_1 \pm \sqrt{K_1^2 - 4K_2}}{2\gamma_0} \,. \end{aligned}$$

Niklas Henke (ZMP Seminar 2021) Sca

Scattering amplitudes & cluster algebras

Algebraic letters Given some infinite $A_1^{(1)}$ mutation sequence, we associate to it the two algebraic letters $\phi_1 = \frac{C_+}{C_-} = \frac{K_1 - 2 + \sqrt{K_1^2 - 4K_2}}{K_1 - 2 - \sqrt{K_1^2 - 4K_2}},$ $\phi_2 = \frac{\tilde{C}_+}{\tilde{C}_-} = \frac{K_1 - 2K_2 + \sqrt{K_1^2 - 4K_2}}{K_1 - 2K_2 - \sqrt{K_1^2 - 4K_2}}.$

Nine-particle alphabet: new obstructions

- Rational alphabet

- 1. Much more complicated rational letters, with some being polynomials with tens of thousands of terms.
- 2. Bootstrap becomes infeasible, as the linear spaces the approach is based on are of size $(\# \text{ letters})^{2L}$.

Nine-particle alphabet: new obstructions

- Rational alphabet

- 1. Much more complicated rational letters, with some being polynomials with tens of thousands of terms.
- 2. Bootstrap becomes infeasible, as the linear spaces the approach is based on are of size $(\# \text{ letters})^{2L}$.

Algebraic alphabet

- 1. Infinite sequences of the type $A_1^{(1)}$ yield 324 rays in addition to the rational rays.
- 2. 27 rays of $\widetilde{pTr}_+(4,9)$ are not accessible from the cluster fan.
- 3. The cluster fan now has higher-dimensional "holes".

Outline

- 1. Scattering amplitudes, multiple polylogarithms and symbols
- 2. Cluster algebras
- 3. Six- and seven-particle amplitudes
- 4. Tropical cluster algebras
- 5. Eight-particle & nine-particle amplitudes
- 6. Infinite mutation sequences
- 7. Conclusions & Outlook
- 8. Bonus material

Conclusions & Outlook

Cluster algebras predict singularities of planar $\mathcal{N}=4$ SYM *n*-particle amplitudes, but:

- infinitely many for $n \ge 8$, so no bootstrap!
- only rational letters appear, missing the known square-root letters!

Conclusions & Outlook

Cluster algebras predict singularities of planar $\mathcal{N}=4$ SYM *n*-particle amplitudes, but:

- infinitely many for $n \ge 8$, so no bootstrap!
- only rational letters appear, missing the known square-root letters!

However, taking a closer look at cluster algebras, we find:

- The relation to tropical Grassmannians provides a finite selection rule
- Including infinite mutation sequences, we obtain the square-root letters from their limits
- These ideas are successfully applied to obtain the alphabet for n = 8, 9, which is in agreement to the literature!

Conclusions & Outlook

Cluster algebras predict singularities of planar $\mathcal{N}=4$ SYM *n*-particle amplitudes, but:

- infinitely many for $n \ge 8$, so no bootstrap!
- only rational letters appear, missing the known square-root letters!

However, taking a closer look at cluster algebras, we find:

- The relation to tropical Grassmannians provides a finite selection rule
- Including infinite mutation sequences, we obtain the square-root letters from their limits
- These ideas are successfully applied to obtain the alphabet for n = 8, 9, which is in agreement to the literature!

Some questions remain:

- Which geometry actually describes loop amplitudes of $\mathcal{N}=4$ pSYM?
- How can bootstrapping the amplitudes made feasible?
- Is there a way to access the 27 still missing rays?

Outline

- 1. Scattering amplitudes, multiple polylogarithms and symbols
- 2. Cluster algebras
- 3. Six- and seven-particle amplitudes
- 4. Tropical cluster algebras
- 5. Eight-particle & nine-particle amplitudes
- 6. Infinite mutation sequences
- 7. Conclusions & Outlook
- 8. Bonus material

Kinematics of $\mathcal{N}=4$ pSYM amplitudes

Definition

Instead of the massless momenta p_i , parameterise the kinematics in terms of the *dual variables* $x_i \in \mathbb{R}^{1,3}$ defined by

$$x_i-x_{i+1}=p_i.$$

Dual conformal symmetry

A *hidden symmetry* of the theory, which is not present on the level of the Lagrangian, that acts on the dual variables and reduces their degrees of freedom. See eg. [0807.1095, 1012.4002].

55/61

1. Represent the dual variables $x_i \in \mathbb{R}^{1,3}$ as projective null vectors $X^M \in \mathbb{R}^{2,4}$, with $X^2 = 0$, $X \sim \lambda X$.

1. Represent the dual variables $x_i \in \mathbb{R}^{1,3}$ as projective null vectors $X^M \in \mathbb{R}^{2,4}$, with $X^2 = 0$, $X \sim \lambda X$.

2. Equivalently, consider the SO(2, 4)-vector X^M as an antisymmetric representation X^{IJ} of SU(2, 2).

1. Represent the dual variables $x_i \in \mathbb{R}^{1,3}$ as projective null vectors $X^M \in \mathbb{R}^{2,4}$, with $X^2 = 0$, $X \sim \lambda X$.

2. Equivalently, consider the SO(2, 4)-vector X^M as an antisymmetric representation X^{IJ} of SU(2, 2).

3. The antisymmetric representation X^{IJ} can be constructed out of two copies of the fundamental representation Z^{I} of SU(2,2).

1. Represent the dual variables $x_i \in \mathbb{R}^{1,3}$ as projective null vectors $X^M \in \mathbb{R}^{2,4}$, with $X^2 = 0$, $X \sim \lambda X$.

2. Equivalently, consider the SO(2, 4)-vector X^M as an antisymmetric representation X^{IJ} of SU(2, 2).

3. The antisymmetric representation X^{IJ} can be constructed out of two copies of the fundamental representation Z^{I} of SU(2,2).

4. Parameterise the kinematics in terms of the *momentum twistors* Z^{I} , which after complexification transform in the fundamental of SL(4, \mathbb{C}).

1. Represent the dual variables $x_i \in \mathbb{R}^{1,3}$ as projective null vectors $X^M \in \mathbb{R}^{2,4}$, with $X^2 = 0$, $X \sim \lambda X$.

2. Equivalently, consider the SO(2, 4)-vector X^M as an antisymmetric representation X^{IJ} of SU(2, 2).

3. The antisymmetric representation X^{IJ} can be constructed out of two copies of the fundamental representation Z^{I} of SU(2,2).

4. Parameterise the kinematics in terms of the *momentum twistors* Z^{I} , which after complexification transform in the fundamental of SL(4, \mathbb{C}).

see eg. [0905.1473, 1012.6032]

Clusters

A cluster algebra of rank r consists of clusters

$$\Sigma = ((a_1,\ldots,a_r),(y_1,\ldots,y_r),Q) ,$$

containing the *cluster* A-variables a_i , their *coefficients* y_i and the quiver Q with adjacency matrix b, encoding the connectivity of the variables.

based on [Fomin, Zelevinsky '06]

Niklas Henke (ZMP Seminar 2021) Scattering amplitudes & cluster algebras

Clusters

A cluster algebra of rank r consists of clusters

$$\Sigma = ((a_1,\ldots,a_r),(y_1,\ldots,y_r),Q) ,$$

containing the *cluster* A-variables a_i , their coefficients y_i and the quiver Q with adjacency matrix b, encoding the connectivity of the variables.

- Mutation

Mutation takes a cluster into another cluster, $\mu_j:\Sigma\to\Sigma'$, eg.

based on [Fomin, Zelevinsky '06]

Niklas Henke (ZMP Seminar 2021) Scattering amplitudes & cluster algebras

Mutation (quiver)

Mutation takes a cluster into another cluster, $\mu_j: \Sigma \to \Sigma'$, eg.

– Mutation (variables)

Mutation takes a cluster into another cluster, $\mu_j: \Sigma \to \Sigma'$, eg.

$$a_2 \to a_2' = rac{y_2 a_1 + a_3}{a_2 \left(1 \oplus y_2
ight)}, \quad y_1 \to y_1' = y_1 (1 \oplus y_2), \quad y_3 \to y_3' = y_3 rac{y_2}{1 \oplus y_2},$$

where $\hat{\oplus}$ is an addition on the field of coefficients.

based on [Fomin, Zelevinsky '06]

Niklas Henke (ZMP Seminar 2021) Scattering amplitudes & cluster algebras

58 / 61

 \mathcal{X} -variables

To each node in a cluster, we also associate a \mathcal{X} -variable, given by eg.

$$x_1 = \frac{1}{a_2} \cdot y_1, \quad x_2 = \frac{a_1}{a_3} \cdot y_2, \quad x_3 = a_2 \cdot y_3.$$

based on [Fomin, Zelevinsky '06]

Niklas Henke (ZMP Seminar 2021)

Hexagon alphabet

• The symbols known to appear in six-particle amplitudes (the *hexagon alphabet*) are functions of the cross ratios

$$u = \frac{x_{13}^2 x_{46}^2}{x_{14}^2 x_{36}^2}, v = \frac{x_{24}^2 x_{51}^2}{x_{25}^2 x_{41}^2}, w = \frac{x_{35}^2 x_{62}^2}{x_{36}^2 x_{25}^2}$$

where $x_{ij}^2 = (x_i - x_j)^2$ are Lorentz-invariant distances of dual variables.

see eg. [1108.4461, 1111.1704, 1308.2276, ...]

Hexagon alphabet

• The symbols known to appear in six-particle amplitudes (the *hexagon alphabet*) are functions of the cross ratios

$$u = \frac{x_{13}^2 x_{46}^2}{x_{14}^2 x_{36}^2}, v = \frac{x_{24}^2 x_{51}^2}{x_{25}^2 x_{41}^2}, w = \frac{x_{35}^2 x_{62}^2}{x_{36}^2 x_{25}^2},$$

where $x_{ij}^2 = (x_i - x_j)^2$ are Lorentz-invariant distances of dual variables. • The entire alphabet consists of the nine letters

$$\{u, v, w, 1 - u, 1 - v, 1 - w, y_u, y_v, y_w\}$$

see eg. [1108.4461, 1111.1704, 1308.2276, ...]

Hexagon alphabet

• The symbols known to appear in six-particle amplitudes (the *hexagon alphabet*) are functions of the cross ratios

$$u = \frac{x_{13}^2 x_{46}^2}{x_{14}^2 x_{36}^2}, v = \frac{x_{24}^2 x_{51}^2}{x_{25}^2 x_{41}^2}, w = \frac{x_{35}^2 x_{62}^2}{x_{36}^2 x_{25}^2},$$

where $x_{ij}^2 = (x_i - x_j)^2$ are Lorentz-invariant distances of dual variables. • The entire alphabet consists of the nine letters

$$\{u, v, w, 1-u, 1-v, 1-w, y_u, y_v, y_w\}$$
,

where the variables y_u, y_v, y_w are defined as

$$y_u = rac{u-z_+}{u-z_-}\,,$$
 $z_\pm = rac{1}{2}\left[-1+u+v+w\pm\sqrt{\Delta}
ight]\,,\quad \Delta = (1-u-v-w)^2-4uvw$

see eg. [1108.4461, 1111.1704, 1308.2276, ...]

Hexagon alphabet (cont'd)

• When parameterised in terms of the momentum twistors Z_1, \ldots, Z_6 , the cross ratios are given by

$$u = \frac{\langle 1236 \rangle \langle 3456 \rangle}{\langle 2356 \rangle \langle 1346 \rangle}, v = \frac{\langle 1456 \rangle \langle 1234 \rangle}{\langle 1346 \rangle \langle 1245 \rangle}, w = \frac{\langle 1256 \rangle \langle 2345 \rangle}{\langle 1245 \rangle \langle 2356 \rangle}$$

Hexagon alphabet (cont'd)

• When parameterised in terms of the momentum twistors Z_1, \ldots, Z_6 , the cross ratios are given by

$$u = \frac{\langle 1236 \rangle \langle 3456 \rangle}{\langle 2356 \rangle \langle 1346 \rangle}, v = \frac{\langle 1456 \rangle \langle 1234 \rangle}{\langle 1346 \rangle \langle 1245 \rangle}, w = \frac{\langle 1256 \rangle \langle 2345 \rangle}{\langle 1245 \rangle \langle 2356 \rangle}$$

 $\bullet\,$ Also, in terms of the momentum twistors, Δ is a perfect square given by

$$\sqrt{\Delta} = \pm rac{\left< 3456 \right> \left< 1256 \right> \left< 1234 \right> + \left< 1456 \right> \left< 1236 \right> \left< 2345 \right>}{\left< 2356 \right> \left< 1346 \right> \left< 1245 \right>}$$

whereas the two signs are related by the spacetime parity transformation, ie inversion of the spatial components of the momenta $(p_i)^k \rightarrow -(p_i)^k$

Periodic clusters and sequences

Definition

A quiver Q is said to be *cluster mutation-periodic* of period p, if there is a sequence of p mutations that results in a quiver isomorphic to Q.

Periodic clusters and sequences

- Definition

A quiver Q is said to be *cluster mutation-periodic* of period p, if there is a sequence of p mutations that results in a quiver isomorphic to Q.

Recursive sequence

Due to periodicity, we can repeat the mutation infinite times and thus get sequences $(a_i)_{i \in \mathbb{N}}$ of cluster variables and $(y_i)_{i \in \mathbb{N}}$ of coefficients with the same mutation rule at each position $i \in \mathbb{N}$, i.e. a *recursion relation*.

Periodic clusters and sequences

- Definition

A quiver Q is said to be *cluster mutation-periodic* of period p, if there is a sequence of p mutations that results in a quiver isomorphic to Q.

Recursive sequence

Due to periodicity, we can repeat the mutation infinite times and thus get sequences $(a_i)_{i \in \mathbb{N}}$ of cluster variables and $(y_i)_{i \in \mathbb{N}}$ of coefficients with the same mutation rule at each position $i \in \mathbb{N}$, i.e. a *recursion relation*.

Example

Consider the affine rank-2 cluster algebra of $A_1^{(1)}$ Dynkin type. After mutating any of its nodes, the quiver is the same as before up to switching the labels of the nodes: