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Overview

Scattering amplitudes – planar N = 4 super Yang-Mills theory

Focus on 6 and 7 particle amplitudes

What are the right functions?

What are the right variables?

Connection to cluster algebras
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A collision at the Large Hadron Collider (LHC) at CERN.
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Depends on:

Momenta: k1, . . . , kn ∈ R1,3

Helicities:
h1, . . . , hn ∈ {−1,+1}
SU(N) generators
T a1 , . . . ,T aN2−1

Expansion in terms of Feynman diagrams:

Contribution at each loop order grows factorially.
The amplitude program aims to calculate amplitudes without
having to evaluate and sum thousands of Feynman diagrams.
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N = 4 Super Yang-Mills Theory

Supersymmetry: symmetry between bosons (integer spin) and
fermions (half-integer spin).

All fields are in the adjoint representation of SU(N).

h : −1 − 1/2 0 1/2 1

G− Γ
A

SAB ΓA G+

Can be collected into one superfield:

Φ =G+ + ηAΓA +
1

2!
ηAηBSAB +

1

3!
ηAηBηC εABCDΓ

D

+
1

4!
ηAηBηCηDεABCDG

−
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Colour Management

’t Hooft planar limit: send the number of colours N →∞ s.t.
g2N is constant.

Expansion in g2N ⇐⇒ topological expansion.

One single trace of SU(N) generators become dominant for
n-gluon amplitudes:

AL−loop
n ({ki , hi , ai})

∼
∑

σ∈Sn/cyclic

Tr(T aσ(1) · · ·T aσ(n))A(L)
n (σ(1h1), . . . , σ(nhn))

A
(L)
n is the colour-ordered amplitude, it no longer depends on T a.

For n = 6, 7 only MHV and NMHV will be relevant.

Momenta can be expressed in dual coordinates: ki = xi+1 − xi .
Dual conformal invariance: xµi → xµi /x

2
i
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Generalized Polyogarithms
Logarithm:

− log(1− z) =
∞∑
n=1

zn

n
= −

∫ z

0

1

1− t
dt

Dilogarithm:

Li2(z) =
∞∑
n=1

zn

n2
= −

∫ z

0

log(1− t)

t
dt =

∫ z

0

dt1
t1

∫ t1

0

dt2
1− t2

The last expression is an iterated integral.

Definition 1 (GPL)

Let n ≥ 0 be an integer, then the generalised polylogarithm (GPL)
is the iterated integral

G (a1, . . . , an; z) =

∫ z

0

G (a2, . . . , an; t)

t − a1
dt (1)

with G (z) = G (; z) = 1 and a1, . . . , an, z ∈ C.
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Example:

G (0, 1; z) =

∫ z

0

G (1; t1)

t1
dt1 =

∫ z

0

dt1

∫ t1

0

dt2
1

t1(t2 − 1)
= −Li2(z)

Example (Off-shell triangle in dimensional regularisation):

T (p2
1 , p

2
2 , p

2
3) := p1

p3

p2

= eγE ε
∫

dDk

iπD/2

1

k2(k + p1)2(k + p1 + p2)2

T (p21 , p
2
2 , p

2
3) =

2√
λ

[
Li2(z)− Li2(z)− log(zz) log

(
1− z

1− z

)]
+O(ε)

where

D = 4− 2ε, γE = −Γ′(1), p21/p
2
3 = zz , p22/p

2
3 = (1− z)(1− z)

λ := λ(p21 , p
2
2 , p

2
3), λ(a, b, c) = a2 + b2 + c2 − 2ab − 2ac − 2bc
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Definition 2 (Weight)

The number n is called the weight of the GPL.

The set A of all “polylogarithmic functions” form a graded algebra
w.r.t. n:

A =
∞⊕
n=0

An

where A0 = Q, A1 3 log, A2 3 Li2 etc.
Something stronger is true:

Theorem 3 (Hopf algebra)

Generalised polylogarithms form a Hopf algebra.

Think:

Family of algebraic objects (GPLs, graphs, posets,
matroids,...)

Rules for “merging” and “breaking” these objects
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The “breaking” operator is called the coproduct and denoted ∆.

Example (Break weight 2 into pairs with total weight 2):

∆(Li2(z)) = 1⊗ Li2(z) + Li2(z)⊗ 1 + Li1(z)⊗ log z

Last term: 2-fold tensor product with element of weight one.
For any GPL of weight n we can iterate the coproduct until we get
an n-fold tensor product of logarithms.

Definition 4 (Symbol)

Let fn be a GPL of weight n. Then the symbol S(fk) is the sum

S(fn) :=
∑

i1,...,in

f
(i1,...,in)
0 (logαi1 ⊗ · · · ⊗ logαin) (2)

where f
(i1,...,in)
0 are rational (i.e. of weight zero).

We call the collection of all αij the symbol alphabet.

Empirical evidence that colour-ordered L-loop amplitude can be
expressed as GPLs of weight 2L.
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Momentum Twistors
Dual space-time variables xµ ∈ R1,3 can be represented as:

XM ∈ R2,4, X 2 = 0, X ∼ Y ⇔ Y = λX

XM is in the vector representation of SO(2, 4), can be
mapped to X IJ in the anti-symmetric representation of
SU(2, 2)

The anti-symmetric representation can be constructed from
the fundamental Z :

X = Z ∧ Z̃ ⇔ X IJ =
1

2
(Z I Z̃ J − Z J Z̃ I )

After complexifying: Z I transform in SL(4,C) and can be
viewed as coordinates in CP3.

Mandelstam variables:

(x − x ′)2 ∝ εIJKLZ I Z̃ JZ ′K Z̃ ′L :=
〈
ZZ̃Z ′Z̃ ′

〉
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Configuration Space

Confn(CP3) :=
{collection of n points in CP3}

PGL(4)

The configuration space can be realized as the Grassmannian

Confn(CP3) =
Gr(4, n)

(C∗)n−1

This is a collection of n ordered momentum twistors on CP3.
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Cluster Algebras

Commutative algebra with distinguished set of generators called
cluster variables grouped into sets called clusters that are related
to each other via an operation called mutation.

Example: A2 cluster algebra

Cluster variables: am, m ∈ Z
Initial cluster: {a1, a2}
Clusters: {am, am+1}
Mutation:
{am−1, am} → {am, am+1} : am−1 7→ am+1 = (1 + am)/am−1

Finite number of cluster variables:

a3 =
1 + a2
a1

, a4 =
1 + a1 + a2

a1a2
, a5 =

1 + a1
a2

, a6 = a1, a7 = a2
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A- and X -coordinates
The coordinates we used in A2 example are A-coordinates.

To a quiver we associate the exchange matrix B given by

bij = {#arrows i → j} − {#arrows j → i}
and to each node of the quiver we associate the variable {ak}.
Mutation of the quiver corresponds to

b′ij =

{
−bij if k ∈ {i , j}
bij + [−bik ]+bkj + bik [bkj ]+ otherwise

where [x ]+ = max(0, x) and

aka
′
k =

∏
i :bik>0

abiki +
∏

i :bik<0

a−biki

The cluster X -coordinates are defined as

xi :=
∏
j

a
bji
j

and mutate as

x ′i =

{
1/xi i = k

xi (1 + x
sgn(bki )
k )−bki i 6= k
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A-coordinates are associated with the Grassmannian while
X -coordinates are associated to the configuration space.

Example (Gr(2, 5)): The Grassmannian Gr(2, 5) is associated to
the configuration space of 5 points on CP1.
Initial quiver:

Node labeled by
A-coordinate

Unfrozen part is the A2

quiver

This is the A2 cluster
algebra

xk =

∏
i :i→k ai∏
j :k→j aj

x13 =
〈12〉 〈34〉
〈23〉 〈14〉

, x14 =
〈13〉 〈45〉
〈15〉 〈34〉
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The simplest examples in planar N = 4 SYM are for n = 6, 7
external particles, i.e. projective configurations of 6 resp. 7 points
in CP3. The principal part of the quiver for Gr(4, 6) is the A3

quiver.
=⇒ This is the A3 cluster algebra.

We know that the Ad−3 cluster algebra can be realized as a quiver
from triangulating a d-gon which is the same as the cluster
algebra from a Gr(2, d). Grassmann duality

Gr(4, 6) ' Gr(2, 6)

so this cluster algebra is the same that from triangulating an
hexagon.

X -coordinates:

〈23〉 〈15〉
〈12〉 〈35〉

,
〈45〉 〈13〉
〈34〉 〈15〉

,
〈35〉 〈16〉
〈13〉 〈56〉

Dual coordinates (twistors):
〈1456〉〈2346〉
〈3456〉〈1246〉 etc.
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Principal quiver:

14 different quivers can be collected in the third associahedron:
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2-loop MHV amplitude for n = 6 is known explicitly:

R
(2)
6 =

−1

2

3∑
i=1

Li4(−vi ) + · · ·

where

v1 =
〈35〉 〈26〉
〈23〉 〈56〉

, v2 =
〈13〉 〈46〉
〈16〉 〈34〉

, v3 =
〈15〉 〈24〉
〈45〉 〈12〉

these all appear ass X -coordinates of Gr(2, 6) ' Gr(4, 6) cluster
algebra.

Only 9 of the available 15 X -coordinates appear in R
(2)
6 .
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Gr(4, 7):

After 9 mutations the principal part of this quiver becomes the E6

quiver.

Gr(4, 6) and Gr(4, 7) are both finite cluster algebras, starting at
n ≥ 8 we get infinite algebras.
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