

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

Scattering Amplitudes– symbols and cluster algebras

Felix Tellander

November 18, 2021

Overview

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

- Scattering amplitudes planar $\mathcal{N}=$ 4 super Yang-Mills theory
- Focus on 6 and 7 particle amplitudes
- What are the right functions?
- What are the right variables?
- Connection to cluster algebras

Amplitudes

A collision at the Large Hadron Collider (LHC) at CERN.

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Amplitudes

A collision at the Large Hadron Collider (LHC) at CERN.

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

Depends on:

- Momenta: $k_1, \ldots, k_n \in \mathbb{R}^{1,3}$
- Helicities: $h_1, \ldots, h_n \in \{-1, +1\}$
- SU(N) generators $T^{a_1}, \ldots, T^{a_{N^2-1}}$

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

Depends on:

- Momenta: $k_1, \ldots, k_n \in \mathbb{R}^{1,3}$
- Helicities: $h_1, \ldots, h_n \in \{-1, +1\}$
- SU(N) generators $T^{a_1}, \ldots, T^{a_{N^2-1}}$

Expansion in terms of Feynman diagrams:

X + X + ··· + X + X

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

Depends on:

- Momenta: $k_1, \ldots, k_n \in \mathbb{R}^{1,3}$
- Helicities: $h_1, \ldots, h_n \in \{-1, +1\}$
- SU(N) generators $T^{a_1}, \ldots, T^{a_{N^2-1}}$

Expansion in terms of Feynman diagrams:

Contribution at each loop order grows factorially. The amplitude program aims to calculate amplitudes without having to evaluate and sum thousands of Feynman diagrams.

$\mathcal{N}=4$ Super Yang-Mills Theory

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

Supersymmetry: symmetry between bosons (integer spin) and fermions (half-integer spin).

$\mathcal{N}=4$ Super Yang-Mills Theory

Scattering Amplitudes	
Felix Tellander	

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

Supersymmetry: symmetry between bosons (integer spin) and fermions (half-integer spin).

All fields are in the adjoint representation of SU(N).

$\mathcal{N} = 4$ Super Yang-Mills Theory

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

Supersymmetry: symmetry between bosons (integer spin) and fermions (half-integer spin).

All fields are in the adjoint representation of SU(N).

h:-1 -1/2 0 1/2 1 $G^ \overline{\Gamma}^A$ S_{AB} Γ_A G^+

$\mathcal{N} = 4$ Super Yang-Mills Theory

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

Supersymmetry: symmetry between bosons (integer spin) and fermions (half-integer spin).

All fields are in the adjoint representation of SU(N).

h:-1 -1/2 0 1/2 1 $G^ \overline{\Gamma}^A$ S_{AB} Γ_A G^+

Can be collected into one superfield:

$$\begin{split} \Phi = G^{+} + \eta^{A} \Gamma_{A} + \frac{1}{2!} \eta^{A} \eta^{B} S_{AB} + \frac{1}{3!} \eta^{A} \eta^{B} \eta^{C} \epsilon_{ABCD} \overline{\Gamma}^{D} \\ + \frac{1}{4!} \eta^{A} \eta^{B} \eta^{C} \eta^{D} \epsilon_{ABCD} G^{-} \end{split}$$

Colour Management

't Hooft planar limit: send the number of colours $N \to \infty$ s.t. $g^2 N$ is constant.

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Colour Management

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

't Hooft planar limit: send the number of colours $N \to \infty$ s.t. $g^2 N$ is constant.

Expansion in $g^2N \iff$ topological expansion.

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

 \mathcal{A}_n^L

Colour Management

't Hooft planar limit: send the number of colours $N \to \infty$ s.t. $g^2 N$ is constant.

Expansion in $g^2N \iff$ topological expansion.

One single trace of SU(N) generators become dominant for *n*-gluon amplitudes:

$$^{-\mathrm{loop}}(\{k_i,h_i,a_i\}) \ \sim \sum_{\sigma\in S_n/cyclic} \mathrm{Tr}(T^{a_{\sigma(1)}}\cdots T^{a_{\sigma(n)}})A_n^{(L)}(\sigma(1^{h_1}),\ldots,\sigma(n^{h_n}))$$

 $A_n^{(L)}$ is the colour-ordered amplitude, it no longer depends on T^a . For n = 6,7 only MHV and NMHV will be relevant.

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

 \mathcal{A}_n^L

Colour Management

't Hooft planar limit: send the number of colours $N \to \infty$ s.t. $g^2 N$ is constant.

Expansion in $g^2N \iff$ topological expansion.

One single trace of SU(N) generators become dominant for *n*-gluon amplitudes:

$$^{-\mathrm{loop}}(\{k_i,h_i,a_i\}) \ \sim \sum_{\sigma \in S_n/ ext{cyclic}} \mathrm{Tr}(T^{a_{\sigma(1)}}\cdots T^{a_{\sigma(n)}})A_n^{(L)}(\sigma(1^{h_1}),\ldots,\sigma(n^{h_n}))$$

 $A_n^{(L)}$ is the colour-ordered amplitude, it no longer depends on T^a . For n = 6,7 only MHV and NMHV will be relevant.

Momenta can be expressed in dual coordinates: $k_i = x_{i+1} - x_i$. Dual conformal invariance: $x_i^{\mu} \rightarrow x_i^{\mu}/x_i^2$

Generalized Polyogarithms

Logarithm:

$$-\log(1-z) = \sum_{n=1}^{\infty} \frac{z^n}{n} = -\int_0^z \frac{1}{1-t} dt$$

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Generalized Polyogarithms

Logarithm:

$$-\log(1-z) = \sum_{n=1}^{\infty} \frac{z^n}{n} = -\int_0^z \frac{1}{1-t} dt$$

Felix Tellander

Dilogarithm:

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

 $\operatorname{Li}_{2}(z) = \sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}} = -\int_{0}^{z} \frac{\log(1-t)}{t} dt = \int_{0}^{z} \frac{dt_{1}}{t_{1}} \int_{0}^{t_{1}} \frac{dt_{2}}{1-t_{2}}$

The last expression is an iterated integral.

Generalized Polyogarithms

Logarithm:

$$-\log(1-z) = \sum_{n=1}^{\infty} \frac{z^n}{n} = -\int_0^z \frac{1}{1-t} dt$$

Felix Tellander

Dilogarithm:

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

 $\operatorname{Li}_{2}(z) = \sum_{n=1}^{\infty} \frac{z^{n}}{n^{2}} = -\int_{0}^{z} \frac{\log(1-t)}{t} dt = \int_{0}^{z} \frac{dt_{1}}{t_{1}} \int_{0}^{t_{1}} \frac{dt_{2}}{1-t_{2}}$

The last expression is an iterated integral.

Definition 1 (GPL)

Let $n \ge 0$ be an integer, then the generalised polylogarithm (GPL) is the iterated integral

$$G(a_1,...,a_n;z) = \int_0^z \frac{G(a_2,...,a_n;t)}{t-a_1} dt$$
 (1)

with G(z) = G(; z) = 1 and $a_1, \ldots, a_n, z \in \mathbb{C}$.

Example:

$$G(0,1;z) = \int_0^z rac{G(1;t_1)}{t_1} dt_1 = \int_0^z dt_1 \int_0^{t_1} dt_2 rac{1}{t_1(t_2-1)} = - ext{Li}_2(z)$$

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Example:

$$G(0,1;z) = \int_0^z \frac{G(1;t_1)}{t_1} dt_1 = \int_0^z dt_1 \int_0^{t_1} dt_2 \frac{1}{t_1(t_2-1)} = -\text{Li}_2(z)$$

Example (Off-shell triangle in dimensional regularisation):

$$T(p_1^2, p_2^2, p_3^2) = \frac{2}{\sqrt{\lambda}} \left[\operatorname{Li}_2(z) - \operatorname{Li}_2(\overline{z}) - \log(z\overline{z}) \log\left(\frac{1-z}{1-\overline{z}}\right) \right] + \mathcal{O}(\epsilon)$$

where

$$D = 4 - 2\epsilon, \ \gamma_E = -\Gamma'(1), \ p_1^2/p_3^2 = z\overline{z}, \ p_2^2/p_3^2 = (1 - z)(1 - \overline{z})$$
$$\lambda := \lambda(p_1^2, p_2^2, p_3^2), \ \lambda(a, b, c) = a^2 + b^2 + c^2 - 2ab - 2ac - 2bc$$

The number n is called the *weight* of the GPL.

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Definition 2 (Weight)

The number *n* is called the *weight* of the GPL.

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

The set \mathcal{A} of all "polylogarithmic functions" form a graded algebra w.r.t. *n*:

$$\mathcal{A} = \bigoplus_{n=0}^{\infty} \mathcal{A}_n$$

where
$$\mathcal{A}_0 = \mathbb{Q}, \ \mathcal{A}_1 \ni \mathsf{log}, \ \mathcal{A}_2 \ni \mathrm{Li}_2$$
 etc.

Definition 2 (Weight)

The number *n* is called the *weight* of the GPL.

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

The set ${\mathcal A}$ of all "polylogarithmic functions" form a graded algebra w.r.t. n:

$$\mathcal{A} = \bigoplus_{n=0}^{\infty} \mathcal{A}_n$$

where $\mathcal{A}_0 = \mathbb{Q}, \ \mathcal{A}_1 \ni \mathsf{log}, \ \mathcal{A}_2 \ni \mathrm{Li}_2$ etc. Something stronger is true:

Theorem 3 (Hopf algebra)

Generalised polylogarithms form a Hopf algebra.

Think:

- Family of algebraic objects (GPLs, graphs, posets, matroids,...)
- Rules for "merging" and "breaking" these objects

The "breaking" operator is called the *coproduct* and denoted Δ .

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

The "breaking" operator is called the *coproduct* and denoted Δ . **Example** (Break weight 2 into pairs with total weight 2):

 $\Delta(\mathrm{Li}_2(z)) = 1 \otimes \mathrm{Li}_2(z) + \mathrm{Li}_2(z) \otimes 1 + \mathrm{Li}_1(z) \otimes \log z$

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

The "breaking" operator is called the *coproduct* and denoted Δ . **Example** (Break weight 2 into pairs with total weight 2):

$$\Delta(\mathrm{Li}_2(z)) = 1 \otimes \mathrm{Li}_2(z) + \mathrm{Li}_2(z) \otimes 1 + \mathrm{Li}_1(z) \otimes \log z$$

Last term: 2-fold tensor product with element of weight one. For any GPL of weight n we can iterate the coproduct until we get an n-fold tensor product of logarithms.

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

The "breaking" operator is called the *coproduct* and denoted Δ . **Example** (Break weight 2 into pairs with total weight 2):

$$\Delta(\mathrm{Li}_2(z)) = 1 \otimes \mathrm{Li}_2(z) + \mathrm{Li}_2(z) \otimes 1 + \mathrm{Li}_1(z) \otimes \log z$$

Last term: 2-fold tensor product with element of weight one. For any GPL of weight n we can iterate the coproduct until we get an n-fold tensor product of logarithms.

Definition 4 (Symbol)

Let f_n be a GPL of weight n. Then the symbol $S(f_k)$ is the sum

$$\mathcal{S}(f_n) := \sum_{i_1, \dots, i_n} f_0^{(i_1, \dots, i_n)} (\log \alpha_{i_1} \otimes \dots \otimes \log \alpha_{i_n})$$
(2)

where $f_0^{(i_1,...,i_n)}$ are rational (i.e. of weight zero). We call the collection of all α_{i_j} the symbol alphabet.

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

The "breaking" operator is called the *coproduct* and denoted Δ . **Example** (Break weight 2 into pairs with total weight 2):

$$\Delta(\mathrm{Li}_2(z)) = 1 \otimes \mathrm{Li}_2(z) + \mathrm{Li}_2(z) \otimes 1 + \mathrm{Li}_1(z) \otimes \log z$$

Last term: 2-fold tensor product with element of weight one. For any GPL of weight n we can iterate the coproduct until we get an n-fold tensor product of logarithms.

Definition 4 (Symbol)

Let f_n be a GPL of weight n. Then the symbol $S(f_k)$ is the sum

$$\mathcal{S}(f_n) := \sum_{i_1, \dots, i_n} f_0^{(i_1, \dots, i_n)}(\log \alpha_{i_1} \otimes \dots \otimes \log \alpha_{i_n})$$
(2)

where $f_0^{(i_1,...,i_n)}$ are rational (i.e. of weight zero). We call the collection of all α_{i_i} the symbol alphabet.

Empirical evidence that colour-ordered L-loop amplitude can be expressed as GPLs of weight 2L.

• Dual space-time variables $x^{\mu} \in \mathbb{R}^{1,3}$ can be represented as:

$$X^M \in \mathbb{R}^{2,4}, \ X^2 = 0, \ X \sim Y \Leftrightarrow Y = \lambda X$$

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

• Dual space-time variables $x^{\mu} \in \mathbb{R}^{1,3}$ can be represented as:

$$X^M \in \mathbb{R}^{2,4}, \ X^2 = 0, \ X \sim Y \Leftrightarrow Y = \lambda X$$

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

• X^M is in the vector representation of SO(2,4), can be mapped to X^U in the anti-symmetric representation of SU(2,2)

• Dual space-time variables $x^{\mu} \in \mathbb{R}^{1,3}$ can be represented as:

$$X^M \in \mathbb{R}^{2,4}, \ X^2 = 0, \ X \sim Y \Leftrightarrow Y = \lambda X$$

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

- X^M is in the vector representation of SO(2,4), can be mapped to X^{IJ} in the anti-symmetric representation of SU(2,2)
- The anti-symmetric representation can be constructed from the fundamental *Z*:

$$X = Z \wedge \tilde{Z} \Leftrightarrow X^{IJ} = \frac{1}{2} (Z^I \tilde{Z}^J - Z^J \tilde{Z}^I)$$

• Dual space-time variables $x^{\mu} \in \mathbb{R}^{1,3}$ can be represented as:

$$X^M \in \mathbb{R}^{2,4}, \ X^2 = 0, \ X \sim Y \Leftrightarrow Y = \lambda X$$

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

- X^M is in the vector representation of SO(2,4), can be mapped to X^{IJ} in the anti-symmetric representation of SU(2,2)
- The anti-symmetric representation can be constructed from the fundamental *Z*:

$$X = Z \wedge \tilde{Z} \Leftrightarrow X^{IJ} = \frac{1}{2} (Z^I \tilde{Z}^J - Z^J \tilde{Z}^I)$$

After complexifying: Z^I transform in SL(4, C) and can be viewed as coordinates in CP³.

• Dual space-time variables $x^{\mu} \in \mathbb{R}^{1,3}$ can be represented as:

$$X^M \in \mathbb{R}^{2,4}, \ X^2 = 0, \ X \sim Y \Leftrightarrow Y = \lambda X$$

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

- X^M is in the vector representation of SO(2,4), can be mapped to X^{IJ} in the anti-symmetric representation of SU(2,2)
- The anti-symmetric representation can be constructed from the fundamental *Z*:

$$X = Z \wedge \tilde{Z} \Leftrightarrow X^{IJ} = \frac{1}{2} (Z^I \tilde{Z}^J - Z^J \tilde{Z}^I)$$

- After complexifying: Z^I transform in SL(4, C) and can be viewed as coordinates in CP³.
- Mandelstam variables:

$$(x - x')^2 \propto \epsilon_{IJKL} Z^I \tilde{Z}^J Z'^K \tilde{Z}'^L := \left\langle Z \tilde{Z} Z' \tilde{Z}' \right\rangle$$

Configuration Space

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

$\operatorname{Conf}_n(\mathbb{CP}^3) := \frac{\{ \text{collection of } n \text{ points in } \mathbb{CP}^3 \}}{PGL(4)}$

Configuration Space

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

$\operatorname{Conf}_n(\mathbb{CP}^3) := \frac{\{ \text{collection of } n \text{ points in } \mathbb{CP}^3 \}}{PGL(4)}$

The configuration space can be realized as the Grassmannian

$$\operatorname{Conf}_n(\mathbb{CP}^3) = \frac{\operatorname{Gr}(4, n)}{(\mathbb{C}^*)^{n-1}}$$

This is a collection of *n* ordered momentum twistors on \mathbb{CP}^3 .

Cluster Algebras

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

Commutative algebra with distinguished set of generators called *cluster variables* grouped into sets called *clusters* that are related to each other via an operation called *mutation*.

Cluster Algebras

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

Commutative algebra with distinguished set of generators called *cluster variables* grouped into sets called *clusters* that are related to each other via an operation called *mutation*.

Example: A₂ cluster algebra

- Cluster variables: $a_m, m \in \mathbb{Z}$
- Initial cluster: $\{a_1, a_2\}$
- Clusters: $\{a_m, a_{m+1}\}$
- Mutation:

 $\{a_{m-1}, a_m\} \rightarrow \{a_m, a_{m+1}\}$: $a_{m-1} \mapsto a_{m+1} = (1+a_m)/a_{m-1}$

Cluster Algebras

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

Commutative algebra with distinguished set of generators called *cluster variables* grouped into sets called *clusters* that are related to each other via an operation called *mutation*.

Example: A₂ cluster algebra

- Cluster variables: $a_m, m \in \mathbb{Z}$
- Initial cluster: $\{a_1, a_2\}$
- Clusters: $\{a_m, a_{m+1}\}$
- Mutation:

 $\{a_{m-1},a_m\}
ightarrow \{a_m,a_{m+1}\}$: $a_{m-1}\mapsto a_{m+1}=(1+a_m)/a_{m-1}$

Finite number of cluster variables:

$$a_3 = rac{1+a_2}{a_1}, \ a_4 = rac{1+a_1+a_2}{a_1a_2}, \ a_5 = rac{1+a_1}{a_2}, \ a_6 = a_1, \ a_7 = a_2$$

$\mathcal{A}\text{-}$ and $\mathcal{X}\text{-}\text{coordinates}$

The coordinates we used in A_2 example are A-coordinates.

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

$\mathcal{A}\text{-}$ and $\mathcal{X}\text{-}\text{coordinates}$

The coordinates we used in A_2 example are A-coordinates. To a quiver we associate the exchange matrix B given by

$$b_{ij} = \{ \# \text{arrows } i \to j \} - \{ \# \text{arrows } j \to i \}$$

and to each node of the quiver we associate the variable $\{a_k\}$.

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

$\mathcal{A}\text{-}$ and $\mathcal{X}\text{-}\text{coordinates}$

The coordinates we used in A_2 example are A-coordinates. To a quiver we associate the exchange matrix B given by

$$b_{ij} = \{ \# \text{arrows } i \rightarrow j \} - \{ \# \text{arrows } j \rightarrow i \}$$

and to each node of the quiver we associate the variable $\{a_k\}$. Mutation of the quiver corresponds to

$$b_{ij}' = egin{cases} -b_{ij} & ext{if } k \in \{i,j\} \ b_{ij} + [-b_{ik}]_+ b_{kj} + b_{ik}[b_{kj}]_+ & ext{otherwise} \end{cases}$$

where $[x]_+ = \max(0, x)$ and

$$a_ka_k'=\prod_{i:b_{ik}>0}a_i^{b_{ik}}+\prod_{i:b_{ik}<0}a_i^{-b_{ik}}$$

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

$\mathcal{A}\text{-}$ and $\mathcal{X}\text{-}\text{coordinates}$

The coordinates we used in A_2 example are A-coordinates. To a quiver we associate the exchange matrix B given by

$$b_{ij} = \{ \# \text{arrows } i \rightarrow j \} - \{ \# \text{arrows } j \rightarrow i \}$$

and to each node of the quiver we associate the variable $\{a_k\}$. Mutation of the quiver corresponds to

$$b_{ij}' = egin{cases} -b_{ij} & ext{if } k \in \{i,j\} \ b_{ij} + [-b_{ik}]_+ b_{kj} + b_{ik}[b_{kj}]_+ & ext{otherwise} \end{cases}$$

where $[x]_+ = \max(0, x)$ and

$$a_k a'_k = \prod_{i:b_{ik}>0} a_i^{b_{ik}} + \prod_{i:b_{ik}<0} a_i^{-b_{ij}}$$

The cluster \mathcal{X} -coordinates are defined as

$$x_i := \prod_j a_j^{b_{ji}}$$

and mutate as

$$x'_i = \begin{cases} 1/x_i & i = k\\ x_i(1 + x_k^{\operatorname{sgn}(b_{ki})})^{-b_{ki}} & i \neq k \end{cases}$$

 $\mathcal A\text{-}coordinates$ are associated with the Grassmannian while $\mathcal X\text{-}coordinates$ are associated to the configuration space.

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

 \mathcal{A} -coordinates are associated with the Grassmannian while \mathcal{X} -coordinates are associated to the configuration space.

Example (Gr(2,5)): The Grassmannian Gr(2,5) is associated to the configuration space of 5 points on \mathbb{CP}^1 . Initial quiver:

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

 $\mathcal A\text{-}coordinates$ are associated with the Grassmannian while $\mathcal X\text{-}coordinates$ are associated to the configuration space.

Example (Gr(2,5)): The Grassmannian Gr(2,5) is associated to the configuration space of 5 points on \mathbb{CP}^1 . Initial quiver:

 $\begin{array}{c} \hline \langle 12 \rangle \\ \hline \langle 13 \rangle \longrightarrow \langle 14 \rangle \longrightarrow \overline{\langle 15 \rangle} \\ \hline \\ \hline \\ \langle 23 \rangle \end{array} \xrightarrow{\langle 34 \rangle} \overline{\langle 45 \rangle} \end{array}$

- Node labeled by *A*-coordinate
- Unfrozen part is the A₂ quiver
- This is the A₂ cluster algebra

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

 $\mathcal A\text{-}coordinates$ are associated with the Grassmannian while $\mathcal X\text{-}coordinates$ are associated to the configuration space.

Example (Gr(2,5)): The Grassmannian Gr(2,5) is associated to the configuration space of 5 points on \mathbb{CP}^1 . Initial quiver:

- Node labeled by \mathcal{A} -coordinate
- Unfrozen part is the A₂ quiver
- This is the A₂ cluster algebra

$$egin{aligned} x_k &= rac{\prod_{i:i o k} a_i}{\prod_{j:k o j} a_j} \ x_{13} &= rac{\langle 12
angle \langle 34
angle}{\langle 23
angle \langle 14
angle}, \quad x_{14} &= rac{\langle 13
angle \langle 45
angle}{\langle 15
angle \langle 34
angle} \end{aligned}$$

The simplest examples in planar $\mathcal{N} = 4$ SYM are for n = 6, 7 external particles, i.e. projective configurations of 6 resp. 7 points in \mathbb{CP}^3 . The principal part of the quiver for Gr(4, 6) is the A_3

quiver.

 \implies This is the A_3 cluster algebra.

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

The simplest examples in planar $\mathcal{N} = 4$ SYM are for n = 6, 7 external particles, i.e. projective configurations of 6 resp. 7 points in \mathbb{CP}^3 . The principal part of the quiver for Gr(4, 6) is the A_3

quiver.

 \implies This is the A_3 cluster algebra.

We know that the A_{d-3} cluster algebra can be realized as a quiver from triangulating a *d*-gon which is the same as the cluster algebra from a Gr(2, *d*). Grassmann duality

$$\operatorname{Gr}(4,6) \simeq \operatorname{Gr}(2,6)$$

so this cluster algebra is the same that from triangulating an hexagon.

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Cluster Algebras

The simplest examples in planar $\mathcal{N} = 4$ SYM are for n = 6, 7 external particles, i.e. projective configurations of 6 resp. 7 points in \mathbb{CP}^3 . The principal part of the quiver for Gr(4, 6) is the A_3

quiver.

 \implies This is the A_3 cluster algebra.

We know that the A_{d-3} cluster algebra can be realized as a quiver from triangulating a *d*-gon which is the same as the cluster algebra from a Gr(2, d). Grassmann duality

$$\operatorname{Gr}(4,6) \simeq \operatorname{Gr}(2,6)$$

so this cluster algebra is the same that from triangulating an hexagon.

Principal quiver:

• - - - • A_3

Scattering Amplitudes

Felix Tellander

Amplitudes

Generalized Polyogarithms

Twistors

Principal quiver:

Scattering Amplitudes

Felix Tellander

14 different quivers can be collected in the third associahedron:

Amplitudes

Generalized Polyogarithms

Twistors

2-loop MHV amplitude for n = 6 is known explicitly:

Scattering Amplitudes

Felix Tellander

$$R_6^{(2)} = \frac{-1}{2} \sum_{i=1}^3 \operatorname{Li}_4(-v_i) + \cdots$$

Amplitudes

Generalized Polyogarithms

where

Twistors

Cluster Algebras

$$v_{1} = \frac{\langle 35 \rangle \langle 26 \rangle}{\langle 23 \rangle \langle 56 \rangle}, \quad v_{2} = \frac{\langle 13 \rangle \langle 46 \rangle}{\langle 16 \rangle \langle 34 \rangle}, \quad v_{3} = \frac{\langle 15 \rangle \langle 24 \rangle}{\langle 45 \rangle \langle 12 \rangle}$$

these all appear ass $\mathcal X\text{-coordinates}$ of $\mathrm{Gr}(2,6)\simeq\mathrm{Gr}(4,6)$ cluster algebra.

Only 9 of the available 15 \mathcal{X} -coordinates appear in $R_6^{(2)}$.

Gr(4,7):

Generalized Polyogarithms

Twistors

After 9 mutations the principal part of this quiver becomes the E_6 quiver.

Gr(4, 6) and Gr(4, 7) are both finite cluster algebras, starting at $n \ge 8$ we get infinite algebras.