Topological defects in the 2d Ising CFT
ZMP-Seminar 13.04 .2023

Outline: 1) $2 d$ perspective

- Ising CFT
- Iopological defects

2) 3d perspective

- Ising $M F C$
- 2d CFT from 3dTFT
- Some correlators

2 2 perspective
Is ing CFT

Taking a continuum limit of the lattice Ising model at $T_{\text {crit }}$ leads to a $(4,3), c=\frac{1}{2}$ Virasoro minimal model with state space

$$
H=R_{0} \otimes \bar{R}_{0} \oplus R_{1 / 2} \oplus \bar{X}_{\frac{1}{2}} \oplus R_{\frac{1}{16}} \oplus \bar{R}_{\frac{1}{16}}
$$

ie space of states on circle

Unitary highest weight rep with i.e we have three primary fields

Topological defects
In the lattice description we saw that a local change along a path leads to a modification of the partion function
\Rightarrow This should be reflected in the CFT
$\underset{\square!}{\square} \rightarrow+\dot{\sigma} \theta^{\square} \Rightarrow$ Defect operator!

Moreover this should be topological because only the endpoints were relevant!
Putting the system on a cylinder we ged an operation $D_{x}: H \rightarrow H$
How do we constrain this operator?

topological implies that we can move it up and down ie $\left[D_{x, H} H=0\right.$
\uparrow
i) Defect topological $\Leftrightarrow\left[T, D_{x}\right]=\left[\bar{T}, D_{x}\right]=0 \Leftrightarrow\left[L_{n}, D_{x}\right]=\left[\bar{L}_{n}, D_{x}\right]=0 \quad \forall n \in \mathbb{Z} \Rightarrow D_{x}$ is Vire $\overline{V_{i r}}$ interdeier irreducibility of R_{n} implies thor it needs to be of the form $D_{x}=\alpha P_{0}+B P_{1 / 2}+\gamma P_{1 / 16}$ with $P_{h}: H \rightarrow R_{h} \otimes \bar{R}_{h}$ projectors and $\alpha_{1} \beta_{1 \gamma} \in \mathbb{C}$.
ii) Let us calculate the torus amplitude

cod in two ways:
(1) $\operatorname{tr}_{r_{\mu}}\left(D_{x} e^{-L H(k)}\right)$
(2) $\operatorname{tr}_{r_{x}}\left(e^{-R H_{x}(L)}\right)$

$$
\stackrel{\uparrow}{H_{x}}=\oplus_{i, j} M_{i, j} R_{i} \otimes \bar{R}_{j}
$$

17)

$$
\begin{aligned}
\operatorname{tr}_{\mu}\left(D_{X} e^{-L H(R)}\right. & =d_{r_{H}}\left(\left(\alpha P_{0}+B P_{P_{/ 2}}+\gamma P_{1 / 6}\right) e^{-L H(R)}\right) \\
& =d_{r_{H}}\left(\left(\alpha P_{0}+\beta P_{r_{2}}+\gamma P_{1 / 6}\right) q^{L_{0}+L_{0}-\frac{c}{12}}\right) \quad \text { with } q=e^{-2 \pi L / R} \\
& =\alpha x_{0}(q) x_{\overline{0}}(q)+\beta x_{\frac{1}{2}}(q) x_{\frac{i}{2}}(q)+\gamma x_{\frac{1}{16}}(q) x_{\frac{j}{10}}(q)
\end{aligned}
$$

character for the rep R_{0}.
2) $t_{r_{\lambda}}\left(e^{-R H_{x}(L)}\right)=\ldots=\sum_{i, j} M_{i, j} \chi_{i}(\widetilde{q}) x_{\bar{j}}(\widetilde{q}) \quad$ with $\tilde{q}=e^{-2 \pi R / L}$

Using the modular transformation of characters under s-transformation $\quad\left(x_{i}(q)=S_{i j} x_{j}(\tilde{q})\right)$
given by the S-matrix leads to the linear system $\quad x_{0}(q)=\frac{1}{2}\left(x_{0}(\bar{q})+x_{i}(\tilde{q})+\sqrt{2} x_{i}(\tilde{q})\right)$

$$
S M S^{-7}=\left(\begin{array}{cc}
2 & 00 \\
0 & 00 \\
0 & 0 \\
0
\end{array}\right) \quad \text { with } \quad S=\frac{1}{2}\left(\begin{array}{ccc}
1 & 1 & \sqrt{2} \\
1 & 1 & -\sqrt{2} \\
\sqrt{2} & -\sqrt{2} & 0
\end{array}\right)
$$

and $M \in M_{\alpha t_{3 \times 3}}(\mathbb{N})$.
We can find "minimal' solutions which form a basis for the D_{x} :

$$
\begin{aligned}
& D_{i 1}=P_{0}+P_{1 / 2}+P_{1 / 16}=i d_{7 C} \\
& D_{i}=P_{0}+P_{1 / 2}-P_{1 / 16} \\
& D_{\dot{\sigma}}=\sqrt{2} P_{0}-\sqrt{2} P_{1 / 2}
\end{aligned}
$$

(Labels will make sense soon)

What do they interact?
First note that we can fuse defects by moving them together:

$$
\Leftrightarrow D_{y} \circ D_{x}=D_{y+x} \quad \text { e.g. }\left\{\begin{array}{l}
D_{\dot{\varepsilon}} \circ D_{\dot{\varepsilon}}=D_{i} \\
D_{\dot{\varepsilon}} \circ D_{\dot{\sigma}}=D_{\dot{\sigma}} \circ D_{\dot{\varepsilon}}=D_{\dot{\sigma}} \\
D_{\dot{\sigma}} \circ D_{\dot{\sigma}}=D_{i i}+D_{\dot{\varepsilon}}
\end{array}\right.
$$

$\left\{D_{i}, D_{i}\right\} \cong \mathbb{Z}_{2} \leftarrow$ Symmetry defect!
$D_{\dot{\sigma}}$ is non-invertible, but what is it?
We cold pull a
$\dot{\sigma}$ defect over α

Use Bd perspective
σ bulk field: to gain insight!

3 d perspective
Idea: Rational CFT's are boundary theories of a 3d TFT, let us use this to describe the defect operators:
Using $M F C$
$I_{s}: 3$ simples: $\quad \begin{aligned} & R_{0} R_{1 / 2}^{R_{1 / 2}} \\ & 1, \varepsilon, \sigma\end{aligned}+\operatorname{decta} \quad$ lassociator,...)

One can show that this fusion cat can be equipped with a braiding which is non-degenerate, i.e. we get a modular fusion category. "pivotal structures
Claim: There is a construction which produces a Bd TFT
from a modular fusion category: (Reshethikin-Turaer)

Wilson" line operators labeled by objects in MFC
*framed
Aside: $3 d$ TIT: $Z_{x i} \cdot B \operatorname{ord}_{3,2}(I s) \longrightarrow \operatorname{rect} E$

$$
\begin{aligned}
& \Sigma \xrightarrow{\Sigma^{M}} \quad \mapsto Z\left(\Sigma \Sigma^{\prime} \text {... vector pace } \xlongequal{ } \quad \mapsto\right. \text { state scarce } \\
& \text { compatible with } \theta_{c} \ldots \text { operators }
\end{aligned}
$$

$$
\begin{aligned}
& 2 d \text { CFT from } 30 \text { oFT } \\
& \text { (Theorem in algebra, otherwise convergence problems } g>1 \text {) } \\
& B C^{\text {chin }}\left(\Sigma_{g, n} ;\left(x_{1}, \ldots, x_{n}\right)\right) \cong Z_{R T}\left(\Sigma_{g, n} ;\left(x_{1}, \ldots, x_{n}\right)\right) \\
& \stackrel{\uparrow}{\operatorname{VOA}-R_{\text {ep }}} \cong \operatorname{Hom}_{\mathrm{I}}\left(11, x_{1} \otimes \ldots x_{n} \otimes L^{\otimes g}\right)
\end{aligned}
$$

What about defects?
A line defect in the CFT corresponds now to a line defect in the red plane.
algebra \Leftrightarrow S.s.s. module category)

Since the red plane is trivial for us, it is just a regular Wilson line and labeled by an object in Is! (In general it would be a bimodule for the above algebra)

The action of a line defeat can now be computed as follows:

Since X, φ are both objects in Is we can decompose them into simples
\Rightarrow We only need to understand how simples act!
The action of a simple defect X_{j} on a simple field φ_{i}

()$_{\varphi_{i}} x_{j}=\left.\lambda_{j_{i}}\right|_{\varphi_{i}}$
because φ_{i} is simple $\xrightarrow{\text { trace }}$
$\lambda_{j_{i}}=\frac{s_{i} i}{d_{i}}=\frac{S_{i i}}{S_{n i n} d_{i}} \ell^{\text {tat } e_{i} k_{\text {in }}}$ s-matrix

$$
E_{n d}\left(\varphi_{\varphi_{i}}\right) \cong \mathbb{C} \quad\left[\begin{array}{l}
D_{n}=i d_{x}+i d_{\varepsilon}+i \sigma_{\sigma} \\
D_{\varepsilon}=i d_{n}+i d_{\varepsilon}-i \delta_{\sigma} \\
D_{\sigma}=\sqrt{2} i d_{n}-\sqrt{2} i d_{\varepsilon}
\end{array}\right.
$$

as before !!!

What about

$$
\sigma_{\sigma \sigma}^{\sigma}=\sum_{x}
$$

Some correlators

1) tue point function on sphere:

$$
\begin{aligned}
& \Rightarrow\langle\sigma \sigma\rangle_{s^{2}}=\langle\mu \mu\rangle_{s^{2}} \quad \text { Kramer }-W_{\text {annie }} \text { duality!!! }
\end{aligned}
$$

2) two point function on torus:

$$
\langle\sigma \sigma\rangle_{T^{2}}:\left[\begin{array}{|}
+\ldots
\end{array} \sim \square+\square+\square+\square\right.
$$

Extra terms from fusion rules

