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Abstract. Several aspects of symmetries in string theory are reviewed. We discuss the rôle
of symmetries both of the string world sheet and of the target space. We also show how to
obtain string scattering amplitudes with the help of structures familiar from the representation
theory of quantum groups.

1. Strings and conformal field theory

Symmetries of various types, and consequently representation theoretic tools, play an
important rôle in string theory and conformal field theory. The present contribution aims
at reviewing some of their aspects, the choice of topics being influenced by our personal taste.
After a brief overview of string theory and conformal field theory, we first discuss orbifolds
and duality symmetries. We then turn to D-branes and theories of open strings, which we
investigate in the final section using Frobenius algebras in representation categories.

A minimalistic point of view on (perturbative) string theory is to regard it as a pertur-
bative quantization of a field theory, with the perturbation expansion being organized not in
terms of graphs, i.e. one-dimensional objects, but rather in terms of surfaces. What makes
this perturbation expansion particularly interesting is that it even covers the quantization of
theories that include a gravitational sector.

The configuration space of a classical string is given by the embeddings of its two-
dimensional world sheet Σ, with local coordinates τ and σ, into a target space M with
coordinates Xµ. Both Σ and M are supposed to be endowed with a metric and possibly
other background fields. It is convenient to change the perspective and regard the target space
coordinate Xµ, via the embedding of Σ into M , as a function of the world sheet coordinates
τ, σ, and thus as a classical field Xµ(τ, σ) on Σ. This classical field theory is governed by an
action S, the sigma-model action, which depends on the embedding X and on the metric h on
the world sheet. S must in particular be invariant under local rescalings of the metric h of Σ

S[eΦ(σ,τ)h,X] = S[h,X] (1)

so that we deal with a classical 2D conformal field theory (CFT). Such theories carry an
action of an infinite-dimensional symmetry algebra, the Witt algebra, respectively (after
quantization) of its central extension, the Virasoro algebra. There can also be further
symmetries, so that the Virasoro algebra is generically only a subalgebra of the so-called
chiral algebra, which is provided by all holomorphic fields in the theory (the field affiliated
with the Virasoro algebra is the stress-energy tensor T ). In simple cases, like a flat background
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M = Rp,q, the solutions of the classical field equations split into left moving and right moving
modes,

Xµ(σ, τ) = Xµ
L(σ+τ) + Xµ

R(σ−τ) . (2)

When the classical field theory can be quantized, one obtains a quantization of the space-
time coordinates as fields in a two-dimensional theory. As a result there is a rich interplay
between world sheet physics and space-time physics. For instance, the vanishing of the β-
functions in the two-dimensional field theory implies field equations of a theory on target
space that include a gravitational sector. To describe string theory, the BRST procedure must
be applied to the conformal symmetry. Nilpotency of the BRST charge restricts the target
space M , in the case of superstrings and of a flat metric on M , to 9+1 space-time dimensions.
To give another example, modular invariance of the torus partition function

Z(β) = trHstring
e−βHstring (3)

of the world sheet theory, i.e. invariance of Z(β) under transformations

iβ 7→ a iβ+b
c iβ+d (4)

with a, b, c, d∈Z, ad−bc = 1, implies absence of anomalies [28]. One should be aware,
though, that the converse is not true – it is easy to write down anomaly-free spectra not coming
from a modular invariant partition function. Thus, at least as closed strings are concerned,
string theory is a strictly more selective theoretical framework than particle field theory.

Bosonic string theory has a serious drawback: its spectrum contains tachyons, i.e. states
of negative mass squared. This problem can be circumvented by enlarging the symmetries of
the world sheet to a Lie superalgebra containing the super-Virasoro algebra. Then among
the holomorphic fields one finds, along with the stress-energy tensor T , its superpartner,
the supercurrent G. Correspondingly, the world sheet must now carry the structure of a
super-Riemann surface, rather than a Riemann surface. (In practice, one often works in a
bosonic setting, employing the equivalence between super-Riemann surfaces and Riemann
surfaces with a spin structure. Special care is then required, in particular when studying such
theories on surfaces with boundaries [16].) The extension to world sheet supersymmetry can
be implemented either for both left moving and right moving degrees of freedom, leading to
superstring theories of type II, or for one chirality only, leading to heterotic strings.

If space-time supersymmetry is imposed as an additional requirement, say for ‘phe-
nomenological’ reasons in compactifications to four space-time dimensions, then a further
extension of the world sheet symmetry is required. One needs N = 2 supersymmetry on the
world sheet (of which an N = 1 subalgebra is gauged), which means the presence of two
supercurrents G(±) as well as an abelian current J . In addition a projection, the so-called
GSO projection, must be imposed. This can be done in two different ways, depending on a
relative sign for left movers and right movers, which leads to superstring theories of type IIA
and IIB, respectively.

As mentioned above, for superstrings BRST invariance requires space-time to be 9+1-
dimensional. But the space-time we experience has only 3+1 dimensions. Therefore one
considers targets M for which six dimensions are compactified, i.e., in the simplest case,

M = R3,1 ×M6 (5)

with some compact Euclidean six-dimensional internal space M6.
There are two major approaches for arriving at such a string background:

A geometric setting, in which one studies a sigma model with target space of the form
(5). Space-time supersymmetry then requires the compact six-dimensional space M6 to be a
Calabi-Yau manifold, i.e. to admit a covariantly constant spinor.
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An entirely different approach describes the internal space through exactly solvable CFTs
built from infinite-dimensional symmetry algebras, in particular affine Lie algebras. (Affine
Lie algebras also provide the gauge sector in heterotic theories.) This purely algebraic
construction allows one to investigate string theory in the regime of strong curvature of the
target space in which geometric methods break down. More specifically, for every homoge-
neous space G/H , the so-called coset construction supplies an exactly solvable CFT model.
It can be proven [23, 30] that such a coset model has N = 2 superconformal symmetry if
and only if G/H is Kähler. These models, called Kazama-Suzuki models (including N = 2
minimal models), are the building blocks for the Gepner construction of string vacua.

2. Orbifolds

It is a general experience that physical systems with symmetries admit reduction procedures
which can result in interesting new systems. String theory is no exception; here reduction
appears in the form of orbifold methods, which constitute a powerful tool for obtaining new
string backgrounds. The orbifold construction has an algebraic and a geometric aspect, too.

On the algebraic side one considers the situation that the chiral algebra A has a non-
trivial group G of automorphisms. The fixed point subalgebra AG of A is again a chiral
algebra – the chiral algebra of the orbifold theory [5]. Results similar to the theory of dual
pairs (cf. [19] for a review) give a good control on the representations of AG and thus on the
superselection sectors of the (chiral) orbifold theory. The chiral data of orbifold theories have
been worked out explicitly for large classes of examples, like orbifolds of affine Lie algebras
by inner [22] and outer ([4], compare also [15]) automorphisms and permutation orbifolds [2].
The formalization of chiral algebras as vertex algebras allows one to prove many statements
about the representation theory of orbifolds. There is in particular a Galois theory for chiral
algebras [7].

In the geometric setting [6], one considers the action of a group G on a target space
M by isometries. (This action must also preserve other background fields than the metric.)
In case the action is not free, this gives rise to a singular space M//G. However, as a
consequence of including so-called twisted sectors, which is necessary to achieve modular
invariance, string propagation in such a background is still well-defined, i.e. the CFT does
not feel the singularity. It is worth emphasizing that for those models which possess both
a geometric and an algebraic description, the geometric orbifold does not always yield the
same theory as an algebraic orbifold. For example, when M is a compact Lie group and G a
subgroup of its center, the geometric orbifold construction can lead to an enhancement, rather
than a reduction, of the chiral algebra. (This happens e.g. for M = SU(2) and G = Z2, i.e.
for the WZW model based on the group SO(3). If the level is divisible by four, then the
corresponding modular invariant is of extension type.)

As a technical aside, we mention that the computation of string amplitudes that include
twist fields is based on the theory of Riemann surfaces with holomorphic symmetries [18].

3. Duality symmetries

Another task that symmetries can fulfill is to relate different backgrounds. In the simplest
case of a free background, along with the combination (2) obviously also the function

X̃µ(σ, τ) = Xµ
L(σ + τ)−Xµ

R(σ − τ) (6)

is a classical solution. A more complete analysis shows that this duality continues to be
realized in the quantized theory; it connects the theory of a free boson compactified on a
circle of radius R with the same theory compactified on a circle of radius 2/R.
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This operation is known as T-duality. It typically connects two different backgrounds;
self-dual theories possess an enhanced symmetry. For example, at radius R2 = 2 the free
boson on a circle acquires a non-abelian current algebra of type ŝu(2) at level 1 as an
additional symmetry. This is a generic feature of duality symmetries. It already appears
in the Kramers-Wannier duality of lattice systems that relates the high- and low-temperature
regime; the self-dual theory is at the critical point (the reader may guess herself what the
enhanced symmetry is in this example). A direct lesson from T-duality for string theory is
that geometric interpretations of string theory backgrounds typically require to make arbitrary
choices – e.g. in the case of a compactified free boson none of the two possible interpretations,
i.e. either using the radius R or using 2/R, is preferred.

T-duality possesses the following important generalization. The N = 2 superconformal
algebra has an automorphism of order two, acting as

ω(J) = −J , ω(G(±)) = G(∓) , ω(T ) = T , (7)

which just like T-duality flips the sign of a chiral abelian current, and as a consequence can
also be used to relate different string backgrounds. In the geometric setting, it relates different
Calabi-Yau manifolds. This relationship, called mirror symmetry, has turned out to be both
mathematically deep and technically extremely useful (for a review, see e.g. [17]).

The dualities discussed so far are so-called perturbative dualities – they relate terms at
the same order in string perturbation theory. ‡ In contrast, dualities like the Olive-Montonen
duality are non-perturbative. Such dualities have found many generalizations in string theory
in the last eight years. In particular, so-called S-dualities act also on the coupling constant and
thereby allow us to relate different backgrounds in the regime of strong and weak coupling.
For example, it has been found that the type IIA superstring on K3 surfaces is connected via
such a duality with the heterotic string on a four-dimensional torus [20].

4. D-branes and open strings

So far we have restricted our attention to symmetries acting either on the target space or on
the chiral algebra. There are also symmetries that act on the world sheet as well. These have
been termed orientifolds; they result in yet another type of string theories, of type I, in which
the perturbation theory is organized in terms of orientable and unorientable surfaces that are
also allowed to have boundaries. In these theories the torus amplitude Z(τ), constituting the
partition function of bulk fields, is projected by a contribution given by the amplitude K(t) of
the CFT on a Klein bottle, which leads to a total partition function 1

2
(Z + K). In terms of the

characters χi(τ) of the chiral CFT, the torus amplitude reads

Z(τ) =
∑
i,j

Zij χi(τ) χj(τ)∗ , (8)

with non-negative integers Zij , while the Klein bottle amplitude is

K(t) =
∑

i

Ki χi(2it) . (9)

Again there is a twisted sector – we must include open strings. For these, the partition function

A(t) =
∑
a,b

na nb Aab,i χi(
it
2
) (10)

‡ Notice, though, that these dualities are non-perturbative as far as perturbation theory in the sigma model is
concerned.
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on the annulus gets projected by the contribution from the Möbius strip, i.e.

M(t) =
∑

a

na Ma,i χi(
it+1

2
) , (11)

leading to the partition function 1
2
(A + M) for unoriented open strings. (The index a labels

boundary conditions for open strings and the non-negative integers na are so-called Chan-
Paton multiplicities. They give rise to gauge symmetries in theories of open strings [24].)

There are in fact many other motivations to study boundary conditions in conformal field
theories. They arise e.g. in the description of defects in quasi one-dimensional condensed
matter systems, in percolation problems, and in the analysis of string propagation in the back-
ground of certain solitonic solutions, so-called D-banes. D-branes are distinguished submani-
folds occurring in these solutions, similar to the position of a black hole in the Schwarzschild
solution. Open strings are restricted to start and end on these submanifolds [26].

String scattering amplitudes are obtained as a perturbation series, with each term an
integral over an associated CFT correlation function. In the presence of boundaries, the latter
can be analyzed with methods based on the orientifold projection, which we will not describe
here (for a recent review see [1]). Another approach, to be reviewed below, is based on
representation theoretic structures.

5. String amplitudes and Frobenius algebras

It is an old insight that a group § G contains as much information as its category C(G) of
finite-dimensional complex representations. (Much of the usefulness of groups in physics can
be traced to this equivalence.) The category C(G) has the following crucial properties:

It has a tensor product⊗: C(G)×C(G)→C(G), the tensor product of representations, with
the trivial representation as its tensor unit.

It has a braiding, i.e. a family of isomorphisms cV,W ∈Hom(V⊗W, W⊗V ) satisfying
various axioms like functoriality and tensoriality; the braiding cV,W is simply the permutation
of the two factors in the tensor product.

The notion of a dual, or contragredient, representation endows C(G) with a duality.
There are also two more technical properties:

There exists an object V such that every object W of C(G) appears as the subobject of V ⊗N

for sufficiently large N .
The forgetful functor ω: C(G)→Vectfin(C), assigning to a representation the underlying

vector space, is a fiber functor. This means in particular that it respects the tensor structure. It
is the central insight of Tannaka theory (see e.g. [21] for a review) that G can be reconstructed
from the abstract category C(G) as the group of automorphisms of the functor ω.

The approach to conformal field theory that we describe in the sequel is set up in a
similar spirit – given the chiral algebra, formalized e.g. as a vertex algebra, we can determine
its category C of representations and the associated conformal blocks. Rather than directly
with the chiral algebra, we then work with the representation category C; its objects are
representations, while its morphisms are built from the conformal blocks.

For a rational CFT, the category C is a modular tensor category. (For an early review
of this relationship see [25].) C should be thought of as a basis-independent version of
the chiral data like braiding and fusing matrices and the (fractional part of) conformal
weights. A modular tensor category is an abelian, semi-simple, braided tensor category with
a duality, obeying also a few further conditions: it must be C-linear; the tensor unit 1 must

§ We omit here technically important qualifiers which, depending on the chosen framework, could be “locally
compact” or “algebraic”.
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be (absolutely) simple, i.e. End(1) = C id1; there must be only finitely many (isomorphism
classes of) simple objects; and finally, the quadratic matrix

sij := tr cXi,Xj
cXj ,Xi

(12)

must be invertible. According to the Verlinde conjecture, this matrix s also appears in the
modular transformation of the characters of the vertex algebra. Modular tensor categories also
arise as (truncations of) categories of representations of quantum groups and as categories of
representations of weak Hopf algebras.

As an important consequence of the axioms, each modular tensor category allows for
the construction of a topological field theory in three dimensions. The latter assigns to
every closed oriented two-manifold Σ̂ a finite-dimensional vector space H(Σ̂), the space
of conformal blocks, on which the mapping class group Map(Σ̂) acts projectively. The
conformal blocks should be thought of as multivalued functions; accordingly, they are the
pre-correlators of the local conformal field theory. Moreover, to every three-manifold M with
boundary Σ̂ that contains a Wilson graph, a TFT assigns a vector in H(Σ̂). The axioms of a
TFT formalize the well-known relation between a TFT on a three-dimensional manifold and
a chiral CFT on its boundary, a structure that is e.g. central to the description of universality
classes of quantum Hall fluids (for a review, see e.g. [11]).

Our goal is now to describe CFT correlators on a surface Σ that possibly has a boundary.
A major input in our construction are tools from topological field theory. To be able to
apply them, we need a two-manifold Σ̂ without boundaries. A natural candidate for Σ̂ is
the complex double of Σ. It comes with an orientation reversing involution σ such that
Σ is identified with the quotient of Σ̂ by the action of σ. This orientifold map is rather
different from the symmetries arising in the description of twist fields of orbifolds, which
are holomorphic. Indeed, it is natural [31] to view the world sheet Σ as a real scheme and
Σ̂ as its complexification; the orientifold map is then just the action of the Galois group
Gal(C/R)∼= Z2.

With the help of Σ̂ we can in particular give a concise version of the principle of
holomorphic factorization: The correlators of the CFT on Σ are specific vectors in H(Σ̂),
which are subject to two types of constraints:
(1) They must be invariant under the action of Map(Σ)∼= Map(Σ̂)σ.
(2) They must satisfy factorization rules.

The second input in our construction is algebraic – a symmetric special Frobenius algebra
in the modular tensor category C. An algebra in C is an object A of C together with morphisms
m∈Hom(A⊗A, A) and η ∈Hom(1, A) that turn it into an algebra, i.e. m is an (associative)
multiplication and η is a unit for m. A Frobenius algebra has in addition the structure of
a co-algebra, i.e. there are a (co-associative) co-product ∆∈Hom(A, A⊗A) and a co-unit
ε∈Hom(A,1), and product and co-product are connected by the condition that

(m⊗ idA) ◦ (idA⊗∆) = ∆ ◦m = (idA⊗m) ◦ (∆⊗ idA) . (13)

The additional requirements that the algebra must also be symmetric and special are of a
somewhat more technical nature.

In (unitary) conformal field theories, such a Frobenius algebra object is supplied by the
algebra of open string states for any single given boundary condition [13]. The product
comes from the operator product of boundary fields, and associativity of the OPE implies
associativity of the algebra A. The Frobenius structure follows from the non-degeneracy of
two-point functions of boundary fields on the disk. It is worthwhile to remark that this algebra
is not necessarily (braided-) commutative.
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Next we combine non-commutative algebra and 3D TFT. According to the principle of
holomorphic factorization we need to select an element of H(Σ̂); by the principles of TFT,
such a vector is determined by a three-manifold MΣ whose boundary is the double Σ̂ and a
ribbon graph in MΣ. For MΣ we take the so-called connecting manifold [9], defined as the
quotient of the interval bundle Σ̂× [−1,1] by the Z2 that acts as σ on Σ̂ and as t 7→−t on the
interval. The points with t = 0 provide a distinguished embedding of Σ into MΣ; in fact, Σ is
a retract of MΣ, or in more intuitive terms, MΣ is just a fattening of the world sheet Σ. (To
give one example, the double of a disk is a sphere, and the orientifold map is the reflection
at the equatorial plane; the connecting manifold is in this case a full 3-ball.) Concerning the
prescription for the ribbon graph in MΣ we refer to [12]. Here we merely recall that it involves
a (dual) triangulation of Σ with ribbons labelled by the Frobenius algebra A.

In this framework, one can prove the consistency requirements of modular invariance
and factorization. We also recover the combinatorial data (partition functions, NIM-reps
[27], classifying algebras [14], . . . ) that have arisen as necessary conditions in earlier work.
Moreover, Morita equivalence, combined with orbifold technology, allows for an elegant
proof of T-dualities for arbitrary topologies of the world sheet.

The following table, associating algebraic structures to physical concepts, can serve as a
succinct summary of our results [13]:

Physical concept Algebraic structure

Boundary condition A-left module
Boundary field ΨMN

i HomA(M⊗i, N)

Defect line A-bimodule
Bulk field Φij HomA,A((A⊗i)−, (A⊗j)+)

Disorder field ΦB1B2
ij HomA,A((B1⊗i)−, (B2⊗j)+)

Our algebraization of physical concepts leads to rigorous proofs. It also allows for powerful
algorithms. In particular, for constructing a full local CFT only a single non-linear constraint
needs to be solved: the one encoding associativity of the Frobenius algebra A. Moreover, old
physical questions amount to standard problems in algebra and representation theory:

The classification of CFTs with given chiral data C amounts to classifying Morita classes
of symmetric special Frobenius algebras in the category C. In particular, modular invariants
of automorphism type are classified by the Brauer group of C.

The classification of boundary conditions and defects is reduced to the standard represen-
tation theoretic problem of classifying modules and bi-modules. As a consequence, powerful
methods like induced modules and reciprocity theorems are at our disposal.

The problem of deforming CFTs is related to the problem of deforming algebras, which is a
cohomological question. For the moment, the only known results in this direction are rigidity
theorems [8]: a rational CFT cannot be deformed within the class of rational CFTs.

Let us finally collect a few aspects of string theory for which symmetries play a rôle that
for lack of space were omitted in the present contribution:

The derivation of the standard model and its symmetries from string theory. Using com-
pactifications of the type (5), it is rather difficult to come close to the standard model. More
recently, so-called brane-world models have attracted much attention (see e.g. [32]).

Ideas about an underlying unifying symmetry of string theory. Recently, speculations that
the underlying symmetry can be described in terms of a real form of the hyperbolic Kac-
Moody algebra E10 have been upgraded [29] to E11, a Kac-Moody algebra of rank 11.

The construction of cosmological backgrounds using non-compact Lie groups.
The description of the chiral symmetry of conformal field theories. The structure of a
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vertex algebra originally arose as one mathematical formalization of these symmetries. It
has by now evolved in a useful mathematical structure of independent interest, with a rich
structural theory. (For a recent review see [10].)
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