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BV formalism is a framework for quantizing gauge theories,
developed initially in physics and later adapted to rigorous
approaches to perturbative QFT.

One such approach is perturbative algebraic quantum field theory
(pAQFT): Fredenhagen, KR Batalin-Vilkovisky Formalism in
Perturbative Algebraic Quantum Field Theory CMP 2012,
[1110.5232].

Another uses factorization algebras and was developed by
Costello and Gwilliam: Costello 2011 Renormalization and
effective field theory, Costello and Gwilliam Factorization
algebras in perturbative quantum field theory. Vol. 1 and 2.

Comparison between the two was discussed in: Gwilliam, KR
CMP 2020 [1711.06674]; Benini, Perin, Schenkel [1903.03396]
CMP 2020.
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Notation I

We work over Nuc, the category of nuclear topological vector
spaces (alternative: convenient vector spaces).

Alg(Nuc): unital associative algebras in Nuc.
CAlg(Nuc): unital commutative algebras in Nuc
PAlg(Nuc): unital Poisson algebras therein.
For ∗structures (involution), we use Alg∗(Nuc), CAlg∗(Nuc),
and PAlg∗(Nuc), respectively.
For C with symmetric monoidal structure ⊗, we write Alg(C⊗)
(or simply Alg(C)) for the unital algebra objects in that category.
We use v : PAlg∗(Nuc)→ Nuc and v : Alg∗(Nuc)→ Nuc to
denote forgetful functors to vector spaces. and
c : PAlg∗(Nuc)→ CAlg∗(Nuc) denotes the forgetful functor to
commutative algebras.
If C is an additive category, we write Ch(C) to denote the
category of cochain complexes and cochain maps in C.
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Notation II

Category of spacetimes
Let Locn be the category where

an object is a connected, (time-)oriented globally hyperbolic
spacetime of dimension n

and where a morphism χ : M→ N is an isometric embedding
that preserves orientations and causal structure.

The latter means that for any causal curve γ : [a, b]→ N, if
γ(a), γ(b) ∈ χ(M), then for all t ∈]a, b[, we have γ(t) ∈ χ(M).
(χ cannot create new causal links.)

We can extend Locn to a symmetric monoidal category Loc⊗n by
allowing for objects that are disjoint unions of objects in Locn.
The symmetric monoidal structure is the disjoint union t.
A morphism in Loc⊗n sends disjoint components to
spacelike-separated regions.

Kasia Rejzner BV quantization 4 / 50
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Main ideas I

Let Sol be the solution space for some linear Green hyperbolic
differential operator on a globally hyperbolic spacetime M.

The Costello-Gwilliam (CG) formalism provides a functor
A : Open(M)→ Ch, which assigns a cochain complex (or
differential graded (dg) vector space) of observables to each
open set. This cochain complex is a deformation of a
commutative dg algebra P, where H0(P(U)) = O(Sol(U)).

The pAQFT formalism provides a functor
A : Caus(M)→ Alg∗, which assigns a unital ∗-algebra to each
“causally convex” open set (so that Caus(M) is a special
subcategory of Open(M) depending on the global hyperbolic
structure of M). The algebra A(U) is, in practice, a deformation
quantization of the Poisson algebra (O(Sol(U), b., .c), where
b., .c is the Peierls bracket.

Kasia Rejzner BV quantization 5 / 50
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Main ideas II

Observation: A is constructed from by deforming the
differential of the classical model, while A is constructed from
the classical algebra by deformation of the product.

Idea: relation between A and A is obtained using intermediate
structure: A equipped with time-ordered product ·T .

Idea: deformation of the differential from d to d − i~4 is
equivalent to the deformation of the product from · to ·T .

In both cases, the interacting theory is obtained using
perturbative methods.

Renormalization can either be done on the level of the
differential (CG) or the product (pAQFT).

Kasia Rejzner BV quantization 6 / 50
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Algebraic quantum field theory

A convenient framework to investigate conceptual problems in
QFT is the Algebraic Quantum Field Theory.

It started as the axiomatic framework of Haag-Kastler ([Haag 59,

Haag-Kastler 64]): a model is defined by associating to each region
O of Minkowski spacetime M an algebra A(O) of observables
that can be measured in O.
The physical notion of subsystems is realized by the condition of
isotony, i.e.: O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2). We obtain a net of
algebras.

Kasia Rejzner BV quantization 7 / 50
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Further properties we want

One can also ask for further, physically motivated properties:
causality and time-slice axiom.

Causality: If O1,O2 ⊂M are spacelike separated (no causal
curve joining them), then

[A(O1),A(O2)] = {0},

where [., .] is the commutator in the sense of A(O3), where O3
contains both O1 and O2.

Time-slice axiom: If N is a neighborhood of a Cauchy-surface
in O, then A(N) is isomorphic to A(O).

This is a QFT version of the initial value problem (or local
constancy in the time direction).

Kasia Rejzner BV quantization 8 / 50
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in O, then A(N) is isomorphic to A(O).

This is a QFT version of the initial value problem (or local
constancy in the time direction).
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Generalizations

Replace M with an arbitrary Lorentzian gloabally hyperbolic
(has a Cauchy surface) manifold (M, g): locally covariant QFT
on curved spacetimes ([Brunetti-Fredenhagen-Verch 03, Hollands-Wald

01, Fewster-Verch 12].

Advantage of the algebraic approach: it allows to separate the
dynamics from the specification of the state (note that for generic
M there is no preferred vacuum state).

We can also follow the spirit of AQFT in perturbation theory,

pAQFT is a mathematically rigorous framework that can be used
to make precise calculations done in perturbative QFT.
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Overview of the pAQFT approach

Free theory obtained by the formal deformation quantization of
the Poisson (Peierls) bracket: ?-product ([Dütsch-Fredenhagen 00,

Brunetti-Fredenhagen 00, Brunetti-Dütsch-Fredenhagen 09, . . . ]).

Interaction (with a cutoff that guarantees compact support)
introduced in the causal approach to renormalization due to
Epstein and Glaser ([Epstein-Glaser 73]),

Generalization to gauge theories using homological algebra
([Hollands 07, Fredenhagen-KR 11]).
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Locally covariant classical field theory I

Definition
A locally covariant classical field theory model of dimension n is a
functor P : Locn → PAlg∗(Nuc)inj such that the Einstein causality
holds: given two isometric embeddings χ1 : M1 →M and
χ2 : M2 →M whose images χ1(M1) and χ2(M2) are
spacelike-separated, the subalgebras

Pχ1(P(M1)) ⊂ P(M) ⊃ Pχ2(P(M2))

Poisson-commute, i.e., we have

bPχ1(a1),Pχ2(a2)c = {0} ,

for any a1 ∈ P(M1) and a2 ∈ P(M2).
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Locally covariant quantum field theory II

Definition
A locally covariant quantum field theory model of dimension n is a
functor A : Locn → Alg∗(Nuc~)inj such that Einstein causality
holds: given two isometric embeddings χ1 : M1 →M and
χ1 : M1 →M whose images χ1(M1) and χ2(M2) are
spacelike-separated, the subalgebras

Aχ1(A(M1)) ⊂ A(M) ⊃ Aχ2(A(M2))

commute, i.e., we have

[Aχ1(a1),Aχ2(a2)] = {0} ,

for any a1 ∈ A(M1) and a2 ∈ A(M2).
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Locally covariant quantum field theory III

On-shell theories
A model P/A is called on-shell if it satisfies in addition the time-slice
axiom: If χ : M→ N contains a neighborhood of a Cauchy surface
Σ ⊂ N, then the map Pχ : P(M)→ P(N) / Aχ : A(M)→ A(N) is
an isomorphism.

Kasia Rejzner BV quantization 13 / 50
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dg Version: Classical

Definition
A semistrict dg classical field theory model on a spacetime M

is a functor P : Caus(M)→ PAlg∗(Ch(Nuc)), so that each
P(O) is a locally convex dg Poisson ∗-algebra satisfying
Einstein causality: spacelike-separated observables
Poisson-commute at the level of cohomology.

it satisfies the time-slice axiom if for any N ∈ Caus(M) a
neighborhood of a Cauchy surface in the region O ∈ Caus(M),
then the map P(N)→ P(O) is a quasi-isomorphism.
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dg Version: Quantum

Definition
A semistrict dg QFT model on a spacetime M

is a functor A : Caus(M)→ Alg∗(Ch(Nuc~)), so that each
A(O) is a locally convex unital ∗-dg algebra satisfying Einstein
causality: spacelike-separated observables commute at the level
of cohomology.

it satisfies the time-slice axiom if for any N ∈ Caus(M) a
neighborhood of a Cauchy surface in the region O ∈ Caus(M),
then the map A(N)→ A(O) is a quasi-isomorphism.
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Prefactorization algebras I

A prefactorization algebra F on M with values in a symmetric
monoidal category C⊗ consists of the following data:

for each open U ⊂ M, an object F(U) ∈ C,

for each finite collection of pairwise disjoint opens U1, . . . ,Un,
with n > 0, and an open V containing every Ui, a morphism

F({Ui}; V) : F(U1)⊗ · · · ⊗ F(Un)→ F(V),
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Prefactorization algebras II

. . . and satisfying the following conditions:

composition is associative, so that the triangle⊗
i

⊗
j

F(Tij)
⊗

i

F(Ui)

F(V)

commutes for

any collection {Ui}, as above, contained in V and for any
collections {Tij}j where for each i, the opens {Tij}j are pairwise
disjoint and each contained in Ui,
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Prefactorization algebras III

the morphisms F({Ui}; V) are equivariant under permutation of
labels, so that the triangle
F(U1)⊗ · · · ⊗ F(Un) F(Uσ(1))⊗ · · · ⊗ F(Uσ(n))

F(V)

'

commutes for any σ ∈ Sn.
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Factorization algebras I

A factorization algebra is a prefactorization algebra for which
the value on bigger opens is determined by the values on smaller
opens: local-to-global property.

A key difference to a sheaf is that we need to be able to
reconstruct the “multiplication maps” from the local data, and so
we need to modify our notion of cover accordingly.

Definition
A Weiss cover {Ui}{i∈I} of an open subset U ⊂ M is a collection of
opens Ui ⊂ U such that for any finite set of points
S = {x1, . . . , xn} ⊂ U, there is some i ∈ I such that S ⊂ Ui.

Example
Let M be a smooth n-dimensional manifold. The collection of open
sets in M diffeomorphic to a disjoint union of finitely many copies of
the open n-disc is a Weiss cover for M.

Kasia Rejzner BV quantization 19 / 50
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Factorization algebras II

Definition
A factorization algebra F is a prefactorization algebra on M such
that the underlying precosheaf is a cosheaf with respect to the Weiss
topology. That is, for any open U and any Weiss cover {Ui}i∈I of U,
the diagram∐

i,j

F(Ui ∩ Uj)
∐

i

F(Ui) F(U)

is a coequalizer.
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Models

A classical field theory model is a 1-shifted Poisson (aka P0) algebra
P in factorization algebras FA(M,Ch(Nuc)). That is, to each open
U ⊂ M, the cochain complex P(U) is equipped with a commutative
product · and a degree 1 Poisson bracket {−,−}; moreover, each
structure map is a map of shifted Poisson algebras.

A quantum field theory model is a BD algebra A in factorization
algebras FA(M,Ch(Nuc~)). That is, to each open U ⊂ M, the
cochain complex A(U) is flat over C[[~]] and equipped with

an ~-linear commutative product ·, an ~-linear, degree 1 Poisson
bracket {−,−}, and a differential d such that

d(a · b) = d(a) · b + (−1)deg aa · d(b) + ~{a, b}
Moreover, each structure map is a map of BD algebras.
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Comparison of classical models

There is a natural quasi-isomorphism

ιcl : c ◦ P|Caus(M) ⇒ c ◦P

of functors to commutative dg algebras CAlg(Ch(Nuc)).

Thus, there is a natural isomorphism

H0(ιcl) : c ◦ H0(P)|Caus(M) ⇒ c ◦P

of functors into commutative algebras CAlg(Nuc).

Assuming time-slice axiom, there is also a relation between the
brackets (0-shifted and 1-shifted).
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Comparison of quantum models

There is a natural quasi-isomorphism

ιq : A|Caus(M) ⇒ v ◦ A

of functors to Ch(Nuc~).

Thus, there is a natural isomorphism

H0(ιq) : H0(A)|Caus(M)

∼=⇒ v ◦ A.

Modulo ~, this isomorphism agrees with the isomorphism of
classical models. It is given in terms of the time-ordering map T,
which is the key ingredient of our proof.

Assuming the time-slice axiom, there is also a relation between
the factorization product and the non-commutative associative
star product of A.

Kasia Rejzner BV quantization 23 / 50
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pAQFT
Comparison

Physical input

A globally hyperbolic spacetime M = (M, g).

Configuration space E(M): choice of objects we want to study in
our theory (scalars, vectors, tensors,. . . ).
Typically E(M) is a space of smooth sections of some vector
bundle E π−→ M over M.

For the scalar field: E(M) ≡ C∞(M,R).
For Yang-Mills with trivial bundle: E(M) ≡ Ω1(M, k), where k is
a Lie algebra of a compact Lie group.
For effective QG: E(M) = Γ((T∗M)⊗2).

We use notation ϕ ∈ E(M), also if it has several components.

Dynamics: we use a modification of the Lagrangian formalism
(fully covariant).

Kasia Rejzner BV quantization 24 / 50
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For Yang-Mills with trivial bundle: E(M) ≡ Ω1(M, k), where k is
a Lie algebra of a compact Lie group.
For effective QG: E(M) = Γ((T∗M)⊗2).

We use notation ϕ ∈ E(M), also if it has several components.

Dynamics: we use a modification of the Lagrangian formalism
(fully covariant).
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Classical observables

Classical observables are smooth functionals on E(M), i.e.
elements of C∞(E(M),C).

For simplicity of notation (and because of functoriality), we drop
M, if no confusion arises, i.e. write E, C∞(E,C), etc.
Localization of functionals governed by their spacetime support:

supp F = {x ∈ M|∀ neighbourhoods U of x ∃ϕ,ψ ∈ E,

suppψ ⊂ U such that F(ϕ+ ψ) 6= F(ϕ)} .

F is local, F ∈ Floc if it is of the form:

F(ϕ) =

∫
M

f (jx(ϕ)) dµg(x) , where f is a function on the jet

bundle over M and jx(ϕ) is the jet of ϕ at the point x.
Let F denote the space of functionals that are polynomial and
regular, i.e. F(n)(ϕ) is as smooth section (in general it would be
distributional).
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Dynamics

Dynamics is introduced by a generalized Lagrangian S, a
localization preserving map S : D→ Floc, where
D(M) = C∞0 (M,R). Examples:

S(f )[ϕ] =

∫
M

(
1
2ϕ

2 +
1
2
∇µϕ∇µϕ

)
fdµg,

S(f )[A] = −1
2

∫
M

f tr(F ∧ ∗F), F being field strength for A,

S(f )[g]
.
=

∫
R[g] f dµg

The Euler-Lagrange derivative of S is denoted by dS and defined
by 〈dS(ϕ), ψ〉 =

〈
S(1)(f )[ϕ], ψ

〉
,

where f ≡ 1 on suppψ.
The field equation is: dS(ϕ) = 0,
so geometrically, the solution space is
the zero locus of the 1-form dS.
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Introduction
Comparison of models

Main results
pAQFT
Comparison

Dynamics

Dynamics is introduced by a generalized Lagrangian S, a
localization preserving map S : D→ Floc, where
D(M) = C∞0 (M,R). Examples:

S(f )[ϕ] =

∫
M

(
1
2ϕ

2 +
1
2
∇µϕ∇µϕ

)
fdµg,

S(f )[A] = −1
2

∫
M

f tr(F ∧ ∗F), F being field strength for A,

S(f )[g]
.
=

∫
R[g] f dµg

The Euler-Lagrange derivative of S is denoted by dS and defined
by 〈dS(ϕ), ψ〉 =

〈
S(1)(f )[ϕ], ψ

〉
,

where f ≡ 1 on suppψ.
The field equation is: dS(ϕ) = 0,
so geometrically, the solution space is
the zero locus of the 1-form dS.

Kasia Rejzner BV quantization 26 / 50



Introduction
Comparison of models

Main results
pAQFT
Comparison

Dynamics

Dynamics is introduced by a generalized Lagrangian S, a
localization preserving map S : D→ Floc, where
D(M) = C∞0 (M,R). Examples:

S(f )[ϕ] =

∫
M

(
1
2ϕ

2 +
1
2
∇µϕ∇µϕ

)
fdµg,

S(f )[A] = −1
2

∫
M

f tr(F ∧ ∗F), F being field strength for A,

S(f )[g]
.
=

∫
R[g] f dµg

The Euler-Lagrange derivative of S is denoted by dS and defined
by 〈dS(ϕ), ψ〉 =

〈
S(1)(f )[ϕ], ψ

〉
,

where f ≡ 1 on suppψ.
The field equation is: dS(ϕ) = 0,
so geometrically, the solution space is
the zero locus of the 1-form dS.

Kasia Rejzner BV quantization 26 / 50



Introduction
Comparison of models

Main results
pAQFT
Comparison

Dynamics

Dynamics is introduced by a generalized Lagrangian S, a
localization preserving map S : D→ Floc, where
D(M) = C∞0 (M,R). Examples:

S(f )[ϕ] =

∫
M

(
1
2ϕ

2 +
1
2
∇µϕ∇µϕ

)
fdµg,

S(f )[A] = −1
2

∫
M

f tr(F ∧ ∗F), F being field strength for A,

S(f )[g]
.
=

∫
R[g] f dµg

The Euler-Lagrange derivative of S is denoted by dS and defined
by 〈dS(ϕ), ψ〉 =

〈
S(1)(f )[ϕ], ψ

〉
,

where f ≡ 1 on suppψ.
The field equation is: dS(ϕ) = 0,
so geometrically, the solution space is
the zero locus of the 1-form dS.

Kasia Rejzner BV quantization 26 / 50



Introduction
Comparison of models

Main results
pAQFT
Comparison

Dynamics

Dynamics is introduced by a generalized Lagrangian S, a
localization preserving map S : D→ Floc, where
D(M) = C∞0 (M,R). Examples:

S(f )[ϕ] =

∫
M

(
1
2ϕ

2 +
1
2
∇µϕ∇µϕ

)
fdµg,

S(f )[A] = −1
2

∫
M

f tr(F ∧ ∗F), F being field strength for A,

S(f )[g]
.
=

∫
R[g] f dµg

The Euler-Lagrange derivative of S is denoted by dS and defined
by 〈dS(ϕ), ψ〉 =

〈
S(1)(f )[ϕ], ψ

〉
,

where f ≡ 1 on suppψ.

The field equation is: dS(ϕ) = 0,
so geometrically, the solution space is
the zero locus of the 1-form dS.

Msupp(f )

supp(ψ)
f ≡ 1

Kasia Rejzner BV quantization 26 / 50



Introduction
Comparison of models

Main results
pAQFT
Comparison

Dynamics

Dynamics is introduced by a generalized Lagrangian S, a
localization preserving map S : D→ Floc, where
D(M) = C∞0 (M,R). Examples:

S(f )[ϕ] =

∫
M

(
1
2ϕ

2 +
1
2
∇µϕ∇µϕ

)
fdµg,

S(f )[A] = −1
2

∫
M

f tr(F ∧ ∗F), F being field strength for A,

S(f )[g]
.
=

∫
R[g] f dµg

The Euler-Lagrange derivative of S is denoted by dS and defined
by 〈dS(ϕ), ψ〉 =

〈
S(1)(f )[ϕ], ψ

〉
,

where f ≡ 1 on suppψ.
The field equation is: dS(ϕ) = 0,
so geometrically, the solution space is
the zero locus of the 1-form dS.

Msupp(f )

supp(ψ)
f ≡ 1

Kasia Rejzner BV quantization 26 / 50



Introduction
Comparison of models

Main results
pAQFT
Comparison

Symmetries

In the BV framework, symmetries are identified with vector
fields (directions) on E.

Consider vector fields that are, compactly supported and regular
and denote them by V. Poly-vector fields are denoted by PV.

Vector fields act on F as derivations:
∂XF(ϕ) := 〈F(1)(ϕ),X(ϕ)〉
A symmetry of S is a direction in E in which the action is
constant, i.e. it is a vector field X ∈ V such that ∀ϕ ∈ E:
0 = 〈dS(ϕ),X(ϕ)〉.

E(M)

Cϕ
F
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Quotients and homology

Let 〈dS(ϕ),X(ϕ)〉 ≡ δSX(ϕ) and let ES ⊂ E be the space of
solutions to EOMs (zero locus of the 1-form dS).

Denote regular polynomial functionals that vanish on ES by F0
and assume that they are of the form: δS(X) for some X ∈ V.
The space FS of functionals on ES is the quotient FS = F/F0
(redundancy removal by quotienting).
δS is the Koszul differential. Symmetries constitute its kernel.
We obtain a sequence:

0 −→ Sym ↪→ V
δS−→ F → 0

2 1 0

which is subsequently extended to (PV, δS), where PV denotes
polyvector fields.
For the scalar field, this is where the construction finishes.
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Antifields and antibracket

Vector fields V can be written formally as: X =

∫
dx X(x)

δ

δϕ(x)
.

The action on functionals F ∈ F can be written as:

X(F)(ϕ) =

∫
dx X(ϕ)(x)

δF
δϕ(x)

(ϕ) .

We can think of derivatives
δ

δϕ(x)
as "generators" of V.

In literature those objects are called antifields and are denoted by

ϕ‡(x), i.e.: ϕ‡(x)
.
=

δ

δϕ(x)
. The grading of Koszul complex is

called antifield number #af.
There is a graded bracket (called antibracket) identified with the
Schouten bracket {., .} on multivector fields.
Derivation δS is not inner with respect to {., .}, but locally it can
be written as δSX = {X, S(f )} for f ≡ 1 on suppX, X ∈ V.

Kasia Rejzner BV quantization 29 / 50
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The action on functionals F ∈ F can be written as:

X(F)(ϕ) =

∫
dx X(ϕ)(x)

δF
δϕ(x)

(ϕ) .

We can think of derivatives
δ

δϕ(x)
as "generators" of V.

In literature those objects are called antifields and are denoted by

ϕ‡(x), i.e.: ϕ‡(x)
.
=

δ

δϕ(x)
. The grading of Koszul complex is

called antifield number #af.
There is a graded bracket (called antibracket) identified with the
Schouten bracket {., .} on multivector fields.
Derivation δS is not inner with respect to {., .}, but locally it can
be written as δSX = {X, S(f )} for f ≡ 1 on suppX, X ∈ V.
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Antibracket and the Classical Master Equation

Derivation δS is not inner with respect to {., .}, but locally it can
be written as:

δSX = {X, S(f )} , f ≡ 1 on suppX , X ∈ V

In general, in the presence of symmetries, E is replaced by the
extended configuration space (containing e.g. the ghosts). The
Koszul differential is extended to the BV differential s.
As before, we can write sX = {X, Sext(f )}, where Sext is the
extended action, which contains ghosts, antifields and often
non-minimal sector needed for implementing the gauge fixing.
The BV differential s has to be nilpotent, i.e.: s2 = 0, which
leads to the classical master equation (CME):

{Sext(f ), Sext(f )} = 0 ,

modulo terms that vanish in the limit of constant f .
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Linearization

Firstly, linearize Sext around a fixed configuration ϕ0, and write
Sext = S0 + V , where S0 might contain both fields and antifields.

Decompose S0 = S00 + θ0 where S00 is the term with no
antifields.

Assume that dS00(ϕ) = Pϕ, where P is a normally hyperbolic
operator, so that the unique retarded and advanced Green
functions ∆R/A exist (Green hyperbolic operator).
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Poisson structure

The Poisson bracket of the free theory is

bF,Gc .=
〈

F(1),∆G(1)
〉
,

where ∆ = ∆R −∆A is the Pauli-Jordan function for S00.

Define s0 = {., S0}.
We set P(O) = (PV(O), b., .c , ·, s0), where · is the wedge
product on polyvector fields and pointwise product for
functionals.

Kasia Rejzner BV quantization 32 / 50



Introduction
Comparison of models

Main results
pAQFT
Comparison

Poisson structure

The Poisson bracket of the free theory is

bF,Gc .=
〈

F(1),∆G(1)
〉
,

where ∆ = ∆R −∆A is the Pauli-Jordan function for S00.

Define s0 = {., S0}.

We set P(O) = (PV(O), b., .c , ·, s0), where · is the wedge
product on polyvector fields and pointwise product for
functionals.

Kasia Rejzner BV quantization 32 / 50



Introduction
Comparison of models

Main results
pAQFT
Comparison

Poisson structure

The Poisson bracket of the free theory is

bF,Gc .=
〈

F(1),∆G(1)
〉
,

where ∆ = ∆R −∆A is the Pauli-Jordan function for S00.

Define s0 = {., S0}.
We set P(O) = (PV(O), b., .c , ·, s0), where · is the wedge
product on polyvector fields and pointwise product for
functionals.

Kasia Rejzner BV quantization 32 / 50



Introduction
Comparison of models

Main results
pAQFT
Comparison

Deformation quantization

Define the ?-product (deformation of the pointwise product):

(F ? G)(ϕ)
.
=

∞∑
n=0

~n

n!

〈
F(n)(ϕ),W⊗nG(n)(ϕ)

〉
,

where W is the 2-point function of a Hadamard state and it

differs from
i
2

∆ by a symmetric bidistribution: W =
i
2

∆ + H.

s0 is a derivation with respect to ? and it characterizes “being
on-shell”.

We set A(O) = (PV(O)[[~]], ?, ∗, s0), where ∗ is the complex
conjugation.
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Time-ordered products I

Given the classical semistrict dg theory P and its quantization A, the
time-ordered product is realized as a triple (AT , ξ,T) consisting of:

a functor AT : Caus(M)→ CAlg∗(Ch(Nuc~)) which gives the
time-ordered product as a commutative product,

a natural isomorphism ξ : v ◦ AT ⇒ v ◦ A, which identifies AT

and A as vector spaces,

and a natural isomorphism of commutative algebras
T : c ◦P[[~]]⇒ AT
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Time-ordered products II

. . .

such that for any pair of inclusions ψi : Oi → O in Caus(M), if
ψ1(O1) ≺ ψ2(O2), then

ξO ◦ mT ◦ (ATψ2 ⊗ ATψ1) = m? ◦ (Aψ2 ◦ ξO2 ⊗ Aψ1 ◦ ξO1) ,

where mT/m? is the multiplication with respect to the
time-ordered/star product and the relation “≺” means “not later
than,” i.e., there exists a Cauchy surface in O that separates
ψ1(O1) and ψ2(O2).
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Time-ordered products III

The time-ordering operator T is defined as:

TF(ϕ)
.
=

∞∑
n=0

1
n!

〈
F(2n)(ϕ), (~2 ∆F)⊗n

〉
≡ e

i~
2 ∂∆F F ,

where ∆F =
i
2

(∆A + ∆R) + H and H = W − i
2

∆.

Formally it corresponds to the operator of convolution with the
oscillating Gaussian measure “with covariance i~∆F”,

TF(ϕ)
formal

=

∫
F(ϕ− φ) dµi~∆F (φ) .

Define the time-ordered product ·T on PV[[~]] by:

F ·T G .
= T(T−1F · T−1G)
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Interaction

·T is the time-ordered version of ?, in the sense that

F ·T G = F ? G ,

if the support of F is later than the support of G.

Interaction is a functional V , for the moment V ∈ PV.
We define the formal S-matrix, S(λV) ∈ PV((~))[[λ]] by

S(λV)
.
= eiλV/~

T = T(eT
−1(iλV/~)) .

Interacting fields are elements of PV[[~, λ]] given by

RλV(F)
.
=(eiλV/~

T )?−1?(eiλV/~
T ·TF) = −i~

d
dµ

S(λV)−1S(λV+µF)
∣∣
µ=0

We define the interacting star product as:

F ?int G .
= R−1

V (RV(F) ? RV(G)) ,

Renormalization problem: extend ·T to V local and non-linear.
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Quantum BV operator I

The linearized BV operator is defined by

s0X = {X, S0} .

The free quantum BV operator ŝ0 is defined on regular
functionals by:

ŝ0 = T−1 ◦ s0 ◦ T ,

The interacting quantum BV operator ŝ is defined on regular
functionals by:

ŝ = R−1
V ◦ ŝ0 ◦ RV ,

the twist of the free quantum BV operator by the (non-local!)
map that intertwines the free and the interacting theory.
The 0th cohomology of ŝ characterizes quantum gauge invariant
observables.
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Quantum BV operator II

ŝ0 on regular functionals can also be written as:

ŝ0 = {., S0} − i~4 ,

where4 is the BV Laplacian, which on regular functionals is

4X = (−1)(1+|X|)
∫

dx
δ2X

δϕ‡(x)δϕ(x)
.

The quantum master equation is the condition that the S-matrix
is invariant under the linearized BV operator:

{eiV/~
T , S0} = 0 .

The left-hand side can be rewritten as:

{eiV/~
T , S0} = eiV/~

T ·T
(

1
2
{S0 + V, S0 + V} − i~4 (S0 + V)

)
.
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Quantum BV operator III

We obtain the standard form of the QME:

1
2
{S + V, S + V} = i~4S+V .

This should be understood as a condition on V , which guarantees
that the S-matrix on-shell doesn’t depend on the gauge fixing.

Assuming QME, ŝ on regular functionals becomes

ŝ = {., S0 + V} − i~4 ,

In our framework this is a mathematically rigorous result, no
path integral needed (in contrast to other approaches).
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ŝ = {., S0 + V} − i~4 ,

In our framework this is a mathematically rigorous result, no
path integral needed (in contrast to other approaches).

Kasia Rejzner BV quantization 40 / 50



Introduction
Comparison of models

Main results
pAQFT
Comparison

Quantum BV operator III

We obtain the standard form of the QME:

1
2
{S + V, S + V} = i~4S+V .

This should be understood as a condition on V , which guarantees
that the S-matrix on-shell doesn’t depend on the gauge fixing.
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Towards renormalization

To extend QME and ŝ to local observables, we need to replace ·T with
the renormalized time-ordered product.

Theorem (K. Fredenhagen, K.R. 2011)
The renormalized time-ordered product ·Tr is an associative product
on Tr(PV) given by

F ·Tr G .
= Tr(T

−1
r F · T−1

r G) ,

where Tr : PV[[~]]→ Tr(PV)[[~]] is defined as

Tr = (⊕nT
n
r ) ◦ β ,

where β : Tr : PV→ S•PV
(0)
loc is the inverse of multiplication m and

the subscript (0) indicates functionals that vanish at ϕ = 0.
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Renormalized QME and the quantum BV operator

Since ·Tr is an associative, commutative product, we can use it in
place of ·T and define the renormalized QME and the quantum
BV operator as:

{eiV/~
Tr , S0} = 0

ŝ(X)
.
= e−iV/~

Tr ·Tr

(
{eiV/~

Tr ·Tr X, S0}
)
,

These formulas get even simpler if we use the anomalous Master
Ward Identity ([Brenecke-Dütsch 08, Hollands 07]).
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Renormalized QME and the quantum BV operator

Using the MWI we obtain following formulas:

0 =
1
2
{V + S0,V + S0}Tr −4V ,

ŝX = {X,V + S0} −4V(X) ,

where4V is identified with the anomaly term and
4V(X)

.
= d

dλ 4V+λX
∣∣
λ=0.

Hence, by using the renormalized time ordered product ·Tr , we
obtained in place of4(X), the interaction-dependent operator
4V(X) (the anomaly). It is of order O(~) and local.

In the renormalized theory,4V is well-defined on local vector
fields, in contrast to4.
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Comparison (free scalar field) I

Classical case is almost trivial on the level of algebras, since both
CG and FR work with the space of regular polynomials and
P(O) = (PV(O), δS0 , {., .}) = v ◦P(O) for O ∈ Caus(M).

The quantum case is a bit subtler. The pAQFT approach assigns
a dg algebra A = (PV[[~]], δS0 , ?) whereas the CG approach
assigns merely a cochain complex (PV[[~]], δS0 − i~4).

The key is to use the time-ordering machinery.
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Comparison (free scalar field) II

The time-ordering operator T provides a cochain isomorphism

A = (PV[[~]], ŝ0)
T−→ (PV[[~]], δS0) = P[[~]].

... as well as the isomorphism of commutative algebras:

c ◦P = (PV[[~]], ·) T−→ (PV[[~]], ·T) = AT .

More precisely, on each O ∈ Caus(M), we define TO .
= e

i~
2 ∂∆F

O .
This map is well-defined, since TO is support-preserving.

Since underlying vector spaces are in our case the same, we have

A
∣∣
Caus(M)

ιq=T−−−→ (PV[[~]], δS0) = v ◦ A.
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Different perspectives I
Quantum observables are described either by deforming the
product (from · to ·T ) and keeping the differential as δS0 or,
equivalently, by deforming the differential (from δS0 to ŝ0 =
δS0 − i~4) and keeping the product.

The approach to quantization taken in pAQFT relies on
deformation of the product, while the observables are left
unchanged.
Note that δS0 is a derivation with respect to ?, but not with
respect to ·T , since

δS0(X ·T Y) = (−1)|X|δS0X ·T Y + X ·T δS0Y − i~{X,Y}T,
Equivalently to deforming the product, one can deform the
differential (CG approach) from δS to ŝ. Again we have

ŝ0(X · Y) = (−1)|X|ŝ0X · Y + X · ŝ0Y − i~{X,Y} .
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Associative product

Associative product ? can be reconstructed from the
time-ordered product ·T (and hence from the factorization
product) for theories satisfying the sime-slice axiom.

Assume we have a theory A with the product ? and differential s0
that obeys the time-slice axiom and we have a time-ordered
product ·T associated with ?.
Take F,G ∈ A(O) and consider neighborhoods of Cauchy
surfaces to the future and to the past of O, denoted N+ and N−.
The time-slice axiom implies that there exist maps β− and β+

such that β+F is localized in the future of O and β−F in the past.
The ?-commutator of F and G is

[G,F]? = G ? F − F ? G

Modulo Ims0 we have:

[G,F]? = G ? β+(F)− β−(F) ? G = G ·T β+(F)− β−(F) ·T G
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Comparing the brackets I

Recall that ? arises from the deformation of the Peierls bracket
b., .c. We want to relate this Poisson bracket to the (-1)-shifted
Poisson bracket {}.

The time-slice axiom implies that for F as before, there exists Ψ
such that β−F − β+F = s0Ψ.

We rewrite the ? commutator as

[G,F]? = G ? β+(F)− β−(F) ?G = G ·T β+(F)− β−(F) ·T G

= G ·T (β−F − β+F) = G ·T s0Ψ ,

for some Ψ.
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Comparing the brackets II

Hence we can write the Peierls bracket as

i~ bG,Fc = G ·T s0Ψ mod ~2 , Ims0 .

Assume that s0G = 0. We can re-write the left-hand side using
the antibracket as follows:

i~ bG,Fc = s0(G ·T Ψ) + i~{G,Ψ} mod ~2 , Ims0 .

Hence
bG,Fc = {G,Ψ} mod ~ , Ims0 , ,

which can be thought of as the intrinsic definition of the Peierls
bracket, given the antibracket and a theory satisfying time-slice
axiom.
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Conclusions

Thank you for your attention!
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