

BV formalism - in perturbative algebraic QFT and using factorisation algebras

Kasia Rejzner¹

University of York/University of Hamburg

(Virtual) Hamburg 05/01/2021

¹Based on joint work with Owen Gwilliam.

Outline of the talk

- Notation
- AQFT
- Factorisation algebras

2 Comparison of models

- Main results
- pAQFT
- Comparison

- BV formalism is a framework for quantizing gauge theories, developed initially in physics and later adapted to rigorous approaches to perturbative QFT.

- BV formalism is a framework for quantizing gauge theories, developed initially in physics and later adapted to rigorous approaches to perturbative QFT.
- One such approach is perturbative algebraic quantum field theory (pAQFT): Fredenhagen, KR *Batalin-Vilkovisky Formalism in Perturbative Algebraic Quantum Field Theory* CMP 2012, [1110.5232].

- BV formalism is a framework for quantizing gauge theories, developed initially in physics and later adapted to rigorous approaches to perturbative QFT.
- One such approach is perturbative algebraic quantum field theory (pAQFT): Fredenhagen, KR *Batalin-Vilkovisky Formalism in Perturbative Algebraic Quantum Field Theory* CMP 2012, [1110.5232].
- Another uses factorization algebras and was developed by Costello and Gwilliam: Costello 2011 *Renormalization and effective field theory*, Costello and Gwilliam *Factorization algebras in perturbative quantum field theory*. Vol. 1 and 2.

Introduction AQFT Factorisation alg

- BV formalism is a framework for quantizing gauge theories, developed initially in physics and later adapted to rigorous approaches to perturbative QFT.
- One such approach is perturbative algebraic quantum field theory (pAQFT): Fredenhagen, KR *Batalin-Vilkovisky Formalism in Perturbative Algebraic Quantum Field Theory* CMP 2012, [1110.5232].
- Another uses factorization algebras and was developed by Costello and Gwilliam: Costello 2011 *Renormalization and effective field theory*, Costello and Gwilliam *Factorization algebras in perturbative quantum field theory*. Vol. 1 and 2.
- Comparison between the two was discussed in: Gwilliam, KR CMP 2020 [1711.06674]; Benini, Perin, Schenkel [1903.03396] CMP 2020.

Notation AQFT Factorisation algebras

Notation I

• We work over **Nuc**, the category of *nuclear* topological vector spaces (alternative: *convenient* vector spaces).

Notation AQFT Factorisation algebras

- We work over **Nuc**, the category of *nuclear* topological vector spaces (alternative: *convenient* vector spaces).
- Alg(Nuc): unital associative algebras in Nuc.

Notation AQFT Factorisation algebras

- We work over **Nuc**, the category of *nuclear* topological vector spaces (alternative: *convenient* vector spaces).
- Alg(Nuc): unital associative algebras in Nuc.
- CAlg(Nuc): unital commutative algebras in Nuc

Notation AQFT Factorisation algebras

- We work over **Nuc**, the category of *nuclear* topological vector spaces (alternative: *convenient* vector spaces).
- Alg(Nuc): unital associative algebras in Nuc.
- CAlg(Nuc): unital commutative algebras in Nuc
- **PAlg**(**Nuc**): unital Poisson algebras therein.

Notation AQFT Factorisation algebras

- We work over **Nuc**, the category of *nuclear* topological vector spaces (alternative: *convenient* vector spaces).
- Alg(Nuc): unital associative algebras in Nuc.
- CAlg(Nuc): unital commutative algebras in Nuc
- **PAlg**(**Nuc**): unital Poisson algebras therein.
- For *structures (involution), we use Alg^{*}(Nuc), CAlg^{*}(Nuc), and PAlg^{*}(Nuc), respectively.

Notation AQFT Factorisation algebras

- We work over **Nuc**, the category of *nuclear* topological vector spaces (alternative: *convenient* vector spaces).
- Alg(Nuc): unital associative algebras in Nuc.
- CAlg(Nuc): unital commutative algebras in Nuc
- **PAlg**(**Nuc**): unital Poisson algebras therein.
- For *structures (involution), we use Alg^{*}(Nuc), CAlg^{*}(Nuc), and PAlg^{*}(Nuc), respectively.
- For C with symmetric monoidal structure ⊗, we write Alg(C[⊗]) (or simply Alg(C)) for the unital algebra objects in that category.

Notation AQFT Factorisation algebras

Notation I

- We work over **Nuc**, the category of *nuclear* topological vector spaces (alternative: *convenient* vector spaces).
- Alg(Nuc): unital associative algebras in Nuc.
- CAlg(Nuc): unital commutative algebras in Nuc
- **PAlg**(**Nuc**): unital Poisson algebras therein.
- For *structures (involution), we use Alg^{*}(Nuc), CAlg^{*}(Nuc), and PAlg^{*}(Nuc), respectively.
- For C with symmetric monoidal structure ⊗, we write Alg(C[⊗]) (or simply Alg(C)) for the unital algebra objects in that category.
- We use $v : PAlg^*(Nuc) \to Nuc$ and $v : Alg^*(Nuc) \to Nuc$ to denote forgetful functors to vector spaces. and

 $\mathfrak{c}:PAlg^*(Nuc)\to CAlg^*(Nuc)$ denotes the forgetful functor to commutative algebras.

Notation AQFT Factorisation algebras

- We work over **Nuc**, the category of *nuclear* topological vector spaces (alternative: *convenient* vector spaces).
- Alg(Nuc): unital associative algebras in Nuc.
- CAlg(Nuc): unital commutative algebras in Nuc
- **PAlg**(**Nuc**): unital Poisson algebras therein.
- For *structures (involution), we use Alg^{*}(Nuc), CAlg^{*}(Nuc), and PAlg^{*}(Nuc), respectively.
- For C with symmetric monoidal structure ⊗, we write Alg(C[⊗]) (or simply Alg(C)) for the unital algebra objects in that category.
- We use $v : PAlg^*(Nuc) \to Nuc$ and $v : Alg^*(Nuc) \to Nuc$ to denote forgetful functors to vector spaces. and
 - $\mathfrak{c}:PAlg^*(Nuc)\to CAlg^*(Nuc)$ denotes the forgetful functor to commutative algebras.
- If C is an additive category, we write Ch(C) to denote the category of cochain complexes and cochain maps in C.

Notation AQFT Factorisation algebras

Category of spacetimes

Notation AQFT Factorisation algebras

Notation II

Category of spacetimes

Let **Loc**^{*n*} be the category where

• an object is a connected, (time-)oriented globally hyperbolic spacetime of dimension *n*

Notation AQFT Factorisation algebras

Notation II

Category of spacetimes

- an object is a connected, (time-)oriented globally hyperbolic spacetime of dimension *n*
- and where a morphism $\chi : \mathcal{M} \to \mathcal{N}$ is an isometric embedding that preserves orientations and causal structure.

Notation AQFT Factorisation algebras

Notation II

Category of spacetimes

- an object is a connected, (time-)oriented globally hyperbolic spacetime of dimension *n*
- and where a morphism $\chi : \mathcal{M} \to \mathcal{N}$ is an isometric embedding that preserves orientations and causal structure.
- The latter means that for any causal curve γ : [a, b] → N, if γ(a), γ(b) ∈ χ(M), then for all t ∈]a, b[, we have γ(t) ∈ χ(M). (χ cannot create new causal links.)

Notation AQFT Factorisation algebras

Notation II

Category of spacetimes

- an object is a connected, (time-)oriented globally hyperbolic spacetime of dimension *n*
- and where a morphism $\chi : \mathcal{M} \to \mathcal{N}$ is an isometric embedding that preserves orientations and causal structure.
- The latter means that for any causal curve γ : [a, b] → N, if γ(a), γ(b) ∈ χ(M), then for all t ∈]a, b[, we have γ(t) ∈ χ(M). (χ cannot create new causal links.)
- We can extend \mathbf{Loc}_n to a symmetric monoidal category \mathbf{Loc}_n^{\otimes} by allowing for objects that are disjoint unions of objects in \mathbf{Loc}_n .

Notation AQFT Factorisation algebras

Notation II

Category of spacetimes

- an object is a connected, (time-)oriented globally hyperbolic spacetime of dimension *n*
- and where a morphism $\chi : \mathcal{M} \to \mathcal{N}$ is an isometric embedding that preserves orientations and causal structure.
- The latter means that for any causal curve γ : [a, b] → N, if γ(a), γ(b) ∈ χ(M), then for all t ∈]a, b[, we have γ(t) ∈ χ(M). (χ cannot create new causal links.)
- We can extend \mathbf{Loc}_n to a symmetric monoidal category \mathbf{Loc}_n^{\otimes} by allowing for objects that are disjoint unions of objects in \mathbf{Loc}_n .
- The symmetric monoidal structure is the disjoint union \sqcup .

Notation AQFT Factorisation algebras

Notation II

Category of spacetimes

- an object is a connected, (time-)oriented globally hyperbolic spacetime of dimension *n*
- and where a morphism $\chi : \mathcal{M} \to \mathcal{N}$ is an isometric embedding that preserves orientations and causal structure.
- The latter means that for any causal curve γ : [a, b] → N, if γ(a), γ(b) ∈ χ(M), then for all t ∈]a, b[, we have γ(t) ∈ χ(M). (χ cannot create new causal links.)
- We can extend \mathbf{Loc}_n to a symmetric monoidal category \mathbf{Loc}_n^{\otimes} by allowing for objects that are disjoint unions of objects in \mathbf{Loc}_n .
- The symmetric monoidal structure is the disjoint union ⊔.
- A morphism in Loc[⊗] sends disjoint components to spacelike-separated regions.

Notation AQFT Factorisation algebras

Main ideas I

• Let *Sol* be the solution space for some linear Green hyperbolic differential operator on a globally hyperbolic spacetime \mathcal{M} .

Notation AQFT Factorisation algebras

- Let *Sol* be the solution space for some linear Green hyperbolic differential operator on a globally hyperbolic spacetime \mathcal{M} .
- The Costello-Gwilliam (CG) formalism provides a functor *A* : Open(M) → Ch, which assigns a cochain complex (or differential graded (dg) vector space) of observables to each open set. This cochain complex is a deformation of a commutative dg algebra P, where H⁰(P(U)) = O(Sol(U)).

Notation AQFT Factorisation algebras

- Let *Sol* be the solution space for some linear Green hyperbolic differential operator on a globally hyperbolic spacetime \mathcal{M} .
- The Costello-Gwilliam (CG) formalism provides a functor *A* : **Open**(M) → **Ch**, which assigns a cochain complex (or differential graded (dg) vector space) of observables to each open set. This cochain complex is a deformation of a commutative dg algebra P, where H⁰(P(U)) = O(Sol(U)).
- The pAQFT formalism provides a functor
 Alg*, which assigns a unital *-algebra to each "causally convex" open set (so that Caus(M) is a special subcategory of Open(M) depending on the global hyperbolic structure of M). The algebra A(U) is, in practice, a deformation quantization of the Poisson algebra (O(Sol(U), [.,.]), where [.,.] is the Peierls bracket.

Main ideas II

• **Observation:** A is constructed from by deforming the differential of the classical model, while A is constructed from the classical algebra by deformation of the product.

- **Observation:** A is constructed from by deforming the differential of the classical model, while A is constructed from the classical algebra by deformation of the product.
- Idea: relation between A and A is obtained using intermediate structure: A equipped with time-ordered product ·τ.

- **Observation:** A is constructed from by deforming the differential of the classical model, while \mathfrak{A} is constructed from the classical algebra by deformation of the product.
- Idea: relation between A and A is obtained using intermediate structure: A equipped with time-ordered product ·τ.
- Idea: deformation of the differential from d to $d i\hbar \Delta$ is equivalent to the deformation of the product from \cdot to \cdot_{τ} .

- **Observation:** A is constructed from by deforming the differential of the classical model, while \mathfrak{A} is constructed from the classical algebra by deformation of the product.
- Idea: relation between A and A is obtained using intermediate structure: A equipped with time-ordered product ·τ.
- Idea: deformation of the differential from d to $d i\hbar \Delta$ is equivalent to the deformation of the product from \cdot to \cdot_{τ} .
- In both cases, the interacting theory is obtained using perturbative methods.

- **Observation:** A is constructed from by deforming the differential of the classical model, while \mathfrak{A} is constructed from the classical algebra by deformation of the product.
- Idea: relation between A and A is obtained using intermediate structure: A equipped with time-ordered product ·τ.
- Idea: deformation of the differential from d to $d i\hbar \Delta$ is equivalent to the deformation of the product from \cdot to \cdot_{τ} .
- In both cases, the interacting theory is obtained using perturbative methods.
- Renormalization can either be done on the level of the differential (CG) or the product (pAQFT).

Notation AQFT Factorisation algebras

Algebraic quantum field theory

• A convenient framework to investigate conceptual problems in QFT is the Algebraic Quantum Field Theory.

Algebraic quantum field theory

- A convenient framework to investigate conceptual problems in QFT is the Algebraic Quantum Field Theory.
- It started as the axiomatic framework of Haag-Kastler ([Haag 59, Haag-Kastler 64]): a model is defined by associating to each region 0 of Minkowski spacetime M an algebra 𝔄(0) of observables that can be measured in 0.

Algebraic quantum field theory

- A convenient framework to investigate conceptual problems in QFT is the Algebraic Quantum Field Theory.
- It started as the axiomatic framework of Haag-Kastler ([Haag 59, Haag-Kastler 64]): a model is defined by associating to each region 0 of Minkowski spacetime M an algebra 𝔄(0) of observables that can be measured in 0.
- The physical notion of subsystems is realized by the condition of isotony, i.e.: $\mathfrak{O}_1 \subset \mathfrak{O}_2 \Rightarrow \mathfrak{A}(\mathfrak{O}_1) \subset \mathfrak{A}(\mathfrak{O}_2)$. We obtain a net of

algebras.

Notation AQFT Factorisation algebras

Further properties we want

One can also ask for further, physically motivated properties: causality and time-slice axiom.

Further properties we want

One can also ask for further, physically motivated properties: causality and time-slice axiom.

Causality: If O₁, O₂ ⊂ M are spacelike separated (no causal curve joining them), then

 $[\mathfrak{A}(\mathfrak{O}_1),\mathfrak{A}(\mathfrak{O}_2)]=\{0\},$

where [.,.] is the commutator in the sense of $\mathfrak{A}(\mathcal{O}_3)$, where \mathcal{O}_3 contains both \mathcal{O}_1 and \mathcal{O}_2 .

Further properties we want

One can also ask for further, physically motivated properties: causality and time-slice axiom.

Causality: If O₁, O₂ ⊂ M are spacelike separated (no causal curve joining them), then

 $[\mathfrak{A}(\mathfrak{O}_1),\mathfrak{A}(\mathfrak{O}_2)]=\{0\},$

where [.,.] is the commutator in the sense of $\mathfrak{A}(\mathcal{O}_3)$, where \mathcal{O}_3 contains both \mathcal{O}_1 and \mathcal{O}_2 .

Further properties we want

One can also ask for further, physically motivated properties: causality and time-slice axiom.

Causality: If O₁, O₂ ⊂ M are spacelike separated (no causal curve joining them), then

 $[\mathfrak{A}(\mathfrak{O}_1),\mathfrak{A}(\mathfrak{O}_2)]=\{0\},$

where [.,.] is the commutator in the sense of $\mathfrak{A}(\mathcal{O}_3)$, where \mathcal{O}_3 contains both \mathcal{O}_1 and \mathcal{O}_2 .

 Time-slice axiom: If N is a neighborhood of a Cauchy-surface in O, then A(N) is isomorphic to A(O).
Further properties we want

One can also ask for further, physically motivated properties: causality and time-slice axiom.

Causality: If O₁, O₂ ⊂ M are spacelike separated (no causal curve joining them), then

 $[\mathfrak{A}(\mathfrak{O}_1),\mathfrak{A}(\mathfrak{O}_2)]=\{0\},$

where [.,.] is the commutator in the sense of $\mathfrak{A}(\mathcal{O}_3)$, where \mathcal{O}_3 contains both \mathcal{O}_1 and \mathcal{O}_2 .

- Time-slice axiom: If N is a neighborhood of a Cauchy-surface in O, then A(N) is isomorphic to A(O).
- This is a QFT version of the initial value problem (or local constancy in the time direction).

Generalizations

 Replace M with an arbitrary Lorentzian gloabally hyperbolic (has a Cauchy surface) manifold (M, g): locally covariant QFT on curved spacetimes ([Brunetti-Fredenhagen-Verch 03, Hollands-Wald 01, Fewster-Verch 12].

Generalizations

- Replace M with an arbitrary Lorentzian gloabally hyperbolic (has a Cauchy surface) manifold (M, g): locally covariant QFT on curved spacetimes ([Brunetti-Fredenhagen-Verch 03, Hollands-Wald 01, Fewster-Verch 12].
- Advantage of the algebraic approach: it allows to separate the dynamics from the specification of the state (note that for generic *M* there is no preferred vacuum state).

Generalizations

- Replace M with an arbitrary Lorentzian gloabally hyperbolic (has a Cauchy surface) manifold (M, g): locally covariant QFT on curved spacetimes ([Brunetti-Fredenhagen-Verch 03, Hollands-Wald 01, Fewster-Verch 12].
- Advantage of the algebraic approach: it allows to separate the dynamics from the specification of the state (note that for generic *M* there is no preferred vacuum state).
- We can also follow the spirit of AQFT in perturbation theory,

Generalizations

- Replace M with an arbitrary Lorentzian gloabally hyperbolic (has a Cauchy surface) manifold (M, g): locally covariant QFT on curved spacetimes ([Brunetti-Fredenhagen-Verch 03, Hollands-Wald 01, Fewster-Verch 12].
- Advantage of the algebraic approach: it allows to separate the dynamics from the specification of the state (note that for generic *M* there is no preferred vacuum state).
- We can also follow the spirit of AQFT in perturbation theory,
- pAQFT is a mathematically rigorous framework that can be used to make precise calculations done in perturbative QFT.

Overview of the pAQFT approach

• Free theory obtained by the formal deformation quantization of the Poisson (Peierls) bracket: *-product ([Dütsch-Fredenhagen 00, Brunetti-Fredenhagen 00, Brunetti-Dütsch-Fredenhagen 09, ...]).

Overview of the pAQFT approach

- Free theory obtained by the formal deformation quantization of the Poisson (Peierls) bracket: *-product ([Dütsch-Fredenhagen 00, Brunetti-Fredenhagen 00, Brunetti-Dütsch-Fredenhagen 09, ...]).
- Interaction (with a cutoff that guarantees compact support) introduced in the causal approach to renormalization due to Epstein and Glaser ([Epstein-Glaser 73]),

Overview of the pAQFT approach

- Free theory obtained by the formal deformation quantization of the Poisson (Peierls) bracket: *-product ([Dütsch-Fredenhagen 00, Brunetti-Fredenhagen 00, Brunetti-Dütsch-Fredenhagen 09, ...]).
- Interaction (with a cutoff that guarantees compact support) introduced in the causal approach to renormalization due to Epstein and Glaser ([Epstein-Glaser 73]),
- Generalization to gauge theories using homological algebra ([Hollands 07, Fredenhagen-KR 11]).

Notation AQFT Factorisation algebras

Locally covariant classical field theory I

Definition

A locally covariant classical field theory model of dimension *n* is a functor $\mathfrak{P} : \mathbf{Loc}_n \to \mathbf{PAlg}^*(\mathbf{Nuc})^{inj}$ such that the Einstein causality holds: given two isometric embeddings $\chi_1 : \mathfrak{M}_1 \to \mathfrak{M}$ and $\chi_2 : \mathfrak{M}_2 \to \mathfrak{M}$ whose images $\chi_1(\mathfrak{M}_1)$ and $\chi_2(\mathfrak{M}_2)$ are spacelike-separated, the subalgebras

$$\mathfrak{P}\chi_1(\mathfrak{P}(\mathcal{M}_1)) \subset \mathfrak{P}(\mathcal{M}) \supset \mathfrak{P}\chi_2(\mathfrak{P}(\mathcal{M}_2))$$

Poisson-commute, i.e., we have

$$\left\lfloor \mathfrak{P}\chi_1(a_1), \mathfrak{P}\chi_2(a_2)\right\rfloor = \left\{0\right\},\,$$

for any $a_1 \in \mathfrak{P}(\mathcal{M}_1)$ and $a_2 \in \mathfrak{P}(\mathcal{M}_2)$.

Locally covariant quantum field theory II

Definition

A locally covariant quantum field theory model of dimension *n* is a functor $\mathfrak{A} : \mathbf{Loc}_n \to \mathbf{Alg}^*(\mathbf{Nuc}_h)^{inj}$ such that **Einstein causality** holds: given two isometric embeddings $\chi_1 : \mathcal{M}_1 \to \mathcal{M}$ and $\chi_1 : \mathcal{M}_1 \to \mathcal{M}$ whose images $\chi_1(\mathcal{M}_1)$ and $\chi_2(\mathcal{M}_2)$ are spacelike-separated, the subalgebras

$$\mathfrak{A}\chi_1(\mathfrak{A}(\mathcal{M}_1)) \subset \mathfrak{A}(\mathcal{M}) \supset \mathfrak{A}\chi_2(\mathfrak{A}(\mathcal{M}_2))$$

commute, i.e., we have

$$[\mathfrak{A}\chi_1(a_1),\mathfrak{A}\chi_2(a_2)] = \{0\}\,,\,$$

for any $a_1 \in \mathfrak{A}(\mathcal{M}_1)$ and $a_2 \in \mathfrak{A}(\mathcal{M}_2)$.

Notation AQFT Factorisation algebras

Locally covariant quantum field theory III

On-shell theories

A model $\mathfrak{P}/\mathfrak{A}$ is called **on-shell** if it satisfies in addition the **time-slice axiom**: If $\chi : \mathfrak{M} \to \mathfrak{N}$ contains a neighborhood of a Cauchy surface $\Sigma \subset \mathfrak{N}$, then the map $\mathfrak{P}\chi : \mathfrak{P}(\mathfrak{M}) \to \mathfrak{P}(\mathfrak{N}) / \mathfrak{A}\chi : \mathfrak{A}(\mathfrak{M}) \to \mathfrak{A}(\mathfrak{N})$ is an isomorphism.

Notation AQFT Factorisation algebras

dg Version: Classical

Definition

A semistrict dg classical field theory model on a spacetime $\ensuremath{\mathcal{M}}$

dg Version: Classical

Definition

A semistrict dg classical field theory model on a spacetime $\ensuremath{\mathcal{M}}$

is a functor 𝔅: Caus(𝔅) → PAlg*(Ch(Nuc)), so that each 𝔅(𝔅) is a locally convex dg Poisson *-algebra satisfying Einstein causality: spacelike-separated observables Poisson-commute at the level of cohomology.

dg Version: Classical

Definition

A semistrict dg classical field theory model on a spacetime $\ensuremath{\mathcal{M}}$

- is a functor 𝔅: Caus(𝔅) → PAlg*(Ch(Nuc)), so that each 𝔅(𝔅) is a locally convex dg Poisson *-algebra satisfying Einstein causality: spacelike-separated observables Poisson-commute at the level of cohomology.
- it satisfies the time-slice axiom if for any N ∈ Caus(M) a neighborhood of a Cauchy surface in the region O ∈ Caus(M), then the map P(N) → P(O) is a quasi-isomorphism.

Notation AQFT Factorisation algebras

dg Version: Quantum

Definition

A semistrict dg QFT model on a spacetime $\ensuremath{\mathcal{M}}$

dg Version: Quantum

Definition

A semistrict dg QFT model on a spacetime $\ensuremath{\mathcal{M}}$

is a functor A : Caus(M) → Alg*(Ch(Nuc_ħ)), so that each A(O) is a locally convex unital *-dg algebra satisfying Einstein causality: spacelike-separated observables commute at the level of cohomology.

dg Version: Quantum

Definition

A semistrict dg QFT model on a spacetime $\ensuremath{\mathcal{M}}$

- is a functor A : Caus(M) → Alg*(Ch(Nuc_ħ)), so that each A(O) is a locally convex unital *-dg algebra satisfying Einstein causality: spacelike-separated observables commute at the level of cohomology.
- it satisfies the time-slice axiom if for any N ∈ Caus(M) a neighborhood of a Cauchy surface in the region O ∈ Caus(M), then the map A(N) → A(O) is a quasi-isomorphism.

Prefactorization algebras I

A **prefactorization algebra** \mathcal{F} on M with values in a symmetric monoidal category \mathbf{C}^{\otimes} consists of the following data:

• for each open $U \subset M$, an object $\mathcal{F}(U) \in \mathbb{C}$,

Prefactorization algebras I

A **prefactorization algebra** \mathcal{F} on *M* with values in a symmetric monoidal category \mathbb{C}^{\otimes} consists of the following data:

- for each open $U \subset M$, an object $\mathfrak{F}(U) \in \mathbb{C}$,
- for each finite collection of pairwise disjoint opens U_1, \ldots, U_n , with n > 0, and an open V containing every U_i , a morphism

 $\mathfrak{F}(\{U_i\}; V) : \mathfrak{F}(U_1) \otimes \cdots \otimes \mathfrak{F}(U_n) \to \mathfrak{F}(V),$

Prefactorization algebras II

- ... and satisfying the following conditions:
 - composition is associative, so that the triangle

any collection $\{U_i\}$, as above, contained in *V* and for any collections $\{T_{ij}\}_j$ where for each *i*, the opens $\{T_{ij}\}_j$ are pairwise disjoint and each contained in U_i ,

Prefactorization algebras III

• the morphisms $\mathcal{F}(\{U_i\}; V)$ are equivariant under permutation of labels, so that the triangle

commutes for any $\sigma \in S_n$.

• A factorization algebra is a prefactorization algebra for which the value on bigger opens is determined by the values on smaller opens: local-to-global property.

Factorization algebras I

- A factorization algebra is a prefactorization algebra for which the value on bigger opens is determined by the values on smaller opens: local-to-global property.
- A key difference to a sheaf is that we need to be able to reconstruct the "multiplication maps" from the local data, and so we need to modify our notion of cover accordingly.

Factorization algebras I

- A factorization algebra is a prefactorization algebra for which the value on bigger opens is determined by the values on smaller opens: local-to-global property.
- A key difference to a sheaf is that we need to be able to reconstruct the "multiplication maps" from the local data, and so we need to modify our notion of cover accordingly.

Definition

A Weiss cover $\{U_i\}_{\{i \in I\}}$ of an open subset $U \subset M$ is a collection of opens $U_i \subset U$ such that for any finite set of points $S = \{x_1, \ldots, x_n\} \subset U$, there is some $i \in I$ such that $S \subset U_i$.

Factorization algebras I

- A factorization algebra is a prefactorization algebra for which the value on bigger opens is determined by the values on smaller opens: local-to-global property.
- A key difference to a sheaf is that we need to be able to reconstruct the "multiplication maps" from the local data, and so we need to modify our notion of cover accordingly.

Definition

A Weiss cover $\{U_i\}_{\{i \in I\}}$ of an open subset $U \subset M$ is a collection of opens $U_i \subset U$ such that for any finite set of points $S = \{x_1, \ldots, x_n\} \subset U$, there is some $i \in I$ such that $S \subset U_i$.

Example

Let M be a smooth n-dimensional manifold. The collection of open sets in M diffeomorphic to a disjoint union of finitely many copies of the open n-disc is a Weiss cover for M.

Factorization algebras II

Definition

A **factorization algebra** \mathcal{F} is a prefactorization algebra on M such that the underlying precosheaf is a cosheaf with respect to the Weiss topology. That is, for any open U and any Weiss cover $\{U_i\}_{i \in I}$ of U, the diagram

$$\coprod_{i,j} \mathfrak{F}(U_i \cap U_j) \Longrightarrow \coprod_i \mathfrak{F}(U_i) \longrightarrow \mathfrak{F}(U)$$

is a coequalizer.

Notation AQFT Factorisation algebras

Models

A classical field theory model is a 1-shifted Poisson (*aka* P_0) algebra \mathcal{P} in factorization algebras $\mathbf{FA}(M, \mathbf{Ch}(\mathbf{Nuc}))$. That is, to each open $U \subset M$, the cochain complex $\mathcal{P}(U)$ is equipped with a commutative product \cdot and a degree 1 Poisson bracket $\{-, -\}$; moreover, each structure map is a map of shifted Poisson algebras.

Notation AQFT Factorisation algebras

Models

A classical field theory model is a 1-shifted Poisson (*aka* P_0) algebra \mathcal{P} in factorization algebras $\mathbf{FA}(M, \mathbf{Ch}(\mathbf{Nuc}))$. That is, to each open $U \subset M$, the cochain complex $\mathcal{P}(U)$ is equipped with a commutative product \cdot and a degree 1 Poisson bracket $\{-, -\}$; moreover, each structure map is a map of shifted Poisson algebras.

A quantum field theory model is a BD algebra \mathcal{A} in factorization algebras $FA(M, Ch(Nuc_{\hbar}))$. That is, to each open $U \subset M$, the cochain complex $\mathcal{A}(U)$ is flat over $\mathbb{C}[[\hbar]]$ and equipped with

Notation AQFT Factorisation algebras

Models

A classical field theory model is a 1-shifted Poisson (*aka* P_0) algebra \mathcal{P} in factorization algebras $\mathbf{FA}(M, \mathbf{Ch}(\mathbf{Nuc}))$. That is, to each open $U \subset M$, the cochain complex $\mathcal{P}(U)$ is equipped with a commutative product \cdot and a degree 1 Poisson bracket $\{-, -\}$; moreover, each structure map is a map of shifted Poisson algebras.

A quantum field theory model is a BD algebra \mathcal{A} in factorization algebras $FA(M, Ch(Nuc_{\hbar}))$. That is, to each open $U \subset M$, the cochain complex $\mathcal{A}(U)$ is flat over $\mathbb{C}[[\hbar]]$ and equipped with

 an ħ-linear commutative product ·, an ħ-linear, degree 1 Poisson bracket {-, -}, and a differential *d* such that

Notation AQFT Factorisation algebras

Models

A classical field theory model is a 1-shifted Poisson (*aka* P_0) algebra \mathcal{P} in factorization algebras $\mathbf{FA}(M, \mathbf{Ch}(\mathbf{Nuc}))$. That is, to each open $U \subset M$, the cochain complex $\mathcal{P}(U)$ is equipped with a commutative product \cdot and a degree 1 Poisson bracket $\{-, -\}$; moreover, each structure map is a map of shifted Poisson algebras.

A quantum field theory model is a BD algebra \mathcal{A} in factorization algebras $FA(M, Ch(Nuc_{\hbar}))$. That is, to each open $U \subset M$, the cochain complex $\mathcal{A}(U)$ is flat over $\mathbb{C}[[\hbar]]$ and equipped with

- an ħ-linear commutative product ⋅, an ħ-linear, degree 1 Poisson bracket {-, -}, and a differential d such that
- $d(a \cdot b) = d(a) \cdot b + (-1)^{\deg a} a \cdot d(b) + \hbar\{a, b\}$

Notation AQFT Factorisation algebras

Models

A classical field theory model is a 1-shifted Poisson (*aka* P_0) algebra \mathcal{P} in factorization algebras $\mathbf{FA}(M, \mathbf{Ch}(\mathbf{Nuc}))$. That is, to each open $U \subset M$, the cochain complex $\mathcal{P}(U)$ is equipped with a commutative product \cdot and a degree 1 Poisson bracket $\{-, -\}$; moreover, each structure map is a map of shifted Poisson algebras.

A quantum field theory model is a BD algebra \mathcal{A} in factorization algebras $\mathbf{FA}(M, \mathbf{Ch}(\mathbf{Nuc}_{\hbar}))$. That is, to each open $U \subset M$, the cochain complex $\mathcal{A}(U)$ is flat over $\mathbb{C}[[\hbar]]$ and equipped with

- an ħ-linear commutative product ⋅, an ħ-linear, degree 1 Poisson bracket {-, -}, and a differential d such that
- $d(a \cdot b) = d(a) \cdot b + (-1)^{\deg a} a \cdot d(b) + \hbar\{a, b\}$
- Moreover, each structure map is a map of BD algebras.

Main results pAQFT Comparison

Comparison of classical models

• There is a natural quasi-isomorphism

$$\iota^{cl}:\mathfrak{c}\circ\mathfrak{P}|_{\operatorname{Caus}(\mathcal{M})}\Rightarrow\mathfrak{c}\circ\mathfrak{P}$$

of functors to commutative dg algebras $\mbox{CAlg}(\mbox{Ch}(\mbox{Nuc})).$

Main results pAQFT Comparison

• There is a natural quasi-isomorphism

$$\iota^{cl}:\mathfrak{c}\circ\mathfrak{P}|_{\operatorname{Caus}(\mathcal{M})}\Rightarrow\mathfrak{c}\circ\mathfrak{P}$$

of functors to commutative dg algebras CAlg(Ch(Nuc)).
Thus, there is a natural isomorphism

$$H^0(\iota^{cl}):\mathfrak{c}\circ H^0(\mathfrak{P})|_{\operatorname{Caus}(\mathcal{M})} \Rightarrow \mathfrak{c}\circ \mathfrak{P}$$

of functors into commutative algebras CAlg(Nuc).

• There is a natural quasi-isomorphism

$$\iota^{cl}:\mathfrak{c}\circ\mathfrak{P}|_{\operatorname{Caus}(\mathcal{M})}\Rightarrow\mathfrak{c}\circ\mathfrak{P}$$

of functors to commutative dg algebras CAlg(Ch(Nuc)).

• Thus, there is a natural isomorphism

$$H^0(\iota^{cl}):\mathfrak{c}\circ H^0(\mathfrak{P})|_{\operatorname{Caus}(\mathcal{M})} \Rightarrow \mathfrak{c}\circ\mathfrak{P}$$

of functors into commutative algebras CAlg(Nuc).

• Assuming time-slice axiom, there is also a relation between the brackets (0-shifted and 1-shifted).

Main results pAQFT Comparison

Comparison of quantum models

• There is a natural quasi-isomorphism

$$\iota^q:\mathcal{A}|_{\mathbf{Caus}(\mathcal{M})} \Rightarrow \mathfrak{v} \circ \mathfrak{A}$$

of functors to $Ch(Nuc_{\hbar})$.

Main results pAQFT Comparison

Comparison of quantum models

• There is a natural quasi-isomorphism

$$\iota^q:\mathcal{A}|_{\mathbf{Caus}(\mathcal{M})} \Rightarrow \mathfrak{v} \circ \mathfrak{A}$$

of functors to $Ch(Nuc_{\hbar})$.

• Thus, there is a natural isomorphism

$$H^0(\iota^q): H^0(\mathcal{A})|_{\mathbf{Caus}(\mathcal{M})} \stackrel{\cong}{\Rightarrow} \mathfrak{v} \circ \mathfrak{A}.$$
Main results pAQFT Comparison

Comparison of quantum models

• There is a natural quasi-isomorphism

$$\iota^q:\mathcal{A}|_{\mathbf{Caus}(\mathcal{M})} \Rightarrow \mathfrak{v} \circ \mathfrak{A}$$

of functors to $Ch(Nuc_{\hbar})$.

• Thus, there is a natural isomorphism

$$H^0(\iota^q): H^0(\mathcal{A})|_{\mathbf{Caus}(\mathcal{M})} \stackrel{\cong}{\Rightarrow} \mathfrak{v} \circ \mathfrak{A}.$$

 Modulo ħ, this isomorphism agrees with the isomorphism of classical models. It is given in terms of the time-ordering map T, which is the key ingredient of our proof.

Main results pAQFT Comparison

Comparison of quantum models

• There is a natural quasi-isomorphism

$$\iota^q:\mathcal{A}|_{\mathbf{Caus}(\mathcal{M})} \Rightarrow \mathfrak{v} \circ \mathfrak{A}$$

of functors to $Ch(Nuc_{\hbar})$.

• Thus, there is a natural isomorphism

$$H^0(\iota^q): H^0(\mathcal{A})|_{\mathbf{Caus}(\mathcal{M})} \stackrel{\cong}{\Rightarrow} \mathfrak{v} \circ \mathfrak{A}.$$

- Modulo ħ, this isomorphism agrees with the isomorphism of classical models. It is given in terms of the time-ordering map T, which is the key ingredient of our proof.
- Assuming the time-slice axiom, there is also a relation between the factorization product and the non-commutative associative star product of \mathfrak{A} .

Main results pAQFT Comparison

Physical input

• A globally hyperbolic spacetime $\mathcal{M} = (M, g)$.

Main results pAQFT Comparison

- A globally hyperbolic spacetime $\mathcal{M} = (M, g)$.
- Configuration space $\mathcal{E}(M)$: choice of objects we want to study in our theory (scalars, vectors, tensors,...).

Main results pAQFT Comparison

- A globally hyperbolic spacetime $\mathcal{M} = (M, g)$.
- Configuration space $\mathcal{E}(M)$: choice of objects we want to study in our theory (scalars, vectors, tensors,...).
- Typically *E(M)* is a space of smooth sections of some vector bundle *E* → *M* over *M*.

Main results pAQFT Comparison

- A globally hyperbolic spacetime $\mathcal{M} = (M, g)$.
- Configuration space $\mathcal{E}(M)$: choice of objects we want to study in our theory (scalars, vectors, tensors,...).
- Typically *E(M)* is a space of smooth sections of some vector bundle *E* → *M* over *M*.
 - For the scalar field: $\mathcal{E}(M) \equiv \mathcal{C}^{\infty}(M, \mathbb{R})$.

- A globally hyperbolic spacetime $\mathcal{M} = (M, g)$.
- Configuration space $\mathcal{E}(M)$: choice of objects we want to study in our theory (scalars, vectors, tensors,...).
- Typically *E(M)* is a space of smooth sections of some vector bundle *E* → *M* over *M*.
 - For the scalar field: $\mathcal{E}(M) \equiv \mathcal{C}^{\infty}(M, \mathbb{R})$.
 - For Yang-Mills with trivial bundle: $\mathcal{E}(M) \equiv \Omega^1(M, \mathfrak{k})$, where \mathfrak{k} is a Lie algebra of a compact Lie group.

- A globally hyperbolic spacetime $\mathcal{M} = (M, g)$.
- Configuration space $\mathcal{E}(M)$: choice of objects we want to study in our theory (scalars, vectors, tensors,...).
- Typically *E(M)* is a space of smooth sections of some vector bundle *E* → *M* over *M*.
 - For the scalar field: $\mathcal{E}(M) \equiv \mathcal{C}^{\infty}(M, \mathbb{R})$.
 - For Yang-Mills with trivial bundle: $\mathcal{E}(M) \equiv \Omega^1(M, \mathfrak{k})$, where \mathfrak{k} is a Lie algebra of a compact Lie group.
 - For effective QG: $\mathcal{E}(M) = \Gamma((T^*M)^{\otimes 2})$.

- A globally hyperbolic spacetime $\mathcal{M} = (M, g)$.
- Configuration space $\mathcal{E}(M)$: choice of objects we want to study in our theory (scalars, vectors, tensors,...).
- Typically *E(M)* is a space of smooth sections of some vector bundle *E* → *M* over *M*.
 - For the scalar field: $\mathcal{E}(M) \equiv \mathcal{C}^{\infty}(M, \mathbb{R})$.
 - For Yang-Mills with trivial bundle: $\mathcal{E}(M) \equiv \Omega^1(M, \mathfrak{k})$, where \mathfrak{k} is a Lie algebra of a compact Lie group.
 - For effective QG: $\mathcal{E}(M) = \Gamma((T^*M)^{\otimes 2}).$
- We use notation $\varphi \in \mathcal{E}(M)$, also if it has several components.

- A globally hyperbolic spacetime $\mathcal{M} = (M, g)$.
- Configuration space $\mathcal{E}(M)$: choice of objects we want to study in our theory (scalars, vectors, tensors,...).
- Typically *E(M)* is a space of smooth sections of some vector bundle *E* → *M* over *M*.
 - For the scalar field: $\mathcal{E}(M) \equiv \mathcal{C}^{\infty}(M, \mathbb{R})$.
 - For Yang-Mills with trivial bundle: $\mathcal{E}(M) \equiv \Omega^1(M, \mathfrak{k})$, where \mathfrak{k} is a Lie algebra of a compact Lie group.
 - For effective QG: $\mathcal{E}(M) = \Gamma((T^*M)^{\otimes 2}).$
- We use notation $\varphi \in \mathcal{E}(M)$, also if it has several components.
- Dynamics: we use a modification of the Lagrangian formalism (fully covariant).

Main results pAQFT Comparison

Classical observables

Classical observables are smooth functionals on *E*(*M*), i.e. elements of C[∞](*E*(*M*), C).

Classical observables

- Classical observables are smooth functionals on *E*(*M*), i.e. elements of C[∞](*E*(*M*), C).
- For simplicity of notation (and because of functoriality), we drop *M*, if no confusion arises, i.e. write ε, c[∞](ε, C), etc.

Classical observables

- Classical observables are smooth functionals on *E*(*M*), i.e. elements of C[∞](*E*(*M*), C).
- For simplicity of notation (and because of functoriality), we drop *M*, if no confusion arises, i.e. write *ξ*, C[∞](*ξ*, C), etc.
- Localization of functionals governed by their spacetime support:

$$\begin{split} \text{supp}\, F &= \{ x \in M | \forall \text{ neighbourhoods } U \text{ of } x \exists \varphi, \psi \in \mathcal{E}, \\ \text{supp}\, \psi \subset U \text{ such that } F(\varphi + \psi) \neq F(\varphi) \} \,. \end{split}$$

Classical observables

- Classical observables are smooth functionals on *E*(*M*), i.e. elements of C[∞](*E*(*M*), C).
- For simplicity of notation (and because of functoriality), we drop *M*, if no confusion arises, i.e. write ε, c[∞](ε, C), etc.
- Localization of functionals governed by their spacetime support:

$$\begin{split} \text{supp}\, F &= \{ x \in M | \forall \text{ neighbourhoods } U \text{ of } x \; \exists \varphi, \psi \in \mathcal{E}, \\ \text{supp}\, \psi \subset U \text{ such that } F(\varphi + \psi) \neq F(\varphi) \} \,. \end{split}$$

F is local, *F* ∈ 𝔅_{loc} if it is of the form:
 F(φ) = ∫_M f(j_x(φ)) dμ_g(x), where *f* is a function on the jet bundle over *M* and j_x(φ) is the jet of φ at the point *x*.

Classical observables

- Classical observables are smooth functionals on *E*(*M*), i.e. elements of C[∞](*E*(*M*), C).
- For simplicity of notation (and because of functoriality), we drop *M*, if no confusion arises, i.e. write *ξ*, C[∞](*ξ*, C), etc.
- Localization of functionals governed by their spacetime support:

$$\begin{split} & \text{supp}\,F = \{x \in M | \forall \text{ neighbourhoods } U \text{ of } x \; \exists \varphi, \psi \in \mathcal{E}, \\ & \text{supp}\,\psi \subset U \text{ such that } F(\varphi + \psi) \neq F(\varphi) \} \,. \end{split}$$

- *F* is local, *F* ∈ 𝔅_{loc} if it is of the form:
 F(φ) = ∫_M f(j_x(φ)) dμ_g(x), where *f* is a function on the jet bundle over *M* and j_x(φ) is the jet of φ at the point *x*.
- Let \mathfrak{F} denote the space of functionals that are polynomial and regular, i.e. $F^{(n)}(\varphi)$ is as smooth section (in general it would be distributional).

Main results pAQFT Comparison

Dynamics

Dynamics is introduced by a generalized Lagrangian *S*, a localization preserving map *S* : D → 𝔅_{loc}, where D(M) = 𝔅[∞]₀(M, ℝ). Examples:

Main results pAQFT Comparison

- Dynamics is introduced by a generalized Lagrangian *S*, a localization preserving map *S* : D → 𝔅_{loc}, where D(M) = C₀[∞](M, ℝ). Examples:
 - $S(f)[\varphi] = \int_M \left(\frac{1}{2}\varphi^2 + \frac{1}{2}\nabla_\mu \varphi \nabla^\mu \varphi\right) f d\mu_g,$

Main results pAQFT Comparison

- Dynamics is introduced by a generalized Lagrangian *S*, a localization preserving map $S : \mathcal{D} \to \mathfrak{F}_{loc}$, where $\mathcal{D}(M) = \mathcal{C}_0^{\infty}(M, \mathbb{R})$. Examples:
 - $S(f)[\varphi] = \int_M \left(\frac{1}{2}\varphi^2 + \frac{1}{2}\nabla_\mu \varphi \nabla^\mu \varphi\right) f d\mu_g,$
 - $S(f)[A] = -\frac{1}{2} \int_{M} f \operatorname{tr}(F \wedge *F), F$ being field strength for A,

Main results pAQFT Comparison

- Dynamics is introduced by a generalized Lagrangian *S*, a localization preserving map $S : \mathcal{D} \to \mathfrak{F}_{loc}$, where $\mathcal{D}(M) = \mathcal{C}_0^{\infty}(M, \mathbb{R})$. Examples:
 - $S(f)[\varphi] = \int_M \left(\frac{1}{2}\varphi^2 + \frac{1}{2}\nabla_\mu \varphi \nabla^\mu \varphi\right) f d\mu_g,$
 - $S(f)[A] = -\frac{1}{2} \int_{M} f \operatorname{tr}(F \wedge *F), F$ being field strength for A,

•
$$S(f)[g] \doteq \int R[g] f \, d\mu_g$$

Main results pAQFT Comparison

Dynamics

- Dynamics is introduced by a generalized Lagrangian *S*, a localization preserving map *S* : D → 𝔅_{loc}, where D(M) = 𝔅[∞]₀(M, ℝ). Examples:
 - $S(f)[\varphi] = \int_{M} \left(\frac{1}{2}\varphi^{2} + \frac{1}{2}\nabla_{\mu}\varphi\nabla^{\mu}\varphi\right) f d\mu_{g},$
 - $S(f)[A] = -\frac{1}{2} \int_{M} f \operatorname{tr}(F \wedge *F), F$ being field strength for A,

•
$$S(f)[g] \doteq \int R[g] f d\mu_g$$

• The Euler-Lagrange derivative of *S* is denoted by dS and defined by $\langle dS(\varphi), \psi \rangle = \langle S^{(1)}(f)[\varphi], \psi \rangle$, where $f \equiv 1$ on supp ψ .

Main results pAQFT Comparison

- Dynamics is introduced by a generalized Lagrangian *S*, a localization preserving map *S* : D → 𝔅_{loc}, where D(M) = C₀[∞](M, ℝ). Examples:
 - $S(f)[\varphi] = \int_M \left(\frac{1}{2}\varphi^2 + \frac{1}{2}\nabla_\mu \varphi \nabla^\mu \varphi\right) f d\mu_g,$
 - $S(f)[A] = -\frac{1}{2} \int_{M} f \operatorname{tr}(F \wedge *F), F$ being field strength for A,

•
$$S(f)[g] \doteq \int R[g] f d\mu_g$$

- The Euler-Lagrange derivative of *S* is denoted by dS and defined by $\langle dS(\varphi), \psi \rangle = \langle S^{(1)}(f)[\varphi], \psi \rangle$, where $f \equiv 1$ on supp ψ .
- The field equation is: dS(φ) = 0, so geometrically, the solution space is the zero locus of the 1-form dS.

Main results pAQFT Comparison

• In the BV framework, symmetries are identified with vector fields (directions) on \mathcal{E} .

Main results pAQFT Comparison

Symmetries

- In the BV framework, symmetries are identified with vector fields (directions) on \mathcal{E} .
- Consider vector fields that are, compactly supported and regular and denote them by \mathfrak{V} . Poly-vector fields are denoted by \mathfrak{PV} .

Symmetries

- In the BV framework, symmetries are identified with vector fields (directions) on \mathcal{E} .
- Consider vector fields that are, compactly supported and regular and denote them by \mathfrak{V} . Poly-vector fields are denoted by \mathfrak{PV} .
- Vector fields act on 𝔅 as derivations:
 ∂_XF(φ) := ⟨F⁽¹⁾(φ), X(φ)⟩

Symmetries

- In the BV framework, symmetries are identified with vector fields (directions) on \mathcal{E} .
- Consider vector fields that are, compactly supported and regular and denote them by \mathfrak{V} . Poly-vector fields are denoted by \mathfrak{PV} .
- Vector fields act on 𝔅 as derivations:
 ∂_XF(φ) := ⟨F⁽¹⁾(φ), X(φ)⟩
- A symmetry of S is a direction in E in which the action is constant, i.e. it is a vector field X ∈ 𝔅 such that ∀φ ∈ E: 0 = ⟨dS(φ), X(φ)⟩.

 $\mathcal{E}(M)$

 \mathbb{C}

F

Quotients and homology

Let ⟨dS(φ), X(φ)⟩ ≡ δ_SX(φ) and let ε_S ⊂ ε be the space of solutions to EOMs (zero locus of the 1-form dS).

Quotients and homology

- Let ⟨dS(φ), X(φ)⟩ ≡ δ_SX(φ) and let ε_S ⊂ ε be the space of solutions to EOMs (zero locus of the 1-form dS).
- Denote regular polynomial functionals that vanish on *ε_s* by *s₀* and assume that they are of the form: *δ_s(X)* for some *X* ∈ *V*.

Quotients and homology

- Let ⟨dS(φ), X(φ)⟩ ≡ δ_SX(φ) and let ε_S ⊂ ε be the space of solutions to EOMs (zero locus of the 1-form dS).
- Denote regular polynomial functionals that vanish on *ε_s* by *s₀* and assume that they are of the form: *δ_s(X)* for some *X* ∈ *V*.
- The space \mathfrak{F}_S of functionals on \mathcal{E}_S is the quotient $\mathfrak{F}_S = \mathfrak{F}/\mathfrak{F}_0$ (redundancy removal by quotienting).

Quotients and homology

- Let ⟨dS(φ), X(φ)⟩ ≡ δ_SX(φ) and let ε_S ⊂ ε be the space of solutions to EOMs (zero locus of the 1-form dS).
- Denote regular polynomial functionals that vanish on *ε_s* by *s₀* and assume that they are of the form: *δ_s(X)* for some *X* ∈ *V*.
- The space \mathfrak{F}_S of functionals on \mathcal{E}_S is the quotient $\mathfrak{F}_S = \mathfrak{F}/\mathfrak{F}_0$ (redundancy removal by quotienting).
- δ_S is the Koszul differential. Symmetries constitute its kernel.

Quotients and homology

- Let ⟨dS(φ), X(φ)⟩ ≡ δ_SX(φ) and let ε_S ⊂ ε be the space of solutions to EOMs (zero locus of the 1-form dS).
- Denote regular polynomial functionals that vanish on *ε_s* by *s₀* and assume that they are of the form: *δ_s(X)* for some *X* ∈ *V*.
- The space \mathfrak{F}_S of functionals on \mathcal{E}_S is the quotient $\mathfrak{F}_S = \mathfrak{F}/\mathfrak{F}_0$ (redundancy removal by quotienting).
- δ_S is the Koszul differential. Symmetries constitute its kernel.
- We obtain a sequence:

which is subsequently extended to $(\mathfrak{PU}, \delta_S)$, where \mathfrak{PU} denotes polyvector fields.

Quotients and homology

- Let ⟨dS(φ), X(φ)⟩ ≡ δ_SX(φ) and let ε_S ⊂ ε be the space of solutions to EOMs (zero locus of the 1-form dS).
- Denote regular polynomial functionals that vanish on *ε_s* by *s₀* and assume that they are of the form: *δ_s(X)* for some *X* ∈ *V*.
- The space \mathfrak{F}_S of functionals on \mathcal{E}_S is the quotient $\mathfrak{F}_S = \mathfrak{F}/\mathfrak{F}_0$ (redundancy removal by quotienting).
- δ_S is the Koszul differential. Symmetries constitute its kernel.
- We obtain a sequence:

which is subsequently extended to $(\mathfrak{PU}, \delta_S)$, where \mathfrak{PU} denotes polyvector fields.

• For the scalar field, this is where the construction finishes.

Main results pAQFT Comparison

Antifields and antibracket

• Vector fields \mathfrak{V} can be written formally as: $X = \int dx X(x) \frac{\delta}{\delta \varphi(x)}$.

Antifields and antibracket

- Vector fields \mathfrak{V} can be written formally as: $X = \int dx X(x) \frac{\delta}{\delta \varphi(x)}$.
- The action on functionals $F \in \mathfrak{F}$ can be written as:

$$X(F)(\varphi) = \int dx X(\varphi)(x) \frac{\delta F}{\delta \varphi(x)}(\varphi) \,.$$

Antifields and antibracket

- Vector fields \mathfrak{V} can be written formally as: $X = \int dx X(x) \frac{\delta}{\delta \varphi(x)}$.
- The action on functionals $F \in \mathfrak{F}$ can be written as:

$$X(F)(\varphi) = \int dx X(\varphi)(x) \frac{\delta F}{\delta \varphi(x)}(\varphi) \,.$$

• We can think of derivatives $\frac{\delta}{\delta \varphi(x)}$ as "generators" of \mathfrak{V} .

Antifields and antibracket

- Vector fields \mathfrak{V} can be written formally as: $X = \int dx X(x) \frac{\delta}{\delta(\sigma(x))}$.
- The action on functionals $F \in \mathfrak{F}$ can be written as:

$$X(F)(\varphi) = \int dx X(\varphi)(x) \frac{\delta F}{\delta \varphi(x)}(\varphi) \, .$$

- We can think of derivatives $\frac{\delta}{\delta\varphi(x)}$ as "generators" of \mathfrak{V} .
- In literature those objects are called *antifields* and are denoted by $\varphi^{\ddagger}(x)$, i.e.: $\varphi^{\ddagger}(x) \doteq \frac{\delta}{\delta\varphi(x)}$. The grading of Koszul complex is called antifield number #af.

Antifields and antibracket

- Vector fields \mathfrak{V} can be written formally as: $X = \int dx X(x) \frac{\partial}{\delta(\rho(x))}$.
- The action on functionals $F \in \mathfrak{F}$ can be written as:

$$X(F)(\varphi) = \int dx X(\varphi)(x) \frac{\delta F}{\delta \varphi(x)}(\varphi) \,.$$

- We can think of derivatives $\frac{\delta}{\delta\varphi(x)}$ as "generators" of \mathfrak{V} .
- In literature those objects are called *antifields* and are denoted by $\varphi^{\ddagger}(x)$, i.e.: $\varphi^{\ddagger}(x) \doteq \frac{\delta}{\delta\varphi(x)}$. The grading of Koszul complex is called antifield number #af.
- There is a graded bracket (called antibracket) identified with the Schouten bracket {.,.} on multivector fields.
Antifields and antibracket

- Vector fields \mathfrak{V} can be written formally as: $X = \int dx X(x) \frac{\partial}{\delta(\rho(x))}$.
- The action on functionals $F \in \mathfrak{F}$ can be written as:

$$X(F)(\varphi) = \int dx X(\varphi)(x) \frac{\delta F}{\delta \varphi(x)}(\varphi) \,.$$

- We can think of derivatives $\frac{\delta}{\delta \varphi(x)}$ as "generators" of \mathfrak{V} .
- In literature those objects are called *antifields* and are denoted by $\varphi^{\ddagger}(x)$, i.e.: $\varphi^{\ddagger}(x) \doteq \frac{\delta}{\delta\varphi(x)}$. The grading of Koszul complex is called antifield number #af.
- There is a graded bracket (called antibracket) identified with the Schouten bracket {.,.} on multivector fields.
- Derivation δ_S is not inner with respect to $\{.,.\}$, but locally it can be written as $\delta_S X = \{X, S(f)\}$ for $f \equiv 1$ on supp $X, X \in \mathfrak{V}$.

Main results pAQFT Comparison

Antibracket and the Classical Master Equation

Derivation δ_S is not inner with respect to {.,.}, but locally it can be written as:

 $\delta_S X = \{X, S(f)\}, \quad f \equiv 1 \text{ on supp} X, X \in \mathfrak{V}$

Antibracket and the Classical Master Equation

Derivation δ_S is not inner with respect to {.,.}, but locally it can be written as:

 $\delta_S X = \{X, S(f)\}, \quad f \equiv 1 \text{ on supp} X, X \in \mathfrak{V}$

• In general, in the presence of symmetries, \mathcal{E} is replaced by the extended configuration space (containing e.g. the ghosts). The Koszul differential is extended to the BV differential *s*.

Antibracket and the Classical Master Equation

Derivation δ_S is not inner with respect to {.,.}, but locally it can be written as:

 $\delta_S X = \{X, S(f)\}, \quad f \equiv 1 \text{ on supp} X, X \in \mathfrak{V}$

- In general, in the presence of symmetries, \mathcal{E} is replaced by the extended configuration space (containing e.g. the ghosts). The Koszul differential is extended to the BV differential *s*.
- As before, we can write $sX = \{X, S^{\text{ext}}(f)\}$, where S^{ext} is the extended action, which contains ghosts, antifields and often non-minimal sector needed for implementing the gauge fixing.

Antibracket and the Classical Master Equation

Derivation δ_S is not inner with respect to {.,.}, but locally it can be written as:

 $\delta_S X = \{X, S(f)\}, \quad f \equiv 1 \text{ on supp} X, X \in \mathfrak{V}$

- In general, in the presence of symmetries, \mathcal{E} is replaced by the extended configuration space (containing e.g. the ghosts). The Koszul differential is extended to the BV differential *s*.
- As before, we can write $sX = \{X, S^{\text{ext}}(f)\}$, where S^{ext} is the extended action, which contains ghosts, antifields and often non-minimal sector needed for implementing the gauge fixing.
- The BV differential *s* has to be nilpotent, i.e.: $s^2 = 0$, which leads to the classical master equation (CME):

 $\{S^{\text{ext}}(f), S^{\text{ext}}(f)\} = 0,$

modulo terms that vanish in the limit of constant f.

• Firstly, linearize S^{ext} around a fixed configuration φ_0 , and write $S^{\text{ext}} = S_0 + V$, where S_0 might contain both fields and antifields.

Linearization

- Firstly, linearize S^{ext} around a fixed configuration φ_0 , and write $S^{\text{ext}} = S_0 + V$, where S_0 might contain both fields and antifields.
- Decompose $S_0 = S_{00} + \theta_0$ where S_{00} is the term with no antifields.

Linearization

- Firstly, linearize S^{ext} around a fixed configuration φ_0 , and write $S^{\text{ext}} = S_0 + V$, where S_0 might contain both fields and antifields.
- Decompose $S_0 = S_{00} + \theta_0$ where S_{00} is the term with no antifields.
- Assume that $dS_{00}(\varphi) = P\varphi$, where *P* is a normally hyperbolic operator, so that the unique retarded and advanced Green functions $\Delta^{R/A}$ exist (Green hyperbolic operator).

Poisson structure

• The Poisson bracket of the free theory is

$$\lfloor F, G \rfloor \doteq \left\langle F^{(1)}, \Delta G^{(1)} \right\rangle \,,$$

where $\Delta = \Delta^{R} - \Delta^{A}$ is the Pauli-Jordan function for S_{00} .

Poisson structure

• The Poisson bracket of the free theory is

$$\lfloor F, G \rfloor \doteq \left\langle F^{(1)}, \Delta G^{(1)} \right\rangle \,,$$

where Δ = Δ^R − Δ^A is the Pauli-Jordan function for S₀₀. • Define s₀ = {., S₀}.

Poisson structure

• The Poisson bracket of the free theory is

$$\lfloor F, G \rfloor \doteq \left\langle F^{(1)}, \Delta G^{(1)} \right\rangle \,,$$

where $\Delta = \Delta^{R} - \Delta^{A}$ is the Pauli-Jordan function for S_{00} .

- Define $s_0 = \{., S_0\}$.
- We set 𝔅(𝔅) = (𝔅𝔅(𝔅), ⌊.,.⌋, ⋅, 𝑘), where ⋅ is the wedge product on polyvector fields and pointwise product for functionals.

Deformation quantization

• Define the *-product (deformation of the pointwise product):

$$(F \star G)(\varphi) \doteq \sum_{n=0}^{\infty} \frac{\hbar^n}{n!} \left\langle F^{(n)}(\varphi), W^{\otimes n} G^{(n)}(\varphi) \right\rangle ,$$

where W is the 2-point function of a Hadamard state and it differs from $\frac{i}{2}\Delta$ by a symmetric bidistribution: $W = \frac{i}{2}\Delta + H$.

Deformation quantization

• Define the *-product (deformation of the pointwise product):

$$(F \star G)(\varphi) \doteq \sum_{n=0}^{\infty} \frac{\hbar^n}{n!} \left\langle F^{(n)}(\varphi), W^{\otimes n} G^{(n)}(\varphi) \right\rangle ,$$

where W is the 2-point function of a Hadamard state and it differs from $\frac{i}{2}\Delta$ by a symmetric bidistribution: $W = \frac{i}{2}\Delta + H$.

• s_0 is a derivation with respect to \star and it characterizes "being on-shell".

Deformation quantization

• Define the *-product (deformation of the pointwise product):

$$(F\star G)(\varphi) \doteq \sum_{n=0}^{\infty} \frac{\hbar^n}{n!} \left\langle F^{(n)}(\varphi), W^{\otimes n} G^{(n)}(\varphi) \right\rangle \,,$$

where W is the 2-point function of a Hadamard state and it differs from $\frac{i}{2}\Delta$ by a symmetric bidistribution: $W = \frac{i}{2}\Delta + H$.

- *s*⁰ is a derivation with respect to \star and it characterizes "being on-shell".
- We set A(O) = (PPO(O)[[ħ]], *, *, s₀), where * is the complex conjugation.

Time-ordered products I

Given the classical semistrict dg theory \mathfrak{P} and its quantization \mathfrak{A} , the **time-ordered product** is realized as a triple $(\mathfrak{A}_T, \xi, \mathfrak{T})$ consisting of:

a functor 𝔅_T: Caus(M) → CAlg^{*}(Ch(Nuc_ħ)) which gives the time-ordered product as a commutative product,

Time-ordered products I

Given the classical semistrict dg theory \mathfrak{P} and its quantization \mathfrak{A} , the **time-ordered product** is realized as a triple $(\mathfrak{A}_T, \xi, \mathfrak{T})$ consisting of:

- a functor 𝔅_T: Caus(M) → CAlg^{*}(Ch(Nuc_ħ)) which gives the time-ordered product as a commutative product,
- a natural isomorphism ξ : v ∘ 𝔄_T ⇒ v ∘ 𝔅, which identifies 𝔅_T and 𝔅 as vector spaces,

Time-ordered products I

Given the classical semistrict dg theory \mathfrak{P} and its quantization \mathfrak{A} , the **time-ordered product** is realized as a triple $(\mathfrak{A}_T, \xi, \mathfrak{T})$ consisting of:

- a functor 𝔅_T: Caus(M) → CAlg^{*}(Ch(Nuc_ħ)) which gives the time-ordered product as a commutative product,
- a natural isomorphism ξ : v ∘ 𝔄_T ⇒ v ∘ 𝔅, which identifies 𝔅_T and 𝔅 as vector spaces,
- and a natural isomorphism of commutative algebras
 𝔅 ∘𝔅[[ħ]] ⇒ 𝔅_T

. . .

• such that for any pair of inclusions $\psi_i : \mathcal{O}_i \to \mathcal{O}$ in **Caus**(\mathcal{M}), if $\psi_1(\mathcal{O}_1) \prec \psi_2(\mathcal{O}_2)$, then

$$\xi_{\mathbb{O}} \circ m_{\mathbb{T}} \circ (\mathfrak{A}_T \psi_2 \otimes \mathfrak{A}_T \psi_1) = m_{\star} \circ (\mathfrak{A} \psi_2 \circ \xi_{\mathbb{O}_2} \otimes \mathfrak{A} \psi_1 \circ \xi_{\mathbb{O}_1}),$$

. . .

• such that for any pair of inclusions $\psi_i : \mathcal{O}_i \to \mathcal{O}$ in **Caus**(\mathfrak{M}), if $\psi_1(\mathcal{O}_1) \prec \psi_2(\mathcal{O}_2)$, then

$$\xi_{\mathbb{O}} \circ m_{\mathbb{T}} \circ (\mathfrak{A}_T \psi_2 \otimes \mathfrak{A}_T \psi_1) = m_\star \circ (\mathfrak{A} \psi_2 \circ \xi_{\mathbb{O}_2} \otimes \mathfrak{A} \psi_1 \circ \xi_{\mathbb{O}_1}),$$

where m_J/m_{*} is the multiplication with respect to the time-ordered/star product and the relation "≺" means "not later than," i.e., there exists a Cauchy surface in O that separates ψ₁(O₁) and ψ₂(O₂).

Time-ordered products III

• The time-ordering operator \mathcal{T} is defined as:

$$\Im F(\varphi) \doteq \sum_{n=0}^{\infty} \frac{1}{n!} \left\langle F^{(2n)}(\varphi), \left(\frac{\hbar}{2}\Delta^{\mathrm{F}}\right)^{\otimes n} \right\rangle \equiv e^{\frac{i\hbar}{2}\partial_{\Delta^{\mathrm{F}}}}F,$$

where $\Delta^{\mathrm{F}} = \frac{i}{2}(\Delta^{\mathrm{A}} + \Delta^{\mathrm{R}}) + H$ and $H = W - \frac{i}{2}\Delta$.

Time-ordered products III

• The time-ordering operator \mathcal{T} is defined as:

$$\Im F(\varphi) \doteq \sum_{n=0}^{\infty} \frac{1}{n!} \left\langle F^{(2n)}(\varphi), \left(\frac{\hbar}{2} \Delta^{\mathrm{F}}\right)^{\otimes n} \right\rangle \equiv e^{\frac{i\hbar}{2} \partial_{\Delta^{\mathrm{F}}}} F ,$$

where
$$\Delta^{\mathrm{F}} = \frac{i}{2}(\Delta^{\mathrm{A}} + \Delta^{\mathrm{R}}) + H$$
 and $H = W - \frac{i}{2}\Delta$.

• Formally it corresponds to the operator of convolution with the oscillating Gaussian measure "with covariance $i\hbar\Delta^{\text{F}}$ ",

$$\Im F(\varphi) \stackrel{\text{formal}}{=} \int F(\varphi - \phi) \, d\mu_{i\hbar\Delta^F}(\phi) \; .$$

Time-ordered products III

• The time-ordering operator \mathcal{T} is defined as:

$$\Im F(\varphi) \doteq \sum_{n=0}^{\infty} \frac{1}{n!} \left\langle F^{(2n)}(\varphi), \left(\frac{\hbar}{2} \Delta^{\mathrm{F}}\right)^{\otimes n} \right\rangle \equiv e^{\frac{i\hbar}{2} \partial_{\Delta^{\mathrm{F}}}} F ,$$

where
$$\Delta^{\mathrm{F}} = \frac{i}{2}(\Delta^{\mathrm{A}} + \Delta^{\mathrm{R}}) + H$$
 and $H = W - \frac{i}{2}\Delta$.

• Formally it corresponds to the operator of convolution with the oscillating Gaussian measure "with covariance $i\hbar\Delta^{\text{F}}$ ",

$$\Im F(\varphi) \stackrel{\text{formal}}{=} \int F(\varphi - \phi) \, d\mu_{i\hbar\Delta^F}(\phi) \; .$$

• Define the time-ordered product $\cdot_{\mathfrak{T}}$ on $\mathfrak{PP}[[\hbar]]$ by:

$$F \cdot_{\mathfrak{T}} G \doteq \mathfrak{T}(\mathfrak{T}^{-1}F \cdot \mathfrak{T}^{-1}G)$$

Main results pAQFT Comparison

Interaction

 $\bullet \ \cdot_{\mathfrak{T}}$ is the time-ordered version of $\star,$ in the sense that

$$F \cdot_{\mathfrak{T}} G = F \star G,$$

if the support of F is later than the support of G.

Main results pAQFT Comparison

Interaction

 $\bullet \ \cdot_{\mathfrak{T}}$ is the time-ordered version of $\star,$ in the sense that

$$F \cdot_{\mathfrak{T}} G = F \star G \,,$$

if the support of F is later than the support of G.

• Interaction is a functional V, for the moment $V \in \mathfrak{PV}$.

Main results pAQFT Comparison

Interaction

• $\cdot_{\mathfrak{T}}$ is the time-ordered version of \star , in the sense that

$$F \cdot_{\mathfrak{T}} G = F \star G \,,$$

if the support of F is later than the support of G.

- Interaction is a functional V, for the moment $V \in \mathfrak{PV}$.
- We define the formal S-matrix, $S(\lambda V) \in \mathfrak{PV}((\hbar))[[\lambda]]$ by

$$S(\lambda V) \doteq e_{T}^{i\lambda V/\hbar} = T(e^{T^{-1}(i\lambda V/\hbar)}).$$

Main results pAQFT Comparison

Interaction

• \cdot_{T} is the time-ordered version of \star , in the sense that

$$F \cdot_{\mathfrak{T}} G = F \star G \,,$$

if the support of F is later than the support of G.

- Interaction is a functional V, for the moment $V \in \mathfrak{PV}$.
- We define the formal S-matrix, $S(\lambda V) \in \mathfrak{PU}((\hbar))[[\lambda]]$ by

$$\mathcal{S}(\lambda V) \doteq e_{T}^{i\lambda V/\hbar} = \mathcal{T}(e^{\mathcal{T}^{-1}(i\lambda V/\hbar)}).$$

• Interacting fields are elements of $\mathfrak{PP}[[\hbar, \lambda]]$ given by

$$R_{\lambda V}(F) \doteq (e_{\mathfrak{T}}^{i\lambda V/\hbar})^{\star -1} \star (e_{\mathfrak{T}}^{i\lambda V/\hbar} \cdot F) = -i\hbar \frac{d}{d\mu} \mathbb{S}(\lambda V)^{-1} \mathbb{S}(\lambda V + \mu F) \big|_{\mu = 0}$$

Main results pAQFT Comparison

Interaction

• \cdot_{T} is the time-ordered version of \star , in the sense that

$$F \cdot_{\mathfrak{T}} G = F \star G \,,$$

if the support of F is later than the support of G.

- Interaction is a functional V, for the moment $V \in \mathfrak{PV}$.
- We define the formal S-matrix, $S(\lambda V) \in \mathfrak{PU}((\hbar))[[\lambda]]$ by

$$S(\lambda V) \doteq e_{T}^{i\lambda V/\hbar} = T(e^{T^{-1}(i\lambda V/\hbar)}).$$

• Interacting fields are elements of $\mathfrak{PV}[[\hbar, \lambda]]$ given by

$$R_{\lambda V}(F) \doteq (e_{\tau}^{i\lambda V/\hbar})^{\star -1} \star (e_{\tau}^{i\lambda V/\hbar} \cdot F) = -i\hbar \frac{d}{d\mu} S(\lambda V)^{-1} S(\lambda V + \mu F) \big|_{\mu = 0}$$

• We define the interacting star product as:

$$F \star_{int} G \doteq R_V^{-1} \left(R_V(F) \star R_V(G) \right)$$
,

Main results pAQFT Comparison

Interaction

• $\cdot_{\mathcal{T}}$ is the time-ordered version of \star , in the sense that

$$F \cdot_{\mathfrak{T}} G = F \star G \,,$$

if the support of F is later than the support of G.

- Interaction is a functional V, for the moment $V \in \mathfrak{PV}$.
- We define the formal S-matrix, $S(\lambda V) \in \mathfrak{PV}((\hbar))[[\lambda]]$ by

$$S(\lambda V) \doteq e_{T}^{i\lambda V/\hbar} = T(e^{T^{-1}(i\lambda V/\hbar)}).$$

• Interacting fields are elements of $\mathfrak{PV}[[\hbar, \lambda]]$ given by

$$R_{\lambda V}(F) \doteq (e_{\tau}^{i\lambda V/\hbar})^{\star -1} \star (e_{\tau}^{i\lambda V/\hbar} \cdot F) = -i\hbar \frac{d}{d\mu} S(\lambda V)^{-1} S(\lambda V + \mu F) \big|_{\mu = 0}$$

• We define the interacting star product as:

$$F \star_{int} G \doteq R_V^{-1}(R_V(F) \star R_V(G))$$
,

• Renormalization problem: extend $\cdot_{\mathcal{T}}$ to V local and non-linear.

Main results pAQFT Comparison

Quantum BV operator I

• The linearized BV operator is defined by

 $s_0 X = \{X, S_0\}.$

Quantum BV operator I

• The linearized BV operator is defined by

 $s_0 X = \{X, S_0\}.$

• The free quantum BV operator \hat{s}_0 is defined on regular functionals by:

 $\hat{s}_0 = \mathcal{T}^{-1} \circ s_0 \circ \mathcal{T},$

Quantum BV operator I

• The linearized BV operator is defined by

 $s_0 X = \{X, S_0\}.$

• The free quantum BV operator \hat{s}_0 is defined on regular functionals by:

 $\hat{s}_0 = \mathcal{T}^{-1} \circ s_0 \circ \mathcal{T},$

• The interacting quantum BV operator \hat{s} is defined on regular functionals by:

$$\hat{s} = R_V^{-1} \circ \hat{s}_0 \circ R_V \,,$$

the twist of the free quantum BV operator by the (non-local!) map that intertwines the free and the interacting theory.

Quantum BV operator I

• The linearized BV operator is defined by

 $s_0 X = \{X, S_0\}.$

• The free quantum BV operator \hat{s}_0 is defined on regular functionals by:

 $\hat{s}_0 = \mathcal{T}^{-1} \circ s_0 \circ \mathcal{T},$

• The interacting quantum BV operator \hat{s} is defined on regular functionals by:

$$\hat{s} = R_V^{-1} \circ \hat{s}_0 \circ R_V \,,$$

the twist of the free quantum BV operator by the (non-local!) map that intertwines the free and the interacting theory.

• The 0th cohomology of \hat{s} characterizes quantum gauge invariant observables.

Quantum BV operator II

• \hat{s}_0 on regular functionals can also be written as:

 $\hat{s}_0 = \{., S_0\} - i\hbar \Delta \,,$

where \triangle is the BV Laplacian, which on regular functionals is

$$\triangle X = (-1)^{(1+|X|)} \int dx \frac{\delta^2 X}{\delta \varphi^{\ddagger}(x) \delta \varphi(x)} \,.$$

Quantum BV operator II

• \hat{s}_0 on regular functionals can also be written as:

 $\hat{s}_0 = \{., S_0\} - i\hbar \triangle \,,$

where \triangle is the BV Laplacian, which on regular functionals is

$$\triangle X = (-1)^{(1+|X|)} \int dx \frac{\delta^2 X}{\delta \varphi^{\ddagger}(x) \delta \varphi(x)} \, .$$

• The quantum master equation is the condition that the S-matrix is invariant under the linearized BV operator:

 $\{e_{\mathfrak{T}}^{iV/\hbar},S_0\}=0.$

Quantum BV operator II

• \hat{s}_0 on regular functionals can also be written as:

 $\hat{s}_0 = \{., S_0\} - i\hbar \Delta \,,$

where \triangle is the BV Laplacian, which on regular functionals is

$$\triangle X = (-1)^{(1+|X|)} \int dx \frac{\delta^2 X}{\delta \varphi^{\ddagger}(x) \delta \varphi(x)} \, .$$

• The quantum master equation is the condition that the S-matrix is invariant under the linearized BV operator:

$$\{e_{\tau}^{iV/\hbar},S_0\}=0$$
.

• The left-hand side can be rewritten as:

$$\{e_{\scriptscriptstyle \mathcal{T}}^{iV/\hbar},S_0\}=e_{\scriptscriptstyle \mathcal{T}}^{iV/\hbar}\cdot_{\scriptscriptstyle \mathcal{T}}\left(rac{1}{2}\{S_0+V,S_0+V\}-i\hbar\bigtriangleup(S_0+V)
ight)\,.$$

Quantum BV operator III

• We obtain the standard form of the QME:

$$\frac{1}{2}\{S+V,S+V\}=i\hbar \bigtriangleup_{S+V} \ .$$
Quantum BV operator III

• We obtain the standard form of the QME:

$$\frac{1}{2}\{S+V,S+V\}=i\hbar \bigtriangleup_{S+V} \ .$$

• This should be understood as a condition on *V*, which guarantees that the *S*-matrix on-shell doesn't depend on the gauge fixing.

Quantum BV operator III

• We obtain the standard form of the QME:

$$\frac{1}{2}\{S+V,S+V\}=i\hbar \bigtriangleup_{S+V} \ .$$

- This should be understood as a condition on *V*, which guarantees that the *S*-matrix on-shell doesn't depend on the gauge fixing.
- Assuming QME, \hat{s} on regular functionals becomes

$$\hat{s} = \{., S_0 + V\} - i\hbar \triangle,$$

Quantum BV operator III

• We obtain the standard form of the QME:

$$\frac{1}{2}\{S+V,S+V\}=i\hbar \bigtriangleup_{S+V} \ .$$

- This should be understood as a condition on *V*, which guarantees that the *S*-matrix on-shell doesn't depend on the gauge fixing.
- Assuming QME, \hat{s} on regular functionals becomes

$$\hat{s} = \{., S_0 + V\} - i\hbar \triangle,$$

• In our framework this is a mathematically rigorous result, no path integral needed (in contrast to other approaches).

Towards renormalization

To extend QME and \hat{s} to local observables, we need to replace $\cdot_{\mathcal{T}}$ with the renormalized time-ordered product.

Theorem (K. Fredenhagen, K.R. 2011)

The renormalized time-ordered product $\cdot_{\mathbb{T}_r}$ is an associative product on $\mathfrak{T}_r(\mathfrak{PP})$ given by

$$F \cdot_{\mathfrak{T}_{\mathbf{r}}} G \doteq \mathfrak{T}_{\mathbf{r}}(\mathfrak{T}_{\mathbf{r}}^{-1}F \cdot \mathfrak{T}_{\mathbf{r}}^{-1}G),$$

where $\mathbb{T}_r:\mathfrak{PV}[[\hbar]]\to \mathbb{T}_r(\mathfrak{PV})[[\hbar]]$ is defined as

$$\mathfrak{T}_{\mathbf{r}}=(\oplus_{n}\mathfrak{T}_{\mathbf{r}}^{n})\circ\beta,$$

where $\beta : \mathfrak{T}_{r} : \mathfrak{PP} \to S^{\bullet} \mathfrak{PP}_{loc}^{(0)}$ is the inverse of multiplication *m* and the subscript (0) indicates functionals that vanish at $\varphi = 0$.

Renormalized QME and the quantum BV operator

• Since $\cdot_{\mathcal{T}_r}$ is an associative, commutative product, we can use it in place of $\cdot_{\mathcal{T}}$ and define the renormalized QME and the quantum BV operator as:

$$egin{aligned} &\{e^{iV/\hbar}_{{}^{\mathrm{T}_{\mathrm{r}}}},S_0\}=0\ &\hat{s}(X)\doteq e^{-iV/\hbar}_{{}^{\mathrm{T}_{\mathrm{r}}}}\cdot_{{}^{\mathrm{T}_{\mathrm{r}}}}\left(\{e^{iV/\hbar}_{{}^{\mathrm{T}_{\mathrm{r}}}}\cdot_{{}^{\mathrm{T}_{\mathrm{r}}}}X,S_0\}
ight)\,, \end{aligned}$$

Renormalized QME and the quantum BV operator

• Since $\cdot_{\mathcal{T}_r}$ is an associative, commutative product, we can use it in place of $\cdot_{\mathcal{T}}$ and define the renormalized QME and the quantum BV operator as:

$$egin{aligned} &\{e^{iV/\hbar}_{{}^{\mathrm{T}_{\mathrm{T}}}},S_0\}=0\ &\hat{s}(X)\doteq e^{-iV/\hbar}_{{}^{\mathrm{T}_{\mathrm{T}}}}\cdot_{{}^{\mathrm{T}_{\mathrm{T}}}}\left(\{e^{iV/\hbar}_{{}^{\mathrm{T}_{\mathrm{T}}}}\cdot_{{}^{\mathrm{T}_{\mathrm{T}}}}X,S_0\}
ight)\,, \end{aligned}$$

• These formulas get even simpler if we use the anomalous Master Ward Identity ([Brenecke-Dütsch 08, Hollands 07]).

Renormalized QME and the quantum BV operator

• Using the MWI we obtain following formulas:

$$0 = \frac{1}{2} \{ V + S_0, V + S_0 \}_{\mathcal{T}_r} - \triangle_V,$$

$$\hat{s}X = \{ X, V + S_0 \} - \triangle_V(X),$$

pAQFT

where \triangle_V is identified with the anomaly term and $\triangle_V(X) \doteq \frac{d}{d\lambda} \triangle_{V+\lambda X} \Big|_{\lambda=0}$.

Renormalized QME and the quantum BV operator

• Using the MWI we obtain following formulas:

$$0 = \frac{1}{2} \{ V + S_0, V + S_0 \}_{\mathrm{Tr}} - \triangle_V,$$

$$\delta X = \{ X, V + S_0 \} - \triangle_V(X),$$

DAOFT

where \triangle_V is identified with the anomaly term and $\triangle_V(X) \doteq \frac{d}{d\lambda} \triangle_{V+\lambda X} \Big|_{\lambda=0}$.

Hence, by using the renormalized time ordered product ·_{T_r}, we obtained in place of △(X), the interaction-dependent operator △_V(X) (the anomaly). It is of order O(ħ) and local.

Renormalized QME and the quantum BV operator

• Using the MWI we obtain following formulas:

$$0 = \frac{1}{2} \{ V + S_0, V + S_0 \}_{\mathrm{Tr}} - \triangle_V,$$

$$\delta X = \{ X, V + S_0 \} - \triangle_V(X),$$

DAOFT

where \triangle_V is identified with the anomaly term and $\triangle_V(X) \doteq \frac{d}{d\lambda} \triangle_{V+\lambda X} \Big|_{\lambda=0}$.

- Hence, by using the renormalized time ordered product ·_{T_r}, we obtained in place of △(X), the interaction-dependent operator △_V(X) (the anomaly). It is of order O(ħ) and local.
- In the renormalized theory, \triangle_V is well-defined on local vector fields, in contrast to \triangle .

Comparison (free scalar field) I

Classical case is almost trivial on the level of algebras, since both CG and FR work with the space of regular polynomials and P(O) = (𝔅𝔅(O), δ_{S₀}, {.,.}) = ខ ∘𝔅(O) for O ∈ Caus(𝔅).

Comparison (free scalar field) I

- Classical case is almost trivial on the level of algebras, since both CG and FR work with the space of regular polynomials and P(O) = (𝔅𝔅(O), δ_{S₀}, {.,.}) = 𝔅 ∘ 𝔅(O) for O ∈ Caus(𝔅).
- The quantum case is a bit subtler. The pAQFT approach assigns a dg algebra $\mathfrak{A} = (\mathfrak{PP}[[\hbar]], \delta_{S_0}, \star)$ whereas the CG approach assigns merely a cochain complex $(\mathfrak{PP}[[\hbar]], \delta_{S_0} - i\hbar \Delta)$.

- Classical case is almost trivial on the level of algebras, since both CG and FR work with the space of regular polynomials and P(O) = (𝔅𝔅(O), δ_{S₀}, {.,.}) = 𝔅 ◦𝔅(O) for O ∈ Caus(𝔅).
- The quantum case is a bit subtler. The pAQFT approach assigns a dg algebra $\mathfrak{A} = (\mathfrak{PP}[[\hbar]], \delta_{S_0}, \star)$ whereas the CG approach assigns merely a cochain complex $(\mathfrak{PP}[[\hbar]], \delta_{S_0} - i\hbar \Delta)$.
- The key is to use the time-ordering machinery.

Main results pAQFT Comparison

Comparison (free scalar field) II

 $\bullet\,$ The time-ordering operator $\ensuremath{\mathbb{T}}$ provides a cochain isomorphism

$$\mathcal{A} = (\mathfrak{P}\mathfrak{V}[[\hbar]], \hat{s}_0) \xrightarrow{\mathcal{T}} (\mathfrak{P}\mathfrak{V}[[\hbar]], \underline{\delta}_{S_0}) = \mathcal{P}[[\hbar]].$$

Main results pAQFT Comparison

Comparison (free scalar field) II

 $\bullet\,$ The time-ordering operator $\ensuremath{\mathbb{T}}$ provides a cochain isomorphism

$$\mathcal{A} = (\mathfrak{PP}[[\hbar]], \hat{\boldsymbol{s}}_0) \xrightarrow{\mathfrak{I}} (\mathfrak{PP}[[\hbar]], \boldsymbol{\delta}_{\boldsymbol{s}_0}) = \mathcal{P}[[\hbar]].$$

• ... as well as the isomorphism of commutative algebras:

$$\mathfrak{c} \circ \mathfrak{P} = (\mathfrak{PP}[[\hbar]], \cdot) \xrightarrow{\mathfrak{T}} (\mathfrak{PP}[[\hbar]], \cdot_{\mathfrak{T}}) = \mathfrak{A}_T.$$

Main results pAQFT Comparison

Comparison (free scalar field) II

 $\bullet\,$ The time-ordering operator $\ensuremath{\mathbb{T}}$ provides a cochain isomorphism

$$\mathcal{A} = (\mathfrak{P}\mathfrak{V}[[\hbar]], \hat{\mathfrak{s}}_0) \xrightarrow{\mathfrak{T}} (\mathfrak{P}\mathfrak{V}[[\hbar]], \underline{\delta}_{\mathfrak{S}_0}) = \mathcal{P}[[\hbar]].$$

• ... as well as the isomorphism of commutative algebras:

$$\mathfrak{c} \circ \mathfrak{P} = (\mathfrak{PP}[[\hbar]], \cdot) \xrightarrow{\mathfrak{T}} (\mathfrak{PP}[[\hbar]], \cdot_{\mathfrak{T}}) = \mathfrak{A}_T.$$

 More precisely, on each 𝔅 ∈ Caus(𝔅), we define 𝔅⁰ ≐ e<sup>ih/2 ∂<sub>Δ^F_☉</sup>. This map is well-defined, since 𝔅⁰ is support-preserving.
</sup></sub>

Main results pAQFT Comparison

Comparison (free scalar field) II

• The time-ordering operator $\ensuremath{\mathbb{T}}$ provides a cochain isomorphism

$$\mathcal{A} = (\mathfrak{P}\mathfrak{V}[[\hbar]], \hat{\boldsymbol{s}}_{\boldsymbol{0}}) \xrightarrow{\mathfrak{I}} (\mathfrak{P}\mathfrak{V}[[\hbar]], \boldsymbol{\delta}_{\boldsymbol{s}_{\boldsymbol{0}}}) = \mathcal{P}[[\hbar]].$$

• ... as well as the isomorphism of commutative algebras:

$$\mathfrak{c} \circ \mathfrak{P} = (\mathfrak{PP}[[\hbar]], \cdot) \xrightarrow{\mathfrak{T}} (\mathfrak{PP}[[\hbar]], \cdot_{\mathfrak{T}}) = \mathfrak{A}_T.$$

- More precisely, on each 𝔅 ∈ Caus(𝔅), we define 𝔅^𝔅 ≐ e^{iħ/2}∂_{Δ^F₀}. This map is well-defined, since 𝔅^𝔅 is support-preserving.
- Since underlying vector spaces are in our case the same, we have

$$\mathcal{A}\big|_{\operatorname{\mathbf{Caus}}(\mathcal{M})} \xrightarrow{\iota^q = \mathfrak{I}} (\mathfrak{PP}[[\hbar]], \delta_{\mathcal{S}_0}) = \mathfrak{v} \circ \mathfrak{A}.$$

Different perspectives I

Quantum observables are described either by deforming the product (from \cdot to $\cdot_{\mathfrak{T}}$) and keeping the differential as δ_{S_0} or, equivalently, by deforming the differential (from δ_{S_0} to $\hat{s}_0 = \delta_{S_0} - i\hbar\Delta$) and keeping the product.

Different perspectives I

Quantum observables are described either by deforming the product (from \cdot to $\cdot_{\mathfrak{T}}$) and keeping the differential as δ_{S_0} or, equivalently, by deforming the differential (from δ_{S_0} to $\hat{s}_0 = \delta_{S_0} - i\hbar\Delta$) and keeping the product.

• The approach to quantization taken in pAQFT relies on deformation of the product, while the observables are left unchanged.

Different perspectives I

Quantum observables are described either by deforming the product (from \cdot to $\cdot_{\mathfrak{T}}$) and keeping the differential as δ_{S_0} or, equivalently, by deforming the differential (from δ_{S_0} to $\hat{s}_0 = \delta_{S_0} - i\hbar\Delta$) and keeping the product.

- The approach to quantization taken in pAQFT relies on deformation of the product, while the observables are left unchanged.
- Note that δ_{S_0} is a derivation with respect to \star , but not with respect to $\cdot \tau$, since

$$\delta_{S_0}(X \cdot_{\mathfrak{T}} Y) = (-1)^{|X|} \delta_{S_0} X \cdot_{\mathfrak{T}} Y + X \cdot_{\mathfrak{T}} \delta_{S_0} Y - i\hbar \{X, Y\}_{\mathfrak{T}},$$

Different perspectives I

Quantum observables are described either by deforming the product (from \cdot to $\cdot_{\mathfrak{T}}$) and keeping the differential as δ_{S_0} or, equivalently, by deforming the differential (from δ_{S_0} to $\hat{s}_0 = \delta_{S_0} - i\hbar\Delta$) and keeping the product.

- The approach to quantization taken in pAQFT relies on deformation of the product, while the observables are left unchanged.
- Note that δ_{S_0} is a derivation with respect to \star , but not with respect to $\cdot \tau$, since

$$\delta_{S_0}(X \cdot T Y) = (-1)^{|X|} \delta_{S_0} X \cdot T Y + X \cdot T \delta_{S_0} Y - i\hbar \{X, Y\}_{\mathbb{T}},$$

• Equivalently to deforming the product, one can deform the differential (CG approach) from δ_S to \hat{s} . Again we have

$$\hat{s}_0(X \cdot Y) = (-1)^{|X|} \hat{s}_0 X \cdot Y + X \cdot \hat{s}_0 Y - i\hbar \{X, Y\}.$$

Main results pAQFT Comparison

Associative product

 Associative product * can be reconstructed from the time-ordered product ·τ (and hence from the factorization product) for theories satisfying the sime-slice axiom.

- Associative product * can be reconstructed from the time-ordered product ·τ (and hence from the factorization product) for theories satisfying the sime-slice axiom.
- Assume we have a theory A with the product * and differential s₀ that obeys the time-slice axiom and we have a time-ordered product ·_τ associated with *.

- Associative product * can be reconstructed from the time-ordered product ·τ (and hence from the factorization product) for theories satisfying the sime-slice axiom.
- Assume we have a theory A with the product * and differential s₀ that obeys the time-slice axiom and we have a time-ordered product ·_τ associated with *.
- Take F, G ∈ 𝔅(𝔅) and consider neighborhoods of Cauchy surfaces to the future and to the past of 𝔅, denoted 𝒩₊ and 𝒩₋.

- Associative product * can be reconstructed from the time-ordered product ·τ (and hence from the factorization product) for theories satisfying the sime-slice axiom.
- Assume we have a theory A with the product * and differential s₀ that obeys the time-slice axiom and we have a time-ordered product ·_τ associated with *.
- Take *F*, *G* ∈ 𝔅(𝔅) and consider neighborhoods of Cauchy surfaces to the future and to the past of 𝔅, denoted 𝒩₊ and 𝒩₋.
- The time-slice axiom implies that there exist maps β₋ and β₊ such that β₊F is localized in the future of O and β₋F in the past.

- Associative product * can be reconstructed from the time-ordered product ·τ (and hence from the factorization product) for theories satisfying the sime-slice axiom.
- Assume we have a theory A with the product * and differential s₀ that obeys the time-slice axiom and we have a time-ordered product ·_τ associated with *.
- Take *F*, *G* ∈ 𝔅(𝔅) and consider neighborhoods of Cauchy surfaces to the future and to the past of 𝔅, denoted 𝒩₊ and 𝒩₋.
- The time-slice axiom implies that there exist maps β₋ and β₊ such that β₊F is localized in the future of O and β₋F in the past.
- The \star -commutator of F and G is

$$[G,F]_\star = G\star F - F\star G$$

Associative product

- Associative product * can be reconstructed from the time-ordered product ·τ (and hence from the factorization product) for theories satisfying the sime-slice axiom.
- Assume we have a theory A with the product * and differential s₀ that obeys the time-slice axiom and we have a time-ordered product ·_τ associated with *.
- Take F, G ∈ 𝔅(𝔅) and consider neighborhoods of Cauchy surfaces to the future and to the past of 𝔅, denoted 𝒩₊ and 𝒩₋.
- The time-slice axiom implies that there exist maps β₋ and β₊ such that β₊F is localized in the future of O and β₋F in the past.
- The \star -commutator of F and G is

$$[G,F]_\star = G\star F - F\star G$$

• Modulo Ims₀ we have:

$$[G,F]_{\star} = G \star \beta_{+}(F) - \beta_{-}(F) \star G = G \cdot \sigma \beta_{+}(F) - \beta_{-}(F) \cdot \sigma G$$

Comparing the brackets I

• Recall that \star arises from the deformation of the Peierls bracket $\lfloor ., . \rfloor$. We want to relate this Poisson bracket to the (-1)-shifted Poisson bracket {}.

Comparing the brackets I

- Recall that \star arises from the deformation of the Peierls bracket $\lfloor ., . \rfloor$. We want to relate this Poisson bracket to the (-1)-shifted Poisson bracket {}.
- The time-slice axiom implies that for *F* as before, there exists Ψ such that β_−F − β₊F = s₀Ψ.

Comparing the brackets I

- Recall that \star arises from the deformation of the Peierls bracket $\lfloor ., . \rfloor$. We want to relate this Poisson bracket to the (-1)-shifted Poisson bracket {}.
- The time-slice axiom implies that for *F* as before, there exists Ψ such that β_−F − β₊F = s₀Ψ.
- We rewrite the \star commutator as

$$\begin{split} [G,F]_{\star} &= G \star \beta_{+}(F) - \beta_{-}(F) \star G = G \cdot_{\mathfrak{I}} \beta_{+}(F) - \beta_{-}(F) \cdot_{\mathfrak{I}} G \\ &= G \cdot_{\mathfrak{I}} (\beta_{-}F - \beta_{+}F) = G \cdot_{\mathfrak{I}} s_{0} \Psi \,, \end{split}$$

for some Ψ .

Comparing the brackets II

• Hence we can write the Peierls bracket as

$$i\hbar \lfloor G, F \rfloor = G \cdot_{\mathfrak{T}} s_0 \Psi \mod \hbar^2, \operatorname{Im} s_0.$$

Comparing the brackets II

• Hence we can write the Peierls bracket as

$$i\hbar \lfloor G, F \rfloor = G \cdot_{\mathfrak{T}} s_0 \Psi \mod \hbar^2$$
, Im s_0 .

• Assume that $s_0G = 0$. We can re-write the left-hand side using the antibracket as follows:

$$i\hbar \lfloor G, F
floor = s_0(G \cdot T \Psi) + i\hbar \{G, \Psi\} \mod \hbar^2, \operatorname{Im} s_0.$$

Comparing the brackets II

• Hence we can write the Peierls bracket as

$$i\hbar \lfloor G, F
floor = G \cdot_{\mathfrak{T}} s_0 \Psi \mod \hbar^2, \operatorname{Im} s_0.$$

• Assume that $s_0G = 0$. We can re-write the left-hand side using the antibracket as follows:

$$i\hbar \lfloor G, F
floor = s_0(G \cdot_{\mathfrak{T}} \Psi) + i\hbar \{G, \Psi\} \mod \hbar^2$$
, Im s_0 .

• Hence

$$\lfloor G, F \rfloor = \{G, \Psi\} \mod \hbar, \operatorname{Im} s_0,,$$

which can be thought of as the intrinsic definition of the Peierls bracket, given the antibracket and a theory satisfying time-slice axiom.

Thank you for your attention!