Towards derived TFT's and eventually CFT's

Jun.-Prof. Simon D. Lentner, University of Hamburg

Research Seminar, University of Hamburg 16.2.2021

Theorem (Reshetikhin-Turaev)

Every semisimple modular tensor category *C* produces a topological field theory (constructed via surgery along links)

■ To a compact oriented surface of genus g with n boundaries, decorated by objects X₁,..., X_n ∈ C, it assigns a vector space

To every 3-manifold M, cobordism between two surface, and links ending in the X_i, it assigns a linear map Z(Σ₁MΣ₂)
such that several axioms are fulfilled, in particular glueing

- Need proper notion of non-semisimple modular tensor category (3 equivalent definitions).
- We do have $\mathcal{Z}(M)$ for special cobordisms, most importantly a proj. action of the **mapping class group** $\Gamma_{g,n}$ on $\mathcal{Z}(\Sigma_{g,n})$ such as an action of the modular group $SL_2(\mathbb{Z})$ on $\mathcal{Z}(\Sigma_{1,0})$.

We now discuss this construction by Lyubaschenko (1995).

Then we discuss our work establishing an action of $\Gamma_{g,n}$ on a derived version $\mathcal{Z}^{\bullet}(\Sigma_{g,n})$, examples and current work.

Main Reference: L., Mierach, Schweigert, Sommerhäuser (2019): Hochschild Cohomology, Modular Tensor Categories, and Mapping Class Groups arXiv:2003.06527, to appear in "Springer Briefs in Mathematical Physics"

Take $\Sigma_{g,n}$. On each boundary circle ρ_1, \ldots, ρ_n we fix a marked point.

Definition

The **mapping class group** $\Gamma_{g,n}$ is the group of o-preserving diffeomorphisms of $\Sigma_{g,n}$ that send marked points to marked points, up to homotopies that send marked points to marked points.

The **pure mapping class group** $\mathrm{P}\Gamma_{g,n}$ is the group of o-preserving diffeomorphism of $\Sigma_{g,n}$ that fix all boundary circles pointwise, up to homotopies that fix all boundary circles pointwise.

Lemma

$$1 \to \mathrm{P}\Gamma_{g,n} \to \Gamma_{g,n} \to \mathbb{S}_n \to 1$$

Note the difference between boundary circles and punctures: A 360° rotation of the boundary circle becomes a trivial element.

Definition

For a subset $S \subset \Sigma_{g,n}$ define $\Gamma_{g,n}(S)$ as diffeomorphisms fixing S, up to such homotopies. Typical examples are $\Gamma_{g,n}(x)$ and $\Gamma_{g,n}(\rho_n)$.

Lemma (Cap Sequence)

$$\mathbb{Z} \longrightarrow \mathsf{\Gamma}_{g,n+1}(\rho_{n+1}) \longrightarrow \mathsf{\Gamma}_{g,n}(x) \longrightarrow 1$$

The first map (rotations around ρ_{n+1}) is injective except g = n = 0.

Theorem (Birman sequence)

$$\pi_1(\Sigma_{g,n}, x) \longrightarrow \mathsf{\Gamma}_{g,n}(x) \longrightarrow \mathsf{\Gamma}_{g,n} \longrightarrow 1$$

The first map is called push map, discussed and used later. The push map is injective, if the Euler characteristic is negative.

Definition (Dehn twist)

On the annulus $\Sigma_{0,2} = S^1 \times [0,1]$ we define $(\phi, t) \mapsto (\phi + 2\pi \mathrm{i} t, t)$

On any $\Sigma_{g,n}$ and for any simple curve $\gamma : S^1 \to \Sigma_{g,n}$ we define a diffeomorphism \mathfrak{d}_{γ} , using a tubular neighbourhood.

Definition (Braiding)

On the three-punctured sphere $\Sigma_{0,3}$ we define the diffeomorphism

On any $\Sigma_{g,n}$ define a diffeomorphism $\mathfrak{b}_{i,j}$ for any $1 \leq i < j \leq n$.

For explicit calculations we use the polygon model of $\Sigma_{g,n}$:

 $\pi_1(\Sigma_{g,n}, x)$ has the relation $\prod_{i=1}^g \alpha_i \beta_i \alpha_i^{-1} \beta_i^{-1} \prod_{k=1}^n \xi_k \rho_k \xi_k^{-1} = 1$

Theorem (Dehn-Lickorish)

The following diffeomorphism classes generate $\Gamma_{g,n}$ as a group:

 $\mathfrak{t}_i := \mathfrak{d}_{\alpha_i}, \quad \mathfrak{r}_i := \mathfrak{d}_{\beta_i}, \quad \mathfrak{d}_k := \mathfrak{d}_{\rho_k}, \quad \mathfrak{b}_{k,k+1}, \quad \mathfrak{n}_i := \mathfrak{d}_{\mu_i}, \quad \mathfrak{z}_k := \mathfrak{d}_{\zeta_k}$

We further define the diffeomorphism class $\mathfrak{s}_i := \mathfrak{t}_i^{-1} \mathfrak{r}_i^{-1} \mathfrak{t}_i^{-1}$.

Fact

The group $\Gamma_{g,n}(x)$ acts on $\pi_1(\Sigma_{g,n}, x)$ by group automorphisms.

The group $\Gamma_{g,n}$ acts on $\pi_1(\Sigma_{g,n}, x)$ by outer automorphism classes.

Recall that the abelianization of $\pi_1(\Sigma_{g,n})$ is $H_1(\Sigma_{g,n},\mathbb{Z}) = \mathbb{Z}^{2g+n}$.

Fact

The action of $\Gamma_{g,n}(x)$ on $H_1(\Sigma_{g,n},\mathbb{Z})$ factors over $\Gamma_{g,n}$. Explicitly

$$\begin{aligned} \mathfrak{t}_{i} &= \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \ \mathfrak{r}_{i} = \begin{pmatrix} 1 & 0 \\ -1 & 1 \end{pmatrix}, \ \mathfrak{s}_{i} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \ \mathfrak{n}_{i} = \begin{pmatrix} 1 & 1 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \\ \mathfrak{d}_{k} &= (1), \quad \mathfrak{b}_{k,k+1} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ \mathfrak{z}_{k} = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \end{aligned}$$

This is a representation of $\Gamma_{g,n}$ on \mathbb{Z}^{2g} factoring over $\operatorname{Sp}_{2g}(\mathbb{Z})$, where the symplectic form on \mathbb{Z}^{2g} is the intersection form on H_1

For the torus the previous action of $\Gamma_{g,n}$ on \mathbb{Z}^{2g} is faithful:

Example

On the torus $\Sigma_{1,0}$ the mapping class group is $\mathrm{SL}_2(\mathbb{Z})$, which is generated by $\mathfrak{s}, \mathfrak{t}$ with relations $\mathfrak{s}^4 = 1$, $\mathfrak{sts} = \mathfrak{t}^{-1}\mathfrak{st}^{-1}$.

On the punctured torus $\Sigma_{1,1}$ we have a central element $\mathfrak{s}^4 = \mathfrak{d}_1^{-1}$.

Example

On the punctured sphere we have a group homomorphism

$$\mathbb{Z}^n \ltimes \mathbb{B}_n \longrightarrow \Gamma_{0,n}$$

using Dehn twists \mathfrak{d}_k and braidings $\mathfrak{b}_{i,j}$, with \mathbb{B}_n the braid group. The map is not injective, but factors to an isomorphism, for n > 1

$$\mathbb{Z}^{n-1} \ltimes \mathbb{B}_{n-1} \xrightarrow{\sim} \Gamma_{0,n}$$

Modular Tensor Categories

Let $(\mathcal{C}, 1, \otimes,)$ be a finite tensor category over a field \mathbb{K} .

Definition

Recall: The coend $L = \int^X F(X, X)$ of a bifunctor $F : \mathcal{C}^{op} \otimes \mathcal{C} \to \mathcal{D}$ is the universal object L having a dinatural trafo $\iota_X : F(X, X) \to L$

Theorem

The coend L of the bifunctor $X^* \otimes X$ is a Hopf algebra inside C. (product from $\iota_{X \otimes Y}$, unit from ι_1 , coproduct from $\operatorname{coeval}_{X,X^*}$ etc.)

Example

If C is semisimple, with simple objects X_i , then $L = \bigoplus_i X_i^* \otimes X_i$

Example

If C is the category of representations of a Hopf algebra H, then L is the coadjoint representation H^*_{coad} (and transmuted algebra)

Modular Tensor Categories

Let $(\mathcal{C}, 1, \otimes, c_{X,Y}, \theta_X)$ be a finite ribbon category.

Definition (Modular Tensor Category)

Call $\ensuremath{\mathcal{C}}$ modular, if one of the following equivalent conditions holds

- The only objects X with c_{Y,X}c_{X,Y} = id for all objects Y, called transparent objects, are trivial X = 1 ⊕ · · · ⊕ 1.
- The map sending an object X to $X, c_{X,Y}$ and $X, c_{Y,X}^{-1}$

 $\mathcal{C} \boxtimes \mathcal{C}^{\mathrm{rev}} \to \mathrm{DrinfeldCenter}(\mathcal{C})$

is an equivalence of braided tensor categories.

The pairing ω : L ⊗ L → 1 defined by dinat. maps (eval_{X*,X} ⊗ eval_{Y*,Y}) ∘ (id_{X*} ⊗ c_{Y*,X}c_{X,Y*} ⊗ id_Y) is non-degenerate. It represents the open Hopf link, and generalizes the matrix S_{ii} for semisimple C.

Definition in Lyubaschenko (1996), equivalence see Müger, Shimizu.

Example

Semisimple modular tensor categories, such as Vect_A^Q for a (finite) abelian group A and a nondegenerate quadratic form $Q: A \to \mathbb{K}^{\times}$.

Example

Yetter-Drinfeld modules ${}^{G}_{G}\mathcal{YD}$ of a finite group G over any field \mathbb{K} .

Simple/indecomposable/projective objects $\mathcal{O}_{[g]}^{\chi}$ for any conjugacy class [g] and simple/indecomposable/projective rep χ of $\operatorname{Cent}(g)$.

Example

 $\operatorname{Rep}(H)$ for a finite-dimensional factorizable ribbon Hopf algebra H, for example the small (quasi-)quantum group $u_q(\mathfrak{g})$.

Lyubaschenko's Modular Functor

Let C be a modular tensor category and $\sum_{g,n}^{X_1,...,X_n}$ a decorated surface.

Definition (Block space)

$$\mathcal{Z}(\Sigma_{g,n}^{X_1,...,X_n}) := \operatorname{Hom}_{\mathcal{C}}(X_1 \otimes \cdots \otimes X_n, L^{\otimes g})$$

Theorem

$$\mathrm{PF}_{g,n}$$
 acts projectively on $\mathcal{Z}(\Sigma_{g,n}^{X_1,...,X_n})$, and $\Gamma_{g,n}$ on a resp. sum.

For example, \mathfrak{d}_k acts via θ_{X_k} , the braiding $\mathfrak{b}_{k,k+1}$ acts via $c_{X_k,X_{k+1}}$, \mathfrak{t}_i acts via θ_X on any $X^* \otimes X$ dinaturally, and thereby on the *i*-th *L*, \mathfrak{s}_i acts again by a variant of the Hopf link on the *i*-th *L*, explicitly

$$L \xrightarrow{\mathrm{id} \otimes \Lambda_L} L \otimes L \xrightarrow{\mathrm{eval}_{X^*, X} c_{Y^*, X} c_{X, Y^*}}_{\text{dinatural}} L$$

Theorem (L., Mierach, Schweigert, Sommerhäuser 2018)

 $SL_2(\mathbb{Z})$ acts on the the Hochschild cohomology $HH^{\bullet}(H, \mathbb{K})$ of a finite-dimensional factorizable ribbon Hopf algebra. The twisted class functions reappear as $HH^0(H, \mathbb{K})$.

Theorem (L., Mierach, Schweigert, Sommerhäuser 2020)

There is an action of the mapping class group $P\Gamma_{g,n}$ on the spaces

$$\mathcal{Z}^{ullet}(\Sigma_{g,n}^{X_1,\ldots,X_n}) := \operatorname{Ext}_{\mathcal{C}}^{ullet}(X_1 \otimes \cdots \otimes X_n, L^g)$$

The Lyubaschenko modular functor reappears as degree zero part.

Theorem (Schweigert, Woike 2019, 2020)

There is a homotopy coherent action on $P\Gamma_{g,n}$ on a suitable Hochschild complex, in the resp. homotopy theoretic setting. \Rightarrow A modular functor with values in chain complexes.

Construction and Proof

Take a projective resolution of the tensor unit

$$1 \longleftarrow P_0 \longleftarrow P_1 \longleftarrow P_2 \longleftarrow \cdots$$

Functoriality of Lyubaschenko's \mathcal{Z} gives a chain complex

 $\operatorname{Hom}_{\mathcal{C}}(X_{1}\cdots X_{n}\otimes P_{0},L^{g})\longrightarrow \operatorname{Hom}_{\mathcal{C}}(X_{1}\cdots X_{n}\otimes P_{1},L^{g})\longrightarrow \operatorname{Hom}_{\mathcal{C}}(X_{1}\cdots X_{n}\otimes P_{2},L^{g})\longrightarrow$

 $\operatorname{Hom}_{\mathcal{C}}(X_{1}\cdots X_{n}\otimes P_{0}, L^{g}) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(X_{1}\cdots X_{n}\otimes P_{1}, L^{g}) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(X_{1}\cdots X_{n}\otimes P_{2}, L^{g}) \longrightarrow$

The mapping class group $P\Gamma_{g,n+1}$ acts strictly (but projectively) on this chain complex by chain maps.

Does this factor to an action of $P\Gamma_{g,n}$ up to chain homotopy? **YES**...

Example (Sphere)

$$\mathcal{Z}^{\bullet}(\Sigma_{0,0}) = \operatorname{Ext}^{\bullet}_{\mathcal{C}}(1,1)$$

This is an **algebra** via the cup-product. It acts on any $\mathcal{Z}^{\bullet}(\Sigma_{g,n})$, commuting with $\Gamma_{g,n}$ -action. It plays the role of a new ground ring.

Example (Punctured Sphere)

$$\mathcal{Z}^ullet(\Sigma^{X_1,...,X_n}_{0,n}) = \operatorname{Ext}^ullet_{\mathcal{C}}(X_1\otimes\cdots\otimes X_n,1)$$

This has an action of the (pure) braid group on *n* strands via c_{X_i,X_j} . This action factorizes over the mapping class group $\Gamma_{0,n}$, because $\theta_{X_1 \otimes \cdots \otimes X_n}$ acts trivial up to homotopy, although $\theta_{P_i} \neq id$

Example (Genus 1, Torus without punctures)

 $\mathcal{Z}^{\bullet}(\Sigma_{1,0}) = \operatorname{Ext}^{\bullet}_{\mathcal{C}}(1,L)$

this has an action of the modular group $SL_2(\mathbb{Z})$.

It comes from an action of $\Gamma_{1,1}$ on L by morphisms in C, where

$$\langle \mathfrak{d} \rangle \to \Gamma_{1,1} \to \mathrm{SL}_2(\mathbb{Z}),$$

is a central extension with $\mathfrak{s}^4 = \mathfrak{d}^{-1}$. The element \mathfrak{d} acts by θ_L , so it acts trivially on $\operatorname{Hom}_{\mathcal{C}}(\mathfrak{1}, L)$ and all $\operatorname{Ext}^{\bullet}_{\mathcal{C}}(\mathfrak{1}, L)$.

For $C = \operatorname{Rep}(H)$ we recover our previous result (1707.04032):

 $\Gamma_{1,1}$ acts on the coadjoint representation $L = H^*_{coad}$, the quotient $\operatorname{SL}_2(\mathbb{Z})$ acts on the Hochschild cohomology $\operatorname{Ext}^{\bullet}_{\mathcal{C}}(1, L) \cong \operatorname{HH}^{\bullet}(H, H)$, compatible with cup product by the algebra $\operatorname{Ext}^{\bullet}_{\mathcal{C}}(1, 1) \cong \operatorname{HH}^{\bullet}(H, \mathbb{K})$.

Example (Commutative Case)

Suppose that C has the property that $L = 1 \oplus \cdots \oplus 1$ as object. (for example, representations of a commutative Hopf algebra)

Then $\Gamma_{1,1}$ and also $\Gamma_{1,0}$ act on $\mathbb{K}^n = \operatorname{Hom}_{\mathcal{C}}(1, L)$. $\operatorname{P}\Gamma_{g,n+1}$ acts on

$$\operatorname{Hom}(X_1\otimes\cdots\otimes X_n\otimes P_i,L^{\otimes g}) = \operatorname{Hom}(X_1\otimes\cdots\otimes X_n\otimes P_i,1)\otimes_{\mathbb{K}}\operatorname{Hom}_{\mathcal{C}}(1,L^{\otimes g})$$

where the decomposition is preserved by ϑ, ϑ and $\mathfrak{t}, \mathfrak{s}, \mathfrak{n}$, not \mathfrak{z} . This action factorizes to an action of $\mathrm{PF}_{g,n}$ on

$$\mathcal{Z}^{ullet}(\Sigma_{g,n}) = \operatorname{Ext}^{ullet}(X_1 \otimes \cdots \otimes X_n, 1) \otimes_{\mathbb{K}} (\mathbb{K}^n)^g$$

In particular $\mathcal{Z}^{\bullet}(\Sigma_{g,0})$ is a free module of the Ext-algebra $\mathcal{Z}^{\bullet}(\Sigma_{0,0})$ generated by Lyubaschenko's part in degree zero $\mathcal{Z}(\Sigma_{g,0})$.

We now treat a class of nonsemisimple examples more elaborately. Let G be a finite group, \mathbb{K} of arbitrary characteristic, recall:

Definition (Yetter-Drinfeld modules ${}^{G}_{G}\mathcal{YD}$)

- Objects: G-graded G-representations V with $g.(V_h) = V_{ghg^{-1}}$
- The simple, indecomposable, or projective objects are O^V_[h], parametrized by a conjugacy class [h] of G and a simple, indecomposable, or projective representations V of Cent(h)
- Semisimple iff $\operatorname{Rep}(G)$ is semisimple, i.e. $\operatorname{char}(\mathbb{K}) \nmid |G|$.

Braiding
$$v_g \otimes v_h \mapsto g.v_h \otimes v_g$$
.

For example, the symmetric group \mathbb{S}_3 over $\mathbb{K}=\mathbb{C}$ has simples

$$\mathcal{O}_e^1, \ \mathcal{O}_e^{\mathrm{sgn}}, \ \mathcal{O}_e^{\mathrm{std}}, \ \mathcal{O}_e^{\mathrm{t1}}, \ \mathcal{O}_{[(123)]}^{\zeta_3^k}, \ \mathcal{O}_{[(123)]}^{\zeta_3^k}$$

In characteristic 2 or 3 the category is nonsemisimple .

More generally, for every tensor category C we can define a modular tensor category called Drinfeld center $\mathcal{D}(C)$.

The Reshetikhin-Turaev-TFT of $\mathcal{D}(\mathcal{C})$ is the Turaev-Viro TFT of \mathcal{C} as a state-sum model (also extended in [FSS]). Recall the example

Example (Dijkgraaf-Witten theory $C = {}^{G}_{G} \mathcal{YD}$)

$$\begin{split} \mathcal{Z}(\Sigma_{g,0}) &= \operatorname{Hom}_{\mathcal{C}}(1, (DG)^{\otimes g}) \\ &= \operatorname{span}_{\mathbb{K}} \left\{ (a_1, b_1, ..., a_g, b_g) \in G^{2g} \mid \prod[a_i, b_i] = 1) \right\}^{\operatorname{ad}_{G}} \\ &= \operatorname{span}_{\mathbb{K}} \left\{ \operatorname{Hom}_{group}(\pi_1(\Sigma_{g,0}), G) / \operatorname{ad}_{G} \right\} \end{split}$$

 $\mathcal{Z}(\sum_{g,n}^{\mathcal{O}_{[g_1]}^{\chi_1} \dots \mathcal{O}_{[g_n]}^{\chi_n}})$ is roughly the span of *G*-bundels with prescribed monodromy g_i around ρ_i ; taking a resp. ad_G -isotypical component.

For example for $G = \mathbb{Z}_N$ we get $\mathcal{Z}(\Sigma_{g,0}) = H_1(\Sigma_{g,0}, \mathbb{Z}) = \mathbb{Z}_N^{2g}$ The mapping class group $\Gamma_{g,0}$ acts via its quotient $\operatorname{Sp}_{2g}(\mathbb{Z}_N)$.

Let G be a finite group and $C = {}^{G}_{G}\mathcal{YD}$. Define the span $M_{g} := \mathbb{K} \operatorname{Hom}_{Group}(\pi_{1}(\Sigma_{g,0}), G)$

It has commuting actions of *G*-module via conjugation on *G*, and of $\Gamma_{g,1}$ via the action of $\Gamma_{g,0}(x)$ on $\pi_1(\Sigma_{g,0}, x)$.

Theorem (L., Mierach, Schweigert, Sommerhäuser, to appear soon)

$$\mathcal{Z}^{\bullet}(\Sigma_{g,0}) = \mathrm{H}^{\bullet}_{Group}(G, M_g)$$

and similarly for $\mathcal{Z}^{\bullet}(\Sigma_{g,n})$ with boundaries decorated by $\mathcal{O}_{[h]}^{\chi}$.

We recover our main result: The action of $\Gamma_{g,1}$ on $\pi_1(\Sigma_{g,0})$ does **not** factor to an action of $\Gamma_{g,0}$ but it does on cohomology. E.g.

$$\mathrm{H}^{0}_{Group}(G, M) = M^{G} = \mathbb{K}\mathrm{Bun}_{G}(\Sigma_{g})$$

Example (some Γ_g -representations factoring over $\operatorname{Sp}_{2g}(\mathbb{Z})$)

We have $\operatorname{Hom}(\pi_1(\Sigma_g, x), \mathbb{Z}_N) = \mathbb{Z}_N^{2g}$, with diagonal action by \mathbb{Z}_N^{\times} , define $\Omega_{\mathbb{Z}_N}^g$ as all vectors with coefficient gcd 1.

If \mathbb{K} contains all *N*-th roots of unity, then we further decompose the span according to Dirichlet characters $\chi : \mathbb{Z}_N \to \mathbb{K}^{\times}$ as follows

$$\mathbb{K}\Omega^{g}_{\mathbb{Z}_{N}} = \bigoplus_{\chi} \mathbb{K}_{\chi}[\mathbb{Z}_{N}\mathbb{P}^{2g-1}]$$

interpreted as sections in line bundles on projective space $\mathbb{Z}_N \mathbb{P}^{2g-1}$.

The group $\operatorname{Sp}_{2g}(\mathbb{Z}_N)$ acts on $\mathbb{K}_{\chi}[\mathbb{Z}_N \mathbb{P}^{2g-1}]$, diagonals acting by χ .

For g = 1 the stabilizers of vectors in $\mathbb{K}[\Omega^1_{\mathbb{Z}_N}]$ and $\mathbb{K}_1[\mathbb{Z}_N\mathbb{P}^1]$ give a short exact sequence of congruence subgroups of $SL_2(\mathbb{Z})$

$$\mathbb{Z}_N^{\times} \to \Gamma_0(N) \to \Gamma_1(N)$$

This hints at modular forms, part of a vector valued modular form.

We give a complete example for $G = S_3$, $char(\mathbb{K}) = 3$:

For the torus we get in this case

$$\begin{split} \mathcal{Z}^{0}(\Sigma_{1,0}) &\cong \mathbb{K} \oplus \mathbb{K}[\mathbb{F}_{2}\mathbb{P}^{1}] \oplus \mathbb{K}[\mathbb{F}_{3}\mathbb{P}^{1}] \\ \mathcal{Z}^{i}(\Sigma_{1,0}) &\cong \begin{cases} \mathbb{K}\mu^{i/2} \\ 0 \\ 0 \\ \mathbb{K}\mu^{(i-1)/2}\nu \end{cases} \oplus \begin{cases} \mathbb{K}[\mathbb{F}_{3}\mathbb{P}^{1}]\mu^{i/2} \\ 0 \\ \mathbb{K}[\mathbb{F}_{3}\mathbb{P}^{1}]\mu^{(i-1)/2}\nu \end{cases} \oplus \begin{cases} 0, \\ \mathbb{K}_{sgn}[\mathbb{F}_{3}\mathbb{P}^{1}]\mu^{(i-1)/2}\nu, \\ \mathbb{K}_{sgn}[\mathbb{F}_{3}\mathbb{P}^{1}]\mu^{i/2}, \\ 0, \end{cases} \end{split}$$

We find

- A large portion is generated from degree zero. (conjugacy classes of pairs of commuting elements)
- Not free as $\mathcal{Z}^{\bullet}(\Sigma_{0,0})$ -module, $\mathbb{K}[\mathbb{F}_2\mathbb{P}^1]$ is killed (*G*-projective).
- $\mathbb{K}_{sgn}[\mathbb{F}_3\mathbb{P}^1]$ new in degree $i \equiv 2, 3$, nontrivial Dirichlet character From $\mathcal{Z}(\Sigma_{1,1}^{sgn})$ cup $\mathcal{Z}^{\bullet}(\Sigma_{0,1}^{sgn})$, as *sgn* is in the principal block.

Ongoing work in computing $\mathcal{Z}^{\bullet}(\Sigma_{g,n})$ for quantum groups:

For every \mathfrak{g} and q a primitive ℓ th root of unity, there exists a small (quasi-)quantum group $u_q(\mathfrak{g})$, giving a non-semisimple modular tensor category, related to g-representations in characteristic ℓ .

Drinfeld Jimbo 1986, Lusztig 1990, Andersen Jantzen Soergel 1996, Kazhdan Lusztig Creutzig Gainutdinov Runkel 2017, Gainutdinov L. Ohrmann 2018, Negron 2018.

Example

$$\begin{split} \tilde{u}_q(\mathfrak{sl}_2) &= \langle E, F, K \rangle / (K^{2p} - 1, [E, F] = \frac{K - K^{-1}}{q - q^{-1}}) \text{ at } q^{2p} = 1 \text{ has} \\ \text{simple reps } X_s^{\pm} \text{ of dimension } s \text{ for } 1 \leq s \leq p, \\ \text{nontrivial } \mathrm{Ext}^1(X_s^{\pm}, X_{p-s}^{\mp}) = \mathbb{C}^2 \text{ for } s \neq p, \\ \text{and projective covers as follows:} \\ \text{It produces a modular tensor category,} \\ \text{with nontrivial associator from } \mathrm{Vect}_{\mathbb{Z}_{2p}}^Q. \end{split}$$

Ongoing work in computing $\mathcal{Z}^{\bullet}(\Sigma_{g,n})$ for quantum groups.

For $\tilde{u}_q(\mathfrak{sl}_2)$ the following picture holds resp. should hold: Gainutdinov L. Schweigert, work in progress, drawing from Feigin Gainutdinov Semikhatov Tipunin (2005), Farsad Gainutdinov Runkel (2017)

The Ext-ring and one important module are

$$\operatorname{Ext}^{\bullet}(1,1) = \begin{cases} \mathbb{C}^{n+1}, & n \text{ even} \\ 0, & n \text{ odd} \end{cases}$$
$$\operatorname{Ext}^{\bullet}(1, X_{p-1}^{-}) = \begin{cases} 0, & n \text{ even} \\ \mathbb{C}^{n+1}, & n \text{ odd} \end{cases}$$

which are simple \mathfrak{sl}_2 -representations under a categorical action, and the cup product is the respective leading direct summand in

$$\mathbb{C}^{n+1}\otimes\mathbb{C}^{m+1}=\mathbb{C}^{(n+m)+1}\oplus\cdots\mathbb{C}^{|n-m|+1}$$

Ongoing work in computing $\mathcal{Z}^{\bullet}(\Sigma_{g,n})$ for quantum groups.

For $\tilde{u}_q(\mathfrak{sl}_2)$ the following picture holds resp. should hold:

 $L = (\mathbb{C}^{2'} \otimes \mathbb{C}^{p-1}) \ 1 \oplus (\mathbb{C}^{2''} \otimes \mathbb{C}^{p-1}) \ X_{p-1}^{-} \oplus \text{ projectives} \oplus \text{ other blocks}$

with commuting actions of \mathfrak{sl}_2 and $\Gamma_{1,1}$ factorizing to $\Gamma_{1,0}$, acting on $\mathbb{C}^{2'}$ the standard way and \mathbb{C}^{p-1} as in the minimal model $(\hat{\mathfrak{sl}}_2)_{p-2}$.

$$\operatorname{Hom}(1, L) = \mathbb{C}^{2'} \otimes \mathbb{C}^{p-1} \oplus \mathbb{C}^{p+1}$$
$$\operatorname{Ext}^{\bullet}(1, L) = \begin{cases} \mathbb{C}^{n+1} \otimes \mathbb{C}^{2'} \otimes \mathbb{C}^{p-1}, & n \text{ even} \\ \mathbb{C}^{n+1} \otimes \mathbb{C}^{2''} \otimes \mathbb{C}^{p-1}, & n \text{ odd} \end{cases}$$

Hence again $\operatorname{Ext}^{\bullet}(1, L)$ should be generated as $\operatorname{Ext}^{\bullet}(1, 1)$ -module, from Lyubaschenko's degree zero part and a degree one part

$$\operatorname{Hom}(X_{p-1}^{-},L) = \mathbb{C}^{2^{\prime\prime}} \otimes \mathbb{C}^{p-1}$$

Explicit calculation for p = 2 suggest: $\mathbb{C}^{2'}$ has trivial \mathfrak{sl}_2 action and standard projective $\mathrm{SL}_2(\mathbb{Z})$ -action, $\mathbb{C}^{2''}$ has standard \mathfrak{sl}_2 action and trivial projective $\mathrm{SL}_2(\mathbb{Z})$ -action.

Outlook Question

What do these $\operatorname{Ext}^{\bullet}_{\mathcal{C}}(X_1 \otimes \cdots \otimes X_n, L^{\otimes g})$ mean (analytically) if the modular tensor category \mathcal{C} arises as category $\operatorname{Rep}(\mathcal{V})$ of (suitable) representations of a (suitable) vertex operator algebra \mathcal{V} ?

And can we **construct elements** in them from $\operatorname{Rep}(\mathcal{V})$ -characters?

Recall, very roughly:

A vertex operator algebra V is a graded vector space with an action of Virasoro algebra and a "multiplication" map

$$\mathrm{Y}:\mathcal{V}\otimes_{\mathbb{C}}\mathcal{V}\to\mathcal{V}[[z,z^{-1}]]$$

 If V is C₂-cofinite [SM][HLZ] construct a tensor product of V-modules by the universal property of admitting intertwiner

$$X \otimes_{\mathbb{C}} Y \to (X \boxtimes Y)\{z\}[\log(z)]$$

and a braiding by continuing this multivalued analytic function with regular singularity z = 0 from z counterclockwise to -z. Example: Heisenberg algebra, Lattice algebra, Triplet algebra W_p . Elements in $\operatorname{Hom}_{\mathcal{C}}(X_1 \boxtimes \cdots \boxtimes X_n, L^g)$ are functions on the space of complex structures on $\Sigma_{g,n}$ depending on elements $x_k \in X_k$. Lyubaschenko's action of $\Gamma_{g,n}$ (should) match the geometric action.

Examples:

• $\Sigma_{0,n}$ returns matrix elements of composed vertex operators $Y(x_1, z_1) \cdots Y(x_n, z_n)$, transforming under the braid group.

Σ_{1,0} = C/Z + τZ returns functions in q = e^{2πiτ}. They piece together to a vectorvalued modular form under Γ_{1,0} = SL₂(Z).

Spanned (for semisimple C) by graded characters of V-irreps.

We surely can consider a projective resolution in $\operatorname{Rep}(V)$, but what about the additional insertion? (homotopy?) What about traces?

Question (maybe known to some experts?)

Is $\operatorname{Ext}_{\mathcal{C}}^{\bullet}(X_1 \otimes \cdots \otimes X_n, L^{\otimes g})$ for $\mathcal{C} = \operatorname{Rep}(\mathcal{V})$ dual to chiral homology in [Beilinson-Drinfeld Chp. 4] associated to the chiral algebra of \mathcal{V} ?

....some sketches on the chiral homology of Virasoro algebra in respect to the previous discussion, as well as the first chiral homologies in general following [vEH].