$\ddot{ ext{U}} ext{bungsblatt} \ \# \ 05 \ ext{Algebra} \ ext{(ws 2018)}$

(Vincent Braunack-Mayer und Ingo Runkel)

Aufgabe 1 (4 P)

Sei G eine Gruppe von Ordnung 56. Beweisen Sie, dass G nicht einfach ist.

Hinweis: Man kann z.B. eine Fallunterscheidung nach der Anzahl der 7-Sylow-Untergruppen machen.

Aufgabe 2 (3 P)

Sei p eine Primzahl und sei G eine endliche p-Gruppe. Zeigen Sie, dass G auflösbar ist.

Aufgabe 3 (5 P)

Es seien p, q Primzahlen und G eine Gruppe von Ordnung pq.

- 1. Angenommen, p < q. Zeigen Sie, dass $G \cong \mathbb{Z}/q\mathbb{Z} \rtimes \mathbb{Z}/p\mathbb{Z}$ gilt. Was passiert, wenn man nicht mehr p < q fordert?
- 2. Sei nun wieder p < q. Aus der Vorlesung wissen wir, dass G abelsch ist, falls $p \nmid (q-1)$. Gibt es im Fall $p \mid (q-1)$ immer / manchmal / nie eine Gruppe G der Ordnung pq, die nicht abelsch ist?

Aufgabe 4 (5 P)

Sei K ein Körper, und sei

$$B_n = \left\{ \begin{pmatrix} 1 & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & 1 & a_{23} & \cdots & a_{2n} \\ \vdots & \ddots & & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \right\}$$

die Untergruppe der oberen Dreiecksmatrizen in $GL_n(K)$ mit Diagonale (1, 1, ... 1).

1. Sei $\phi_n: B_n \to B_{n-1}$ die Abbildung

$$\begin{pmatrix} 1 & a_{12} & a_{13} & \cdots & a_{1n} \\ 0 & 1 & a_{23} & \cdots & a_{2n} \\ \vdots & \ddots & & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \mapsto \begin{pmatrix} 1 & a_{12} & a_{13} & \cdots & a_{1,n-1} \\ 0 & 1 & a_{23} & \cdots & a_{2,n-1} \\ \vdots & \ddots & & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix}$$

(wir löschen einfach die letzte Spalte und die letzte Reihe). Zeigen Sie, dass ϕ_n ein surjektiver Gruppenhomomorphismus ist, und bestimmen Sie $Ker(\phi)$.

2. Beweisen Sie, dass die Gruppe B_n auflösbar ist.

Bitte wenden.

Aufgabe 5 (7 P)

Sei G eine Gruppe. Wir definieren

$$[G,G] := \langle \{xyx^{-1}y^{-1} | x, y \in G\} \rangle.$$

- 1. Zeigen Sie, dass [G,G] eine normale Untergruppe von G ist, und dass die Quotientgruppe G/[G,G] eine abelsche Gruppe ist.
- 2. Sei A eine abelsche Gruppe, und sei $\phi:G\to A$ ein Gruppenhomomorphismus. Zeigen Sie, dass $[G,G]\subseteq Ker(\phi)$.
- 3. Sei $G \neq \{e\}$ eine auflösbare Gruppe. Zeigen Sie, dass $G \neq [G, G]$ gilt. Ist die Bedingung $G \neq [G, G]$ hinreichend für die Auflösbarkeit von G?

Zusatzaufgabe (0 P) (Manchmal muss man aufpassen)

Sei G eine Gruppe und $H \leq G$ eine Untergruppe. Wir machen zwei Versuche, den Normalisator zu definieren:

1.
$$N_G(H) := \{ g \in G \mid gHg^{-1} = H \}.$$

2.
$$\widetilde{N}_G(H) := \{g \in G \mid ghg^{-1} \in H \text{ für alle } h \in H\}.$$

Überlegen Sie sich, dass 1 und 2 für endliche Gruppen das gleiche sind, für unendliche Gruppen aber nicht unbedingt. Finden Sie ein Beispiel für eine Gruppe G und eine Untergruppe $H \leq G$, so dass $\widetilde{N}_G(H)$ keine Untergruppe von G ist.