Satz. (Sylowsätze)

Sei G eine endliche Gruppe von der Ordnung $|G|=p^mq$ mit p prim und p,q teilerfremd. Es gilt

- 1. Für alle $0 \le k \le m$ gibt es eine Untergruppe der Ordnung p^k .
- 2. Für jede p-Untergruppe $H \leq G$ und jede p-Sylowuntergruppe $S \leq G$ gibt es ein $g \in G$ mit $gHg^{-1} \leq S$.
- 3. Sei n_p die Anzahl der p-Sylowuntergruppe in G. Dann gilt $n_p|q$ und $n_p \equiv 1 \mod p$.

Bemerkung. Teil 1 sagt insbesondere, dass es p-Sylowuntergruppen immer gibt (im Fall m=0 dann nur $S=\{e\}$). Teil 2 sagt insbesondere, dass alle p-Sylowuntergruppen zueinander konjugiert sind. Es folgt, dass eine p-Sylowuntergruppe genau dann normal ist, wenn es nur eine solche Untergruppe gibt. In Teil 2 kann man äquivalent sagen, dass $H \leq g^{-1}Sg$, so dass aus Teil 2 folgt: Jede p-Untergruppe von G ist in einer p-Sylowuntergruppe enthalten.

Beweis der Sylowsätze.

1. Beweis durch Induktion nach |G|. Wir fixieren eine Primzahl p (aber q, m, k dürfen variieren). Betrachte die Aussage

$$A(N) =$$
 "Beh. 1 ist wahr für alle Gruppen G mit $|G| \leq N$."

Induktionsanfang: A(1) ist wahr.

Induktionsschritt: Angenommen A(N-1) ist wahr. Sei G gegeben mit $|G|=p^mq\leq N$. Falls m=0 oder k=0 können wir $H=\{e\}$ wählen. Seien also $m>0,\ k>0$.

Die Klassengleichung (Satz 1.5.7) für G besagt

$$|G| = |Z(G)| + \sum [G : C_G(x_i)],$$

wobei die Summe über alle Repräsentanten x_i läuft, die nicht in Z(G) liegen. Da m > 0 haben wir $p \mid |G|$. Wir unterscheiden zwei Fälle.

- Fall 1: $p \mid |Z(G)|$ Nach Satz 1.5.6 (Cauchy) gibt es ein $z \in Z(G)$ von Ordnung p. Dann ist $\langle z \rangle \leq G$ eine normale Untergruppe und $\tilde{G} := G/\langle z \rangle$ hat Ordnung $p^{m-1}q$. Nach A(N-1) gibt es $\tilde{H} \leq \tilde{G}$ mit $|\tilde{H}| = p^{k-1}$. Sei $\pi: G \to G/\langle z \rangle$ die kanonische Projektion. Betrachte die Untergruppe $H := \pi^{-1}(\tilde{H}) \leq G$. Es gilt $|H| = p^k$. (Warum?).
- Fall 2: $p \nmid |Z(G)|$ Nach der Klassengleichung muss es dann einen Repräsentanten x_i geben, so dass $p \nmid [G:C_G(x_i)]$. Da $|G|=[G:C_G(x_i)] \cdot |C_G(x_i)|$ muss $p^m \mid |C_G(x_i)|$ gelten. Da $x_i \notin Z(G)$ gilt ferner $C_G(x_i) \subsetneq$

G. Also ist A(N-1) auf $C_G(x_i)$ anwendbar. Da $|C_G(x_i)| = p^m q'$ mit dem gleichen m wie für G, können wir für alle $0 \le k \le m$ eine Untergruppe $H \le C_G(x_i)$ finden mit $|H| = p^k$.

Insgesamt folgt also aus A(N-1) die Aussage A(N).

2. Betrachte die H-Wirkung auf G/S von links, also $(h, gS) \mapsto hgS$. Per Annahme ist H eine p-Gruppe und nach Satz 1.6.2 gilt

$$|(G/S)^H| \equiv |G/S| \mod p$$
.

Aber |G/S| = q, da $|G| = |G/S| \cdot |S|$ und $|S| = p^m$. Da p, q teilerfremd sind, folgt $q \not\equiv 0 \mod p$. Somit ist insbesondere $|(G/S)^H| \neq 0$.

Sei also gS ein Fixpunkt unter der H-Wirkung. Dann gilt für alle $h \in H$, dass hgS = gS. Dies ist äquivalent zu $g^{-1}hg \in S$ (für das vorgegebene g und für alle $h \in H$), d.h. $g^{-1}Hg \leq S$.

3. Sei X die Menge der p-Sylowuntergruppen von G, also

$$X = \{ S \leq G \mid S \text{ ist } p\text{-Sylowuntergruppe } \}$$
.

Nach Teil 1 gilt $X \neq \emptyset$. Wie in Teil 3 des Satzes setzen wir $n_p = |X|$.

• $n_p \mid q$: Wir betrachten die Wirkung von G auf X durch Konjugation: $(g, S) \mapsto gSg^{-1}$. Nach Teil 2 ist diese Operation transitiv (Warum?). Die Bahnformel (Satz 1.5.4) ergibt also

$$n_p = |X| = |G.S| \stackrel{\text{Bahnf.}}{=} [G:G_S]$$
.

Da $S \leq G$ auf S trivial wirkt, ist insbesondere $S \leq G_S$. Da sowieso $G_S \leq G$, erhalten wir aus Satz 1.5.3, dass

$$[G:S] = [G:G_S][G_S:S]$$
.

Da [G:S] = q und $[G:G_S] = n_p$, folgt die Behauptung.

• $n_p \equiv 1 \mod q$: Betrachte die Wirkung von $S \leq G$ auf X durch Konjugation. (Die Wirkung ist also die gleiche wie oben, aber jetzt wirkt nur eine Untergruppe von G – insbesondere ist die Wirkung nicht mehr transitiv.) Da S eine p-Gruppe ist, ergibt Satz 2, dass

$$|X| \equiv |X^S| \mod p \ .$$

Wir werden zeigen, dass $|X^S| = 1$. Damit ist er Beweis dann abgeschlossen.

Da sowieso $S \in X^S$ (Warum?), müssen wir zeigen, dass $X^S = \{S\}$. Wir geben zwei Varianten an, dies zu tun.

Variante 1: (Ähnlich wie in Jantzen-Schwermer.) Sei $T \in X^S$ gegeben. Sei $N_G(T) = \{g \in G | gTg^{-1} = T\}$ der Normalisator von T in G. Es gilt

$$T \in X^S \Leftrightarrow \forall t \in T, s \in S : sts^{-1} \in T$$

 $\Leftrightarrow \forall s \in S : s \in N_G(T) \Leftrightarrow S \leq N_G(T)$.

Dann auch $ST \leq N_G(T)$, und da T normal ist in ST, folgt nach Satz 5 $S/(S \cap T) \cong ST/T$. Da $S/(S \cap T)$ eine p-Gruppe ist (Warum?), ist auch ST/T eine p-Gruppe.

Wir wenden nun Satz 1.4.3 auf die Kette $T \leq ST \leq G$ von Untergruppen an: [G:T] = [G:ST][ST:T]. Hier gilt [G:T] = q und $[ST:T] = p^l$ für ein l (da ST/T eine p-Gruppe ist). Da q und p teilerfremd sind, ist dies nur möglich für l=0, das heißt ST=T, bzw. S=T.

Variante 2: (Wie von einem Studenten in der Vorlesung vorgeschlagen, und kürzer als Variante 1.)

Wie in Variante 1 sehen wir, dass $S \leq N_G(T)$. Da $N_G(T) \leq G$ eine Untergruppe ist, gilt $|N_G(T)| = p^{m'}q'$ mit $m' \leq m$. Aus $|T| = |S| = p^m$ folgt, dass m = m', so dass T, S auch p-Sylowuntergruppen von $N_G(T)$ sind. Da T normal in $N_G(T)$ ist, ergibt Teil 2, angewendet auf die Gruppe $N_G(T)$, dass S = T.