Solutions for exercise sheet # 11Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 45

We will show that $-1 \notin Spin_{1,1}^0$. By 3.3, Lem. 1 we have $Cl_{1,1} \cong Mat(2, \mathbb{R})$. A possible isomorphism is given by

$$e_1 \mapsto \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
, $e_2 \mapsto \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.

Then $v = \alpha e_1 + \beta e_2 \in Cl_{1,1}$ such that $q(v) = \pm 1$ are mapped to $M = \begin{pmatrix} \beta & \alpha \\ -\alpha & -\beta \end{pmatrix}$ such that $\det(M) = \pm 1$ (this uses that $q(v) = \alpha^2 - \beta^2 = \det(M)$). The group generated by such M is contained in matrices of the form

$$\left\{ M = \begin{pmatrix} \beta & \alpha \\ -\alpha & -\beta \end{pmatrix} \middle| \det(M) = \pm 1 \right\} \cup \left\{ N = \begin{pmatrix} \gamma & \delta \\ \delta & \gamma \end{pmatrix} \middle| \det(N) = \pm 1 \right\}.$$

Both *id* and -id are contained in the second component and have determinant 1. Hence the connecting path must have det N = 1 along the path. But then $\gamma^2 - \delta^2 = 1$, that is, $\gamma^2 = 1 + \delta^2 \ge 1$. Any path connecting *id* to -id would need to include a point where $\gamma = 0$, which is impossible.

Exercise 46

Uniqueness: Relation 2, applied to $a = y \in U'$ and b = 1 implies that $x \downarrow 1 = 0$. One can now use Relation 2 to define $x \lrcorner (-)$ inductively on $\Lambda^r(U')$.

Existence: The tedious step is to verify relation 2. We reduce the problem to the case r = 1.

Claim: Suppose a given map $x \lrcorner (-)$ satisfies relation 1 and relation 2 in the case r = 1. Then it satisfies relation 2 for all r.

Proof: By induction. Suppose relation 2 holds for some $r-1 \ge 1$. Let now $a \in \Lambda^r(U')$. All such a are linear combinations of $a = a' \wedge a''$, where $a' \in U'$ and $a'' \in \Lambda^{r-1}(U')$. Thus we may as well assume that $a = a' \wedge a''$ (relation 2 is bilinear). Then

$$\begin{aligned} x \lrcorner (a \land b) &= x \lrcorner (a' \land a'' \land b) \stackrel{(*)}{=} (x \lrcorner a') \land a'' \land b - a' \land x \lrcorner (a'' \land b) \\ \stackrel{(**)}{=} (x \lrcorner a') \land a'' \land b - a' \land \left((x \lrcorner a'') \land b + (-1)^{r-1} a'' \land (x \lrcorner b) \right) \\ &= \left((x \lrcorner a') \land a'' - a' \land (x \lrcorner a'') \right) \land b + (-1)^r a' \land a'' \land (x \lrcorner b) \\ \stackrel{(*)}{=} x \lrcorner (a' \land a'' \land b) + (-1)^r a' \land a'' \land (x \lrcorner b) \\ &= (x \lrcorner a) \land b + (-1)^r a \land (x \lrcorner b) , \end{aligned}$$

where (*) is the assumption that relation 2 holds for r = 1 and (**) is the induction hypothesis for r - 1. This completes the proof of the claim.

To give a concrete linear map $x \lrcorner (-)$ we work in a basis. Let e_1, \ldots, e_n be a basis of U'. Write $\alpha_i := \beta(x, e_i) \in \mathbb{C}$. From Prop. 3.1.9 we know that $e_1^{\delta_1} \land \cdots \land e_n^{\delta_n}$ is a basis of $\Lambda(U')$. Define $x \lrcorner (-)$ on this basis as

$$x \lrcorner (e_1^{\delta_1} \land \dots \land e_n^{\delta_n}) := \sum_{k=1}^n \delta_k (-1)^{\sum_{l=1}^{k-1} \delta_l} \alpha_k \cdot e_1^{\delta_1} \land \dots \cdot e_k^{\delta_k-1} \dots \land e_n^{\delta_n}$$

Relation 1 now follows by considering all basis vectors where only one δ_k is non-zero.

By the above claim, we only need to check relation 2 for r = 1 (and, by bilinearity, only on a basis). We will check it on

$$a = e_t$$
 , $b = e_1^{\delta_1} \wedge \dots \wedge e_n^{\delta_n}$

We distinguish two cases: $\delta_t = 0$ and $\delta_t = 1$. Let us start with $\delta_t = 1$. Then $a \wedge b = 0$, and it remains to check that the rhs of relation 2 is zero, too. We compute

$$(x \lrcorner e_t) \land b - e_t \land (x \lrcorner b)$$

$$= \alpha_t b - e_t \land \left(\sum_{k=1}^n \delta_k (-1)^{\sum_{l=1}^{k-1} \delta_l} \alpha_k \cdot e_1^{\delta_1} \land \cdots e_k^{\delta_k - 1} \cdots \land e_n^{\delta_n}\right)$$

$$\stackrel{(*)}{=} \alpha_t b - e_t \land \left((-1)^{\sum_{l=1}^{t-1} \delta_l} \alpha_t \cdot e_1^{\delta_1} \land \cdots e_t^{0} \cdots \land e_n^{\delta_n}\right)$$

$$= \alpha_t b - \alpha_t \cdot e_1^{\delta_1} \land \cdots e_t^{1} \cdots \land e_n^{\delta_n} = 0,$$

where in (*) we used that only the term for k = t will give a non-zero contribution (all giving zero because of the leading $e_t \wedge (-)$). Next consider the case $\delta_t = 0$. Let $\hat{\delta}_k = \delta_k$ for $k \neq t$ and $\hat{\delta}_t = 1$. Let

$$c = e_1^{\hat{\delta}_1} \wedge \dots \wedge e_n^{\hat{\delta}_n}$$

The lhs of relation 2 is

$$(-1)^{\sum_{l=1}^{t-1}\delta_l}x \lrcorner c$$

where $x \wedge c$ abbreviates the definition of $x \downarrow (-)$ on the basis. On the rhs we

 $\operatorname{compute}$

$$\begin{split} &(x \lrcorner e_{t}) \wedge b - e_{t} \wedge (x \lrcorner b) \\ &= \alpha_{t} b - e_{t} \wedge \left(\sum_{k=1, k \neq t}^{n} \delta_{k} (-1)^{\sum_{l=1}^{k-1} \delta_{l}} \alpha_{k} \cdot e_{1}^{\delta_{1}} \wedge \cdots e_{k}^{\delta_{k}-1} \cdots \wedge e_{n}^{\delta_{n}} \right) \\ &= \alpha_{t} b - \sum_{k=1, k < t}^{n} \delta_{k} (-1)^{\sum_{l=1}^{k-1} \delta_{l}} \alpha_{k} (-1)^{-1 + \sum_{l=1}^{t-1} \delta_{l}} \cdot e_{1}^{\hat{\delta}_{1}} \wedge \cdots e_{k}^{\hat{\delta}_{k}-1} \cdots \wedge e_{n}^{\hat{\delta}_{n}} \\ &- (-1)^{\sum_{l=1}^{t-1} \delta_{l}} \sum_{k=1, k > t}^{n} \delta_{k} (-1)^{\sum_{l=1}^{k-1} \delta_{l}} \alpha_{k} \cdot e_{1}^{\hat{\delta}_{1}} \wedge \cdots e_{k}^{\hat{\delta}_{k}-1} \cdots \wedge e_{n}^{\hat{\delta}_{n}} \\ &= (-1)^{\sum_{l=1}^{t-1} \delta_{l}} \left(\alpha_{t} \hat{\delta}_{t} (-1)^{\sum_{l=1}^{t-1} \hat{\delta}_{l}} \alpha_{k} \cdot e_{1}^{\hat{\delta}_{1}} \wedge \cdots e_{k}^{\hat{\delta}_{k}-1} \cdots \wedge e_{n}^{\hat{\delta}_{n}} \right. \\ &+ \sum_{k=1, k < t}^{n} \hat{\delta}_{k} (-1)^{\sum_{l=1}^{k-1} \hat{\delta}_{l}} \alpha_{k} \cdot e_{1}^{\hat{\delta}_{1}} \wedge \cdots e_{k}^{\hat{\delta}_{k}-1} \cdots \wedge e_{n}^{\hat{\delta}_{n}} \\ &+ \sum_{k=1, k > t}^{n} \delta_{k} (-1)^{\sum_{l=1}^{k-1} \hat{\delta}_{l}} \alpha_{k} \cdot e_{1}^{\hat{\delta}_{1}} \wedge \cdots e_{k}^{\hat{\delta}_{k}-1} \cdots \wedge e_{n}^{\hat{\delta}_{n}} \right) , \end{split}$$

which equals the lhs.

Exercise 47

Let $x \in U$ be arbitrary. We will show inductively that $x \lrcorner (x \lrcorner c) = 0$ for all $c \in \Lambda(U')$. For c = 1 and $c \in U'$ that is clear. Assume now the claim is verified on $\Lambda^s(U')$ for $s \leq r - 1$. For $c \in \Lambda^r(U')$, it is enough to show the claim in elements of the form $a \land b$, where a, b have degree strictly less than r. We get, using relation 2 (and omitting \lrcorner for brevity):

$$\begin{aligned} x(x(a \wedge b)) &= x\big((xa) \wedge b + (-1)^r a \wedge (xb)\big) \\ &= (xxa) \wedge b + (-1)^{r+1}(xa) \wedge (xb) + (-1)^r (xa) \wedge (xb) + (-1)^{r+r} a \wedge (xxb) , \end{aligned}$$

which, together with the induction hypothesis, gives zero. Let x = u + u' be a general element of $U \oplus U'$ (with $u \in U, u' \in U'$). Using the above, we compute, for any $y \in \Lambda(U')$,

$$\begin{aligned} x^2y &= u \lrcorner (u \lrcorner y) + u \lrcorner (u' \land y) + u' \land (u \lrcorner y) + u' \land (u' \land y) \\ &= u \lrcorner (u' \land y) + u' \land (u \lrcorner y) = (u \lrcorner u') \land y \\ &= \beta(u, u')y . \end{aligned}$$

On the other hand, $q(x) = \frac{1}{2}\beta(x, x) = \beta(u, u')$. Thus the relation in the universal property holds, giving the map rho as required.

Exercise 48

2. \Rightarrow 1.: Set $\varphi(\sum_k z_k w_k) := \sum_k \bar{z}_k w_k$. The required properties of φ are then immediate.

1. \Rightarrow 2.: Since $\varphi^2 = id$, φ is diagonalisable (over \mathbb{R}) and has eigenvalues ± 1 (use the images of the idempotents $\frac{1}{2}(id \pm \varphi)$ to see this). Let $W = W_+ \oplus W_-$ the decomposition of W, seen as a real vector space, into the (real) eigenspaces W_{\pm} of φ . Note that if $x \in W_+$, then $ix \in W_-$, and vice versa, so that $i \cdot (-)$ is an \mathbb{R} -linear isomorphism $W_+ \to W_-$. Let w_1, \ldots, w_n be an \mathbb{R} -basis of W_+ .

Claim: w_1, \ldots, w_n is a \mathbb{C} -basis of W.

Proof: Since the iw_k span W_- over \mathbb{R} , it is clear that the w_k span W over \mathbb{C} . For linear independence, consider separately the components of $\sum_k (a_k + ib_k)w_k = 0$ in W_{\pm} .

Claim: The matrix entries of $\rho(a)$ are real.

Proof: By assumption, $\varphi(\rho(a)x) = \rho(a)\varphi(x)$ for all $a \in A, x \in W$. For $x = w_k$, we have $\varphi(w_k) = w_k$ and this condition reads

$$\varphi(\rho(a)w_k) = \rho(a)w_k \; .$$

Writing this out in matrix elements gives

$$\varphi(\sum_{j} \rho(a)_{jk} w_j) = \sum_{j} \rho(a)_{jk} w_j \; .$$

By antilinearity, the lhs is equal to $\sum_{j} \overline{\rho(a)_{jk}} w_{j}$, which shows that $\overline{\rho(a)_{jk}} = \rho(a)_{jk}$.

Exercise 49

1. As A is semisimple over \mathbb{R} , $A' := \mathbb{C} \otimes_{\mathbb{R}} A$ is semisimple over \mathbb{C} (use e.g. that A is a direct sum of matrix algebras over \mathbb{R} , \mathbb{C} or \mathbb{H} , each of which produces one or more matrix algebras over \mathbb{C} after tensoring with \mathbb{C}).

Write $V' = \mathbb{C} \otimes_{\mathbb{R}} V$ and let $0 \subsetneq U \subsetneq V'$ be a non-zero invariant complex subspace. As A' is semisimple, there is a (non-zero) invariant subspace X such that $W = U \oplus X$. But then $\dim_{\mathbb{C}} \operatorname{End}_{A'}(V') \ge 2$.

On the other hand, every \mathbb{C} -linear map of V' is of the form $1 \otimes f + i \otimes g$, where $f, g \in \operatorname{End}_{A,\mathbb{R}}(V)$. Indeed, let $F \in \operatorname{End}_{A',\mathbb{C}}(V')$. Then $F(z \otimes v) = zF(1 \otimes v) = z(1 \otimes v' + i \otimes v'')$, and we set f(v) = v', g(v) = v''. More abstractly, $\operatorname{End}_{A',\mathbb{C}}(\mathbb{C} \otimes_{\mathbb{R}} V) = \mathbb{C} \otimes_{\mathbb{R}} \operatorname{End}_{A,\mathbb{R}}(V)$. This shows $\dim_{\mathbb{C}} \operatorname{End}_{A'}(V') = \dim_{\mathbb{R}} \operatorname{End}_{A}(V) = 1$.

2. Since $\mathbb{C} \otimes 1$ in $\mathbb{C} \otimes_{\mathbb{R}} A$ commutes with $1 \otimes A$, it must map to $\operatorname{End}_{A,\mathbb{R}}(V) \cong \mathbb{C}$. Since unital algebra homomorphisms out of fields are injective (why?) this map is an isomorphism. Any two such maps differ by an (\mathbb{R} -linear) automorphism of \mathbb{C} . Write V and \overline{V} for the two possibilities (the automorphism being *id* and complex conjugation, respectively). Any isomorphism of representations of $\mathbb{C} \otimes_{\mathbb{R}} A$ from $V \to \overline{V}$ are in particular real isomorphism of A-representations from V to V, hence given by multiplying with an element from \mathbb{C} . As the automorphism given by complex conjugation is not inner (i.e. cannot be written as $z(-)z^{-1}$ for some $z \in \mathbb{C}$, the two representations V and \overline{V} are not isomorphic as representations of $\mathbb{C} \otimes_{\mathbb{R}} A$.

3. The argument starts in the same way as above. Fix an automorphism $\operatorname{End}_{A,\mathbb{R}}(V) \cong \mathbb{H}$. If $\varphi : \mathbb{C} \to \mathbb{H}$ is an injective algebra map, we need to show that the representations V_{φ} for different choices of φ are equivalent as representations over \mathbb{C} .

This follows if we can show that any two algebra maps $\varphi_1, \varphi_2 : \mathbb{C} \to \mathbb{H}$ are related by conjugation with some $q \in \mathbb{H}^{\times}$, i.e. $\varphi_2(-) = q\varphi_1(-)q^{-1}$.

To this end, note that $\varphi(i)^2 = -1$, and all elements $p \in \mathbb{H}$ with this property are of the form ai+bj+ck with $a^2+b^2+c^2 = 1$ (to see this, write $p^2 = -1$ as $pp\bar{p} = -\bar{p}$ and use that $p\bar{p}$ is just the norm of p). Extending $\varphi(i)$ to an ONbasis in the span of $\{i, j, k\}$ shows that φ extends to an algebra isomorphism $\mathbb{H} \to \mathbb{H}$. By Exercise 43 all automorphism of \mathbb{H} are inner, and so in particular φ_1, φ_2 differ by an inner automorphism.