Solutions for exercise sheet \# 11 Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 45

We will show that $-1 \notin \operatorname{Spin}_{1,1}^{0}$. By 3.3 , Lem. 1 we have $C l_{1,1} \cong \operatorname{Mat}(2, \mathbb{R})$. A possible isomorphism is given by

$$
e_{1} \mapsto\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad, \quad e_{2} \mapsto\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

Then $v=\alpha e_{1}+\beta e_{2} \in C l_{1,1}$ such that $q(v)= \pm 1$ are mapped to $M=\left(\begin{array}{cc}\beta & \alpha \\ -\alpha & -\beta\end{array}\right)$ such that $\operatorname{det}(M)= \pm 1$ (this uses that $q(v)=\alpha^{2}-\beta^{2}=\operatorname{det}(M)$). The group generated by such M is contained in matrices of the form

$$
\left\{\left.M=\left(\begin{array}{cc}
\beta & \alpha \\
-\alpha & -\beta
\end{array}\right) \right\rvert\, \operatorname{det}(M)= \pm 1\right\} \cup\left\{\left.N=\left(\begin{array}{cc}
\gamma & \delta \\
\delta & \gamma
\end{array}\right) \right\rvert\, \operatorname{det}(N)= \pm 1\right\} .
$$

Both $i d$ and $-i d$ are contained in the second component and have determinant 1. Hence the connecting path must have $\operatorname{det} N=1$ along the path. But then $\gamma^{2}-\delta^{2}=1$, that is, $\gamma^{2}=1+\delta^{2} \geq 1$. Any path connecting $i d$ to $-i d$ would need to include a point where $\gamma=0$, which is impossible.

Exercise 46

Uniqueness: Relation 2, applied to $a=y \in U^{\prime}$ and $b=1$ implies that $\left.x\right\lrcorner 1=0$. One can now use Relation 2 to define $x\lrcorner(-)$ inductively on $\Lambda^{r}\left(U^{\prime}\right)$.
Existence: The tedious step is to verify relation 2. We reduce the problem to the case $r=1$.

Claim: Suppose a given map $x\lrcorner(-)$ satisfies relation 1 and relation 2 in the case $r=1$. Then it satisfies relation 2 for all r.
Proof: By induction. Suppose relation 2 holds for some $r-1 \geq 1$. Let now $a \in \Lambda^{r}\left(U^{\prime}\right)$. All such a are linear combinations of $a=a^{\prime} \wedge a^{\prime \prime}$, where $a^{\prime} \in U^{\prime}$ and $a^{\prime \prime} \in \Lambda^{r-1}\left(U^{\prime}\right)$. Thus we may as well assume that $a=a^{\prime} \wedge a^{\prime \prime}$ (relation 2 is bilinear). Then

$$
\begin{aligned}
x\lrcorner(a \wedge b) & \left.\left.=x\lrcorner\left(a^{\prime} \wedge a^{\prime \prime} \wedge b\right) \stackrel{(*)}{=}(x\lrcorner a^{\prime}\right) \wedge a^{\prime \prime} \wedge b-a^{\prime} \wedge x\right\lrcorner\left(a^{\prime \prime} \wedge b\right) \\
& \left.\left.\left.\stackrel{(* *)}{=}(x\lrcorner a^{\prime}\right) \wedge a^{\prime \prime} \wedge b-a^{\prime} \wedge\left((x\lrcorner a^{\prime \prime}\right) \wedge b+(-1)^{r-1} a^{\prime \prime} \wedge(x\lrcorner b\right)\right) \\
& \left.\left.\left.=\left((x\lrcorner a^{\prime}\right) \wedge a^{\prime \prime}-a^{\prime} \wedge(x\lrcorner a^{\prime \prime}\right)\right) \wedge b+(-1)^{r} a^{\prime} \wedge a^{\prime \prime} \wedge(x\lrcorner b\right) \\
& \left.\stackrel{(*)}{=} x\lrcorner\left(a^{\prime} \wedge a^{\prime \prime} \wedge b\right)+(-1)^{r} a^{\prime} \wedge a^{\prime \prime} \wedge(x\lrcorner b\right) \\
& \left.=(x\lrcorner a) \wedge b+(-1)^{r} a \wedge(x\lrcorner b\right),
\end{aligned}
$$

where $\left(^{*}\right)$ is the assumption that relation 2 holds for $r=1$ and $\left({ }^{* *}\right)$ is the induction hypothesis for $r-1$. This completes the proof of the claim.

To give a concrete linear map $x\lrcorner(-)$ we work in a basis. Let e_{1}, \ldots, e_{n} be a basis of U^{\prime}. Write $\alpha_{i}:=\beta\left(x, e_{i}\right) \in \mathbb{C}$. From Prop. 3.1.9 we know that $e_{1}^{\delta_{1}} \wedge \cdots \wedge e_{n}^{\delta_{n}}$ is a basis of $\Lambda\left(U^{\prime}\right)$. Define $\left.x\right\lrcorner(-)$ on this basis as

$$
x\lrcorner\left(e_{1}^{\delta_{1}} \wedge \cdots \wedge e_{n}^{\delta_{n}}\right):=\sum_{k=1}^{n} \delta_{k}(-1)^{\sum_{l=1}^{k-1} \delta_{l}} \alpha_{k} \cdot e_{1}^{\delta_{1}} \wedge \cdots e_{k}^{\delta_{k}-1} \cdots \wedge e_{n}^{\delta_{n}}
$$

Relation 1 now follows by considering all basis vectors where only one δ_{k} is non-zero.
By the above claim, we only need to check relation 2 for $r=1$ (and, by bilinearity, only on a basis). We will check it on

$$
a=e_{t} \quad, \quad b=e_{1}^{\delta_{1}} \wedge \cdots \wedge e_{n}^{\delta_{n}}
$$

We distinguish two cases: $\delta_{t}=0$ and $\delta_{t}=1$. Let us start with $\delta_{t}=1$. Then $a \wedge b=0$, and it remains to check that the rhs of relation 2 is zero, too. We compute

$$
\begin{aligned}
& \left.\left.(x\lrcorner e_{t}\right) \wedge b-e_{t} \wedge(x\lrcorner b\right) \\
& =\alpha_{t} b-e_{t} \wedge\left(\sum_{k=1}^{n} \delta_{k}(-1)^{\sum_{l=1}^{k-1} \delta_{l}} \alpha_{k} \cdot e_{1}^{\delta_{1}} \wedge \cdots e_{k}^{\delta_{k}-1} \cdots \wedge e_{n}^{\delta_{n}}\right) \\
& \stackrel{(*)}{=} \alpha_{t} b-e_{t} \wedge\left((-1)^{\sum_{l=1}^{t-1} \delta_{l}} \alpha_{t} \cdot e_{1}^{\delta_{1}} \wedge \cdots e_{t}^{0} \cdots \wedge e_{n}^{\delta_{n}}\right) \\
& =\alpha_{t} b-\alpha_{t} \cdot e_{1}^{\delta_{1}} \wedge \cdots e_{t}^{1} \cdots \wedge e_{n}^{\delta_{n}}=0
\end{aligned}
$$

where in $\left(^{*}\right)$ we used that only the term for $k=t$ will give a non-zero contribution (all giving zero because of the leading $e_{t} \wedge(-)$).
Next consider the case $\delta_{t}=0$. Let $\hat{\delta}_{k}=\delta_{k}$ for $k \neq t$ and $\hat{\delta}_{t}=1$. Let

$$
c=e_{1}^{\hat{\delta}_{1}} \wedge \cdots \wedge e_{n}^{\hat{\delta}_{n}}
$$

The lhs of relation 2 is

$$
\left.(-1)^{\sum_{l=1}^{t-1} \delta_{l}} x\right\lrcorner c,
$$

where $x \wedge c$ abbreviates the definition of $x\lrcorner(-)$ on the basis. On the rhs we
compute

$$
\begin{aligned}
& \left.\left.(x\lrcorner e_{t}\right) \wedge b-e_{t} \wedge(x\lrcorner b\right) \\
& =\alpha_{t} b-e_{t} \wedge\left(\sum_{k=1, k \neq t}^{n} \delta_{k}(-1)^{\sum_{l=1}^{k-1} \delta_{l}} \alpha_{k} \cdot e_{1}^{\delta_{1}} \wedge \cdots e_{k}^{\delta_{k}-1} \cdots \wedge e_{n}^{\delta_{n}}\right) \\
& =\alpha_{t} b-\sum_{k=1, k<t}^{n} \delta_{k}(-1)^{\sum_{l=1}^{k-1} \delta_{l}} \alpha_{k}(-1)^{-1+\sum_{l=1}^{t-1} \delta_{l}} \cdot e_{1}^{\hat{\delta}_{1}} \wedge \cdots e_{k}^{\hat{\delta}_{k}-1} \cdots \wedge e_{n}^{\hat{\delta}_{n}} \\
& \quad-(-1)^{\sum_{l=1}^{t-1} \delta_{l}} \sum_{k=1, k>t}^{n} \delta_{k}(-1)^{\sum_{l=1}^{k-1} \delta_{l}} \alpha_{k} \cdot e_{1}^{\hat{\delta}_{1}} \wedge \cdots e_{k}^{\hat{\delta}_{k}-1} \cdots \wedge e_{n}^{\hat{\delta}_{n}} \\
& =(-1)^{\sum_{l=1}^{t-1} \delta_{l}}\left(\alpha_{t} \hat{\delta}_{t}(-1)^{\sum_{l=1}^{t-1} \hat{\delta}_{l}} \alpha_{k} \cdot e_{1}^{\hat{\delta}_{1}} \wedge \cdots e_{t}^{\hat{\delta}_{t}-1} \cdots \wedge e_{n}^{\hat{\delta}_{n}}\right. \\
& \quad+\sum_{k=1, k<t}^{n} \hat{\delta}_{k}(-1)^{\sum_{l=1}^{k-1} \hat{\delta}_{l}} \alpha_{k} \cdot e_{1}^{\hat{\delta}_{1}} \wedge \cdots e_{k}^{\hat{\delta}_{k}-1} \cdots \wedge e_{n}^{\hat{\delta}_{n}} \\
& \left.\quad+\sum_{k=1, k>t}^{n} \delta_{k}(-1)^{\sum_{l=1}^{k-1} \hat{\delta}_{l}} \alpha_{k} \cdot e_{1}^{\hat{\delta}_{1}} \wedge \cdots e_{k}^{\hat{\delta}_{k}-1} \cdots \wedge e_{n}^{\hat{\delta}_{n}}\right),
\end{aligned}
$$

which equals the lhs.

Exercise 47

Let $x \in U$ be arbitrary. We will show inductively that $x\lrcorner(x\lrcorner c)=0$ for all $c \in \Lambda\left(U^{\prime}\right)$. For $c=1$ and $c \in U^{\prime}$ that is clear. Assume now the claim is verified on $\Lambda^{s}\left(U^{\prime}\right)$ for $s \leq r-1$. For $c \in \Lambda^{r}\left(U^{\prime}\right)$, it is enough to show the claim in elements of the form $a \wedge b$, where a, b have degree strictly less than r. We get, using relation 2 (and omitting \lrcorner for brevity):

$$
\begin{aligned}
x(x(a \wedge b)) & =x\left((x a) \wedge b+(-1)^{r} a \wedge(x b)\right) \\
& =(x x a) \wedge b+(-1)^{r+1}(x a) \wedge(x b)+(-1)^{r}(x a) \wedge(x b)+(-1)^{r+r} a \wedge(x x b),
\end{aligned}
$$

which, together with the induction hypothesis, gives zero.
Let $x=u+u^{\prime}$ be a general element of $U \oplus U^{\prime}$ (with $u \in U, u^{\prime} \in U^{\prime}$). Using the above, we compute, for any $y \in \Lambda\left(U^{\prime}\right)$,

$$
\begin{aligned}
x^{2} y & \left.=u\lrcorner(u\lrcorner y)+u\lrcorner\left(u^{\prime} \wedge y\right)+u^{\prime} \wedge(u\lrcorner y\right)+u^{\prime} \wedge\left(u^{\prime} \wedge y\right) \\
& \left.\left.=u\lrcorner\left(u^{\prime} \wedge y\right)+u^{\prime} \wedge(u\lrcorner y\right)=(u\lrcorner u^{\prime}\right) \wedge y \\
& =\beta\left(u, u^{\prime}\right) y .
\end{aligned}
$$

On the other hand, $q(x)=\frac{1}{2} \beta(x, x)=\beta\left(u, u^{\prime}\right)$. Thus the relation in the universal property holds, giving the map rho as required.

Exercise 48

2. \Rightarrow 1.: Set $\varphi\left(\sum_{k} z_{k} w_{k}\right):=\sum_{k} \bar{z}_{k} w_{k}$. The required properties of φ are then immediate.
$1 . \Rightarrow 2$.: Since $\varphi^{2}=i d, \varphi$ is diagonalisable (over \mathbb{R}) and has eigenvalues ± 1 (use the images of the idempotents $\frac{1}{2}(i d \pm \varphi)$ to see this). Let $W=W_{+} \oplus W_{-}$the decomposition of W, seen as a real vector space, into the (real) eigenspaces $W_{ \pm}$ of φ. Note that if $x \in W_{+}$, then $i x \in W_{-}$, and vice versa, so that $i \cdot(-)$ is an \mathbb{R}-linear isomorphism $W_{+} \rightarrow W_{-}$. Let w_{1}, \ldots, w_{n} be an \mathbb{R}-basis of W_{+}.

Claim: w_{1}, \ldots, w_{n} is a \mathbb{C}-basis of W.
Proof: Since the $i w_{k}$ span W_{-}over \mathbb{R}, it is clear that the w_{k} span W over \mathbb{C}. For linear independence, consider separately the components of $\sum_{k}\left(a_{k}+i b_{k}\right) w_{k}=0$ in $W_{ \pm}$.
Claim: The matrix entries of $\rho(a)$ are real.
Proof: By assumption, $\varphi(\rho(a) x)=\rho(a) \varphi(x)$ for all $a \in A, x \in W$. For $x=w_{k}$, we have $\varphi\left(w_{k}\right)=w_{k}$ and this condition reads

$$
\varphi\left(\rho(a) w_{k}\right)=\rho(a) w_{k}
$$

Writing this out in matrix elements gives

$$
\varphi\left(\sum_{j} \rho(a)_{j k} w_{j}\right)=\sum_{j} \rho(a)_{j k} w_{j}
$$

By antilinearity, the lhs is equal to $\sum_{j} \overline{\rho(a)_{j k}} w_{j}$, which shows that $\overline{\rho(a)_{j k}}=$ $\rho(a)_{j k}$.

Exercise 49

1. As A is semisimple over $\mathbb{R}, A^{\prime}:=\mathbb{C} \otimes_{\mathbb{R}} A$ is semisimple over \mathbb{C} (use e.g. that A is a direct sum of matrix algebras over \mathbb{R}, \mathbb{C} or \mathbb{H}, each of which produces one or more matrix algebras over \mathbb{C} after tensoring with \mathbb{C}).
Write $V^{\prime}=\mathbb{C} \otimes_{\mathbb{R}} V$ and let $0 \subsetneq U \subsetneq V^{\prime}$ be a non-zero invariant complex subspace. As A^{\prime} is semisimple, there is a (non-zero) invariant subspace X such that $W=U \oplus X$. But then $\operatorname{dim}_{\mathbb{C}} \operatorname{End}_{A^{\prime}}\left(V^{\prime}\right) \geq 2$.
On the other hand, every \mathbb{C}-linear map of V^{\prime} is of the form $1 \otimes f+i \otimes g$, where $f, g \in \operatorname{End}_{A, \mathbb{R}}(V)$. Indeed, let $F \in \operatorname{End}_{A^{\prime}, \mathbb{C}}\left(V^{\prime}\right)$. Then $F(z \otimes v)=$ $z F(1 \otimes v)=z\left(1 \otimes v^{\prime}+i \otimes v^{\prime \prime}\right)$, and we set $f(v)=v^{\prime}, g(v)=v^{\prime \prime}$. More abstractly, $\operatorname{End}_{A^{\prime}, \mathbb{C}}\left(\mathbb{C} \otimes_{\mathbb{R}} V\right)=\mathbb{C} \otimes_{\mathbb{R}} \operatorname{End}_{A, \mathbb{R}}(V)$. This shows $\operatorname{dim}_{\mathbb{C}} \operatorname{End}_{A^{\prime}}\left(V^{\prime}\right)=$ $\operatorname{dim}_{\mathbb{R}} \operatorname{End}_{A}(V)=1$.
2. Since $\mathbb{C} \otimes 1$ in $\mathbb{C} \otimes_{\mathbb{R}} A$ commutes with $1 \otimes A$, it must map to $\operatorname{End}_{A, \mathbb{R}}(V) \cong \mathbb{C}$. Since unital algebra homomorphisms out of fields are injective (why?) this map is an isomorphism. Any two such maps differ by an (\mathbb{R}-linear) automorphism of \mathbb{C}. Write V and \bar{V} for the two possibilities (the automorphism being $i d$ and complex conjugation, respectively). Any isomorphism of representations of $\mathbb{C} \otimes_{\mathbb{R}} A$ from $V \rightarrow \bar{V}$ are in particular real isomorphism of A-representations from V to V, hence given by multiplying with an element
from \mathbb{C}. As the automorphism given by complex conjugation is not inner (i.e. cannot be written as $z(-) z^{-1}$ for some $z \in \mathbb{C}$, the two representations V and \bar{V} are not isomorphic as representations of $\mathbb{C} \otimes_{\mathbb{R}} A$.
3. The argument starts in the same way as above. Fix an automorphism $\operatorname{End}_{A, \mathbb{R}}(V) \cong \mathbb{H}$. If $\varphi: \mathbb{C} \rightarrow \mathbb{H}$ is an injective algebra map, we need to show that the representations V_{φ} for different choices of φ are equivalent as representations over \mathbb{C}.

This follows if we can show that any two algebra maps $\varphi_{1}, \varphi_{2}: \mathbb{C} \rightarrow \mathbb{H}$ are related by conjugation with some $q \in \mathbb{H}^{\times}$, i.e. $\varphi_{2}(-)=q \varphi_{1}(-) q^{-1}$.
To this end, note that $\varphi(i)^{2}=-1$, and all elements $p \in \mathbb{H}$ with this property are of the form $a i+b j+c k$ with $a^{2}+b^{2}+c^{2}=1$ (to see this, write $p^{2}=-1$ as $p p \bar{p}=-\bar{p}$ and use that $p \bar{p}$ is just the norm of $p)$. Extending $\varphi(i)$ to an ONbasis in the span of $\{i, j, k\}$ shows that φ extends to an algebra isomorphism $\mathbb{H} \rightarrow \mathbb{H}$. By Exercise 43 all automorphism of \mathbb{H} are inner, and so in particular φ_{1}, φ_{2} differ by an inner automorphism.

