Solutions for exercise sheet # 11
Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 45

We will show that —1 ¢ Spin§ ;. By 3.3, Lem. 1 we have Cl;; = Mat(2,R). A
possible isomorphism is given by

er— (%8) , e~ (%)

Then v = aeq + fes € Cly 1 such that g(v) = £1 are mapped to M = (fa fﬁ)
such that det(M) = 41 (this uses that ¢(v) = a? — 2 = det(M)). The group
generated by such M is contained in matrices of the form
« 5
{M = (2 _ﬁ)‘det(M) - il} U {N = (1 7)‘det(N) - il} .
Both id and —id are contained in the second component and have determinant
1. Hence the connecting path must have det N = 1 along the path. But then
v2 — 62 =1, that is, 2 = 1 + 62 > 1. Any path connecting id to —id would
need to include a point where v = 0, which is impossible.

Exercise 46

Uniqueness: Relation 2, applied to a = y € U’ and b = 1 implies that .1 = 0.
One can now use Relation 2 to define z(—) inductively on A™(U").

Existence: The tedious step is to verify relation 2. We reduce the problem to
the case r = 1.

Claim: Suppose a given map z_(—) satisfies relation 1 and relation 2 in the case
r = 1. Then it satisfies relation 2 for all r.

Proof: By induction. Suppose relation 2 holds for some r — 1 > 1. Let now
a € A™(U"). All such a are linear combinations of a = a’ A a”, where o’ € U’
and a” € A""1(U’). Thus we may as well assume that a = a’ A a” (relation 2 is
bilinear). Then

zi(a Ab) = zi(a’ Na" A D) © (xaa" Y Na" Nb—d Aza(a” AD)
() (zodYANa" Ab—ad A ((x_na”) Ab+ (=1 ta" A (be)>

= ((x_la’) Na" —a A (:ma”)) Ab+ (=1)"a’ Aad" A (z2b)

© xa(a ANa” Ab)+ (—1)"a Ad” A (xb)

= (;Eja) ANb+ (—l)ra N (.’I?Jb) s

where (*) is the assumption that relation 2 holds for » = 1 and (**) is the
induction hypothesis for » — 1. This completes the proof of the claim.



To give a concrete linear map x1(—) we work in a basis. Let eq, ..., e, be a basis
of U'. Write o; := f(z,e;) € C. From Prop.3.1.9 we know that e$* A --- A edn
is a basis of A(U’). Define x1(—) on this basis as

n
za(e A Nedn) = de(_l)Zf;f Sop e A eik_l N
k=1

Relation 1 now follows by considering all basis vectors where only one §; is
non-zero.

By the above claim, we only need to check relation 2 for »r = 1 (and, by bilin-
earity, only on a basis). We will check it on

a=e , b=elA-Ned .

We distinguish two cases: §; = 0 and 6; = 1. Let us start with §; = 1. Then
a AN'b =0, and it remains to check that the rhs of relation 2 is zero, too. We
compute

(xoet) ANb— e A (zab)

n

n
k—1
=aqb—e A ( E Sr(—1)Xi=1 %y e A - ~ei’“71 R 66”)
k=1

(;) atb_ [eh A ((_1)2;;11 5lat . eil N - .e? e /\efl")

:atb—at~e‘1s1/\-~-e%~--/\efﬁ: ,

where in (*) we used that only the term for k = ¢ will give a non-zero contribu-
tion (all giving zero because of the leading e; A (—)).
Next consider the case d; = 0. Let §; = dy for k # ¢t and d; = 1. Let

C:€(1§1 /\.../\eiﬂ

The lhs of relation 2 is
(—l)zlt;l1 Sy e,

where x A ¢ abbreviates the definition of xzi(—) on the basis. On the rhs we



compute

(xae) Nb—er A (be)

zatb—et/\< Z ok(— Zl l‘slak 661/\ i’“ ! --/\65">

k=1,k+#£t
- . .
Cabe 3 BT g (1) S p T
k=1,k<t
t—1 N
Zz a E 5 (— Zz 151ak 651/\ ei’“ L. /\ef{‘
k=1k>t

= (71)21211 i (afgt(fl)zf;ll 8lak . 6(151 /\ P e?t_]‘ . /\ 68"
n

Y BDER e A Al

k=1,k<t
n
k-1 3 2 s 2
+ 5 6k(71)zl:1 6’ak-e‘1;1/\-~~eik 1---/\62") ,
k=1,k>t

which equals the lhs.

Exercise 47

Let « € U be arbitrary. We will show inductively that z.i(x.c) = 0 for all
c € A(U"). For c=1 and ¢ € U’ that is clear. Assume now the claim is verified
on A*(U’) for s < r —1. For ¢ € A"(U’), it is enough to show the claim in
elements of the form a A b, where a,b have degree strictly less than r. We get,
using relation 2 (and omitting J for brevity):

z(z(aAb)) =z((za) Ab+ (—1)"a A (xb))
= (zza) Nb+ (=1)" ! (za) A (2b) + (=1)"(za) A (2b) + (=1) " a A
which, together with the induction hypothesis, gives zero.
Let z = u+ v be a general element of U @ U’ (with u € U, v’ € U’). Using the
above, we compute, for any y € A(U),
22y = ua(uay) +us(u’ Ay) +u' A (uay) Fu' A (W Ay)
=us(u Ay)+u' A (usy) = (uu') Ay
= Blu,u’)y

On the other hand, ¢(z) = £8(z, ) = B(u,u’). Thus the relation in the univer-
sal property holds, giving the map rho as required.

Exercise 48

2. = 1. Set (3>, zwy) = Y, Zrwi. The required properties of ¢ are then
immediate.



1. = 2.: Since p? = id, ¢ is diagonalisable (over R) and has eigenvalues 41 (use
the images of the idempotents 1 (id + ¢) to see this). Let W = W, & W_ the
decomposition of W, seen as a real vector space, into the (real) eigenspaces Wy
of ¢. Note that if x € W, then iz € W_, and vice versa, so that i - (—) is an
R-linear isomorphism W, — W_. Let wy,...,w, be an R-basis of W,.

Claim: w1, ...,w, is a C-basis of W.

Proof: Since the iwy span W_ over R, it is clear that the w; span W over C. For
linear independence, consider separately the components of ), (ax +iby)wi, = 0
in Wi.

Claim: The matrix entries of p(a) are real.

Proof: By assumption, ¢(p(a)z) = p(a)p(z) for all a € A, z € W. For z = wy,
we have p(wy) = wy and this condition reads

p(pla)wy) = pla)wy .

Writing this out in matrix elements gives
p(Y_ pla)jpwy) = pla)kw; -
J J

By antilinearity, the lhs is equal to ; p(a);xw;, which shows that p(a);, =
p(a)ji-

Exercise 49

1. As A is semisimple over R, A’ := C ®g A is semisimple over C (use e.g. that
A is a direct sum of matrix algebras over R, C or H, each of which produces
one or more matrix algebras over C after tensoring with C).

Write V! = C®g V and let 0 C U C V' be a non-zero invariant complex
subspace. As A’ is semisimple, there is a (non-zero) invariant subspace X
such that W = U @ X. But then dim¢ End 4/ (V') > 2.

On the other hand, every C-linear map of V' is of the foom 1 ® f +i® g,
where f,g € Endag(V). Indeed, let F € Enda/ c(V’). Then F(z @ v) =
2F(1®v) =2(1®v" +i®0v"), and we set f(v) =, g(v) = v"”. More ab-
stractly, Enda/ c(C®grV) = CQrEnd 4 g(V). This shows dim¢ End 4/ (V') =
dimg End4 (V) = 1.

2. Since C®1 in C®r A commutes with 1® A, it must map to End g(V) = C.
Since unital algebra homomorphisms out of fields are injective (why?) this
map is an isomorphism. Any two such maps differ by an (R-linear) auto-
morphism of C. Write V and V for the two possibilities (the automorphism
being id and complex conjugation, respectively). Any isomorphism of rep-
resentations of C ®g A from V — V are in particular real isomorphism of
A-representations from V to V', hence given by multiplying with an element



from C. As the automorphism given by complex conjugation is not inner
(i.e. can_not be written as z(—)z_l for some z € C, the two representations
V and V are not isomorphic as representations of C Qg A.

. The argument starts in the same way as above. Fix an automorphism
Endar(V) = H. If ¢ : C — H is an injective algebra map, we need to
show that the representations V,, for different choices of ¢ are equivalent as
representations over C.

This follows if we can show that any two algebra maps @1, : C — H are
related by conjugation with some ¢ € H*, i.e. po(—) = qo1(—)q L.

To this end, note that (i)?> = —1, and all elements p € H with this property
are of the form ai+bj+ck with a? +b%+c? = 1 (to see this, write p> = —1 as
ppp = —p and use that pp is just the norm of p). Extending ¢(i) to an ON-
basis in the span of {i, j, k} shows that ¢ extends to an algebra isomorphism
H — H. By Exercise 43 all automorphism of H are inner, and so in particular
1, o differ by an inner automorphism.



