
Solutions for exercise sheet #11
Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 45

We will show that −1 /∈ Spin01,1. By 3.3, Lem. 1 we have Cl1,1 ∼= Mat(2,R). A
possible isomorphism is given by

e1 7→
(

0 1
−1 0

)
, e2 7→

(
1 0
0 −1

)
.

Then v = αe1 + βe2 ∈ Cl1,1 such that q(v) = ±1 are mapped to M =
( β α
−α −β

)
such that det(M) = ±1 (this uses that q(v) = α2 − β2 = det(M)). The group
generated by such M is contained in matrices of the form{

M =
( β α
−α −β

)∣∣∣ det(M) = ±1
}
∪
{
N =

( γ δ
δ γ

)∣∣∣det(N) = ±1
}
.

Both id and −id are contained in the second component and have determinant
1. Hence the connecting path must have detN = 1 along the path. But then
γ2 − δ2 = 1, that is, γ2 = 1 + δ2 ≥ 1. Any path connecting id to −id would
need to include a point where γ = 0, which is impossible.

Exercise 46

Uniqueness: Relation 2, applied to a = y ∈ U ′ and b = 1 implies that xy1 = 0.
One can now use Relation 2 to define xy(−) inductively on Λr(U ′).

Existence: The tedious step is to verify relation 2. We reduce the problem to
the case r = 1.

Claim: Suppose a given map xy(−) satisfies relation 1 and relation 2 in the case
r = 1. Then it satisfies relation 2 for all r.
Proof: By induction. Suppose relation 2 holds for some r − 1 ≥ 1. Let now
a ∈ Λr(U ′). All such a are linear combinations of a = a′ ∧ a′′, where a′ ∈ U ′
and a′′ ∈ Λr−1(U ′). Thus we may as well assume that a = a′ ∧ a′′ (relation 2 is
bilinear). Then

xy(a ∧ b) = xy(a′ ∧ a′′ ∧ b) (∗)
= (xya′) ∧ a′′ ∧ b− a′ ∧ xy(a′′ ∧ b)

(∗∗)
= (xya′) ∧ a′′ ∧ b− a′ ∧

(
(xya′′) ∧ b+ (−1)r−1a′′ ∧ (xyb)

)
=
(

(xya′) ∧ a′′ − a′ ∧ (xya′′)
)
∧ b+ (−1)ra′ ∧ a′′ ∧ (xyb)

(∗)
= xy(a′ ∧ a′′ ∧ b) + (−1)ra′ ∧ a′′ ∧ (xyb)

= (xya) ∧ b+ (−1)ra ∧ (xyb) ,

where (*) is the assumption that relation 2 holds for r = 1 and (**) is the
induction hypothesis for r − 1. This completes the proof of the claim.
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To give a concrete linear map xy(−) we work in a basis. Let e1, . . . , en be a basis
of U ′. Write αi := β(x, ei) ∈ C. From Prop. 3.1.9 we know that eδ11 ∧ · · · ∧ eδnn
is a basis of Λ(U ′). Define xy(−) on this basis as

xy(eδ11 ∧ · · · ∧ eδnn ) :=

n∑
k=1

δk(−1)
∑k−1

l=1 δlαk · eδ11 ∧ · · · e
δk−1
k · · · ∧ eδnn

Relation 1 now follows by considering all basis vectors where only one δk is
non-zero.
By the above claim, we only need to check relation 2 for r = 1 (and, by bilin-
earity, only on a basis). We will check it on

a = et , b = eδ11 ∧ · · · ∧ eδnn .

We distinguish two cases: δt = 0 and δt = 1. Let us start with δt = 1. Then
a ∧ b = 0, and it remains to check that the rhs of relation 2 is zero, too. We
compute

(xyet) ∧ b− et ∧ (xyb)

= αtb− et ∧
( n∑
k=1

δk(−1)
∑k−1

l=1 δlαk · eδ11 ∧ · · · e
δk−1
k · · · ∧ eδnn

)
(∗)
= αtb− et ∧

(
(−1)

∑t−1
l=1 δlαt · eδ11 ∧ · · · e0t · · · ∧ eδnn

)
= αtb− αt · eδ11 ∧ · · · e1t · · · ∧ eδnn = 0 ,

where in (*) we used that only the term for k = t will give a non-zero contribu-
tion (all giving zero because of the leading et ∧ (−)).

Next consider the case δt = 0. Let δ̂k = δk for k 6= t and δ̂t = 1. Let

c = eδ̂11 ∧ · · · ∧ eδ̂nn

The lhs of relation 2 is
(−1)

∑t−1
l=1 δlxyc ,

where x ∧ c abbreviates the definition of xy(−) on the basis. On the rhs we

2



compute

(xyet) ∧ b− et ∧ (xyb)

= αtb− et ∧
( n∑
k=1,k 6=t

δk(−1)
∑k−1

l=1 δlαk · eδ11 ∧ · · · e
δk−1
k · · · ∧ eδnn

)
= αtb−

n∑
k=1,k<t

δk(−1)
∑k−1

l=1 δlαk(−1)−1+
∑t−1

l=1 δl · eδ̂11 ∧ · · · e
δ̂k−1
k · · · ∧ eδ̂nn

− (−1)
∑t−1

l=1 δl

n∑
k=1,k>t

δk(−1)
∑k−1

l=1 δlαk · eδ̂11 ∧ · · · e
δ̂k−1
k · · · ∧ eδ̂nn

= (−1)
∑t−1

l=1 δl
(
αtδ̂t(−1)

∑t−1
l=1 δ̂lαk · eδ̂11 ∧ · · · e

δ̂t−1
t · · · ∧ eδ̂nn

+

n∑
k=1,k<t

δ̂k(−1)
∑k−1

l=1 δ̂lαk · eδ̂11 ∧ · · · e
δ̂k−1
k · · · ∧ eδ̂nn

+
n∑

k=1,k>t

δk(−1)
∑k−1

l=1 δ̂lαk · eδ̂11 ∧ · · · e
δ̂k−1
k · · · ∧ eδ̂nn

)
,

which equals the lhs.

Exercise 47

Let x ∈ U be arbitrary. We will show inductively that xy(xyc) = 0 for all
c ∈ Λ(U ′). For c = 1 and c ∈ U ′ that is clear. Assume now the claim is verified
on Λs(U ′) for s ≤ r − 1. For c ∈ Λr(U ′), it is enough to show the claim in
elements of the form a ∧ b, where a, b have degree strictly less than r. We get,
using relation 2 (and omitting y for brevity):

x(x(a ∧ b)) = x
(
(xa) ∧ b+ (−1)ra ∧ (xb)

)
= (xxa) ∧ b+ (−1)r+1(xa) ∧ (xb) + (−1)r(xa) ∧ (xb) + (−1)r+ra ∧ (xxb) ,

which, together with the induction hypothesis, gives zero.
Let x = u+ u′ be a general element of U ⊕U ′ (with u ∈ U , u′ ∈ U ′). Using the
above, we compute, for any y ∈ Λ(U ′),

x2y = uy(uyy) + uy(u′ ∧ y) + u′ ∧ (uyy) + u′ ∧ (u′ ∧ y)

= uy(u′ ∧ y) + u′ ∧ (uyy) = (uyu′) ∧ y
= β(u, u′)y .

On the other hand, q(x) = 1
2β(x, x) = β(u, u′). Thus the relation in the univer-

sal property holds, giving the map rho as required.

Exercise 48

2. ⇒ 1.: Set ϕ(
∑
k zkwk) :=

∑
k z̄kwk. The required properties of ϕ are then

immediate.
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1.⇒ 2.: Since ϕ2 = id, ϕ is diagonalisable (over R) and has eigenvalues ±1 (use
the images of the idempotents 1

2 (id ± ϕ) to see this). Let W = W+ ⊕W− the
decomposition of W , seen as a real vector space, into the (real) eigenspaces W±
of ϕ. Note that if x ∈ W+, then ix ∈ W−, and vice versa, so that i · (−) is an
R-linear isomorphism W+ →W−. Let w1, . . . , wn be an R-basis of W+.

Claim: w1, . . . , wn is a C-basis of W .

Proof: Since the iwk span W− over R, it is clear that the wk span W over C. For
linear independence, consider separately the components of

∑
k(ak+ibk)wk = 0

in W±.

Claim: The matrix entries of ρ(a) are real.

Proof: By assumption, ϕ(ρ(a)x) = ρ(a)ϕ(x) for all a ∈ A, x ∈ W . For x = wk,
we have ϕ(wk) = wk and this condition reads

ϕ(ρ(a)wk) = ρ(a)wk .

Writing this out in matrix elements gives

ϕ(
∑
j

ρ(a)jkwj) =
∑
j

ρ(a)jkwj .

By antilinearity, the lhs is equal to
∑
j ρ(a)jkwj , which shows that ρ(a)jk =

ρ(a)jk.

Exercise 49

1. As A is semisimple over R, A′ := C⊗R A is semisimple over C (use e.g. that
A is a direct sum of matrix algebras over R, C or H, each of which produces
one or more matrix algebras over C after tensoring with C).

Write V ′ = C ⊗R V and let 0 ( U ( V ′ be a non-zero invariant complex
subspace. As A′ is semisimple, there is a (non-zero) invariant subspace X
such that W = U ⊕X. But then dimC EndA′(V

′) ≥ 2.

On the other hand, every C-linear map of V ′ is of the form 1 ⊗ f + i ⊗ g,
where f, g ∈ EndA,R(V ). Indeed, let F ∈ EndA′,C(V ′). Then F (z ⊗ v) =
zF (1 ⊗ v) = z(1 ⊗ v′ + i ⊗ v′′), and we set f(v) = v′, g(v) = v′′. More ab-
stractly, EndA′,C(C⊗RV ) = C⊗REndA,R(V ). This shows dimC EndA′(V

′) =
dimR EndA(V ) = 1.

2. Since C⊗1 in C⊗RA commutes with 1⊗A, it must map to EndA,R(V ) ∼= C.
Since unital algebra homomorphisms out of fields are injective (why?) this
map is an isomorphism. Any two such maps differ by an (R-linear) auto-
morphism of C. Write V and V̄ for the two possibilities (the automorphism
being id and complex conjugation, respectively). Any isomorphism of rep-
resentations of C ⊗R A from V → V̄ are in particular real isomorphism of
A-representations from V to V , hence given by multiplying with an element
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from C. As the automorphism given by complex conjugation is not inner
(i.e. cannot be written as z(−)z−1 for some z ∈ C, the two representations
V and V̄ are not isomorphic as representations of C⊗R A.

3. The argument starts in the same way as above. Fix an automorphism
EndA,R(V ) ∼= H. If ϕ : C → H is an injective algebra map, we need to
show that the representations Vϕ for different choices of ϕ are equivalent as
representations over C.

This follows if we can show that any two algebra maps ϕ1, ϕ2 : C → H are
related by conjugation with some q ∈ H×, i.e. ϕ2(−) = qϕ1(−)q−1.

To this end, note that ϕ(i)2 = −1, and all elements p ∈ H with this property
are of the form ai+bj+ck with a2+b2+c2 = 1 (to see this, write p2 = −1 as
ppp̄ = −p̄ and use that pp̄ is just the norm of p). Extending ϕ(i) to an ON-
basis in the span of {i, j, k} shows that ϕ extends to an algebra isomorphism
H→ H. By Exercise 43 all automorphism of H are inner, and so in particular
ϕ1, ϕ2 differ by an inner automorphism.
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