
Solutions for exercise sheet #10
Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 39

1. We can just copy the solution to exercise 38 part 2: Let f : V → A be as in
the universal property of a Clifford algebra.

Existence: By the universal property of the tensor algebra, we obtain an
algebra homomorphism f̂ : T (V ) → A. Since f(v)f(v) = −q(v)1, f̂ annihi-
lates the ideal 〈 v⊗v+q(v)1 | v ∈ V 〉 and hence factors through the quotient
Cl(V, q), giving an algebra homomorphism f̃ : Cl(V, q) → A such that the
required diagram commutes: f = f̃ ◦ ι.
Uniqueness: Cl(V, q) is spanned as aK-vector spaces by products ι(v1) · · · ι(vk)
of a finite number (including zero) of elements of V . But on each of these,
f̃ is uniquely determined by being an algebra homomorphism and by the
commuting diagram to be f̃(ι(v1) · · · ι(vk)) = f(v1) · · · f(vk).

2. To see the composition property, consider the three commuting squares

U
ι //

f2

��

Cl(U, p)

Cl(f2)

��
V

ι //

f1

��

Cl(V, q)

Cl(f1)

��
W

ι // Cl(W, r)

U
ι //

f1◦f2
��

Cl(U, p)

Cl(f1◦f2)
��

W
ι // Cl(W, r)

By the uniqueness in the universal property, we must have Cl(f1 ◦ f2) =
Cl(f1) ◦ Cl(f2).

Exercise 40

1. Claim: The centre of H is R1.

Proof: Let z = a1 + bI + cJ + dK and suppose that z ∈ Z(H). Since
Iz = aI1 + bII+ cIJ +dIK = aI− b+ cK−dJ and zI = a1I+ bII+ cJI+
dKI = aI − b − cK + dJ , we must have c = 0 and d = 0. An analogous
computation with J shows b = 0.

2. Let x =
∑L
a=1 pa ⊗ qa be minimal as in the hint. The pa must be linearly

independent, or we could write x as a shorter sum of pure tensors. We have
x′ = x(1⊗ q−11 ) =

∑L
a=1 pa⊗ q̃a, where q̃a = qaq

−1
1 , so that q̃1 = 1. As I is a

two-sided ideal, x′ ∈ I. Since multiplication by 1⊗ q−11 is invertible, x′ 6= 0.
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Let now y ∈ H be arbitrary. The element x′′ = (1⊗y)x′−x′(1⊗y) is equally
contained in I. Explicitly,

x′′ =

L∑
a=1

pa ⊗ (yq̃a − q̃ay) =

L∑
a=2

pa ⊗ (yq̃a − q̃ay) ,

where in the second step we used that q̃1 = 1. But by assumption, the
shortest way to write a non-zero element in I in terms of pure tensors uses
L terms. Hence x′′ must be zero.

Since the pa are linearly independent, we must have yq̃a − q̃ay = 0 for
a = 2, . . . , L. As this holds for all y, the q̃a are central. By part 1 there exist
λa ∈ R such that qa = λa1. Using this, we can rewrite x′ as

x′ =

L∑
a=1

pa ⊗ (λa1) =
( L∑
a=1

λapa

)
⊗ 1 = p⊗ 1

for an appropriate p ∈ H.

As x′ 6= 0 we have p 6= 0. Multiplying by p−1 ⊗ 1 gives 1⊗ 1 ∈ I. As this is
the unit of H⊗R H, we have I = H⊗R H.

Aside: Without modification, the same proof shows that for D a division
algebra over a field k such that Z(D) = k1, the k-algebra D ⊗k D does
not have non-trivial ideals. A more general version with a slightly different
proof can be found e.g. in Theorem 3.5 and Lemma 3.7 in Farb, Dennis,
Noncommutative Algebra (Springer, 1993).

Exercise 41

1. Write 1, I, J,K for the basis of H.

Cl2,0: Consider the map f : R2 → H, (x, y) 7→ xI + yJ . Then

f(x, y)f(x, y) = (xI + yJ)(xI + yJ) = −x2 + xyIJ + xyJI − y2 = −x2 − y2

= −q2,0(x, y)1 .

By the universal property we obtain an algebra homomorphism f̃ : Cl2,0 →
H. f̃ maps 1 7→ 1, e1 7→ I, e2 7→ J , e1e2 7→ IJ = K. Hence it maps an
R-basis to an R-basis and therefore is an isomorphism.

Cl2,0: Consider the map f : R2 → Mat(2,R), (x, y) 7→
( x y
y −x

)
. Then

f(x, y)f(x, y) =
( x y
y −x

)( x y
y −x

)
=
( x2+y2 0

0 x2+y2

)
= (x2 + y2)

(
1 0
0 1

)
= −q0,2(x, y)

(
1 0
0 1

)
.

The rest of the argument is as above.
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2. The map x 7→ pxq̄ is R-linear, as required. The map ψ is R-linear, too.
ψ(1⊗ 1) = (x 7→ x) = idH, so ψ is unital and

ψ((p⊗ q)(r ⊗ s))(x) = ψ((pr)⊗ (qs))(x) = (pr)x(qs) = p r x s̄ q̄ ,

as well as

(ψ(p⊗ q) ◦ ψ(r ⊗ s))(x) = ψ(p⊗ q)(rxs̄) = p r x s̄ q̄ ,

so that ψ is compatible with the product. Altogether, this shows that ψ is
an R-algebra homomorphism.

It remains to show bijectivity.

Elementary method: Pairing elements of {1, I, J,K} with each other gives
a 16-element basis of H ⊗R H. ψ applied to each of these 16 elements can
be evaluated on that same basis, giving a 4×4 matrix. This produces 16
4×4 matrix (with entries 0,±1) which can then be checked to be linearly
independent.

Abstract method: We have seen in exercise 40 that H ⊗R H has no non-
trivial two-sided ideals. Thus the kernel of ψ is either 0 or H ⊗R H. As
ψ(1 ⊗ 1) = idH 6= 0, the kernel is not H ⊗R H. Thus ψ is injective. Source
and target of ψ have the sime dimension as R-vector spaces. Hence ψ is also
surjective.

Exercise 42

(All references are to section 3.3.) The starting point is lemma 1 (and the trivial
case of a 0-dim v.sp.):

Cl0,0 ∼= R , Cl1,0 ∼= C , Cl2,0 ∼= H , Cl0,1 ∼= R⊕ R , Cl0,2 ∼= Mat(2,R) .

From lemma 3 we learn

Cln,0 ∼= Cl0,n−2 ⊗ Cl2,0 ∼= Cl0,n−2 ⊗H ,

Cl0,n ∼= Cln−2,0 ⊗ Cl0,2 ∼= Cln−2,0 ⊗Mat(2,R) .

From this we can determine more entries in the zero’s row and column

Cl3,0 ∼= Cl0,1 ⊗H ∼= H⊕H Cl4,0 ∼= Mat(2,H)

Cl0,3 ∼= Cl1,0 ⊗Mat(2,R) ∼= Mat(2,C) Cl0,4 ∼= Mat(2,H)

For the remaining entries in the zero’s row and column we iterate the above
relation:

Cln,0 ∼= Cl0,n−2 ⊗H ∼= Cln−4,0 ⊗H⊗Mat(2,R) ,

Cl0,n ∼= Cl0,n−4 ⊗H⊗Mat(2,R) .
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We can now determine the remaining of the first 8 entries in the 0-row and
column, using also lemma 5:

Cl5,0 ∼= Cl1,0 ⊗H⊗Mat(2,R) ∼= C⊗H⊗Mat(2,R) ∼= Mat(2,C)⊗Mat(2,R) ∼= Mat(4,C)

Cl6,0 ∼= Mat(8,R)

Cl7,0 ∼= (H⊕H)⊗H⊗Mat(2,R) ∼= Mat(4,R)⊕2 ⊗Mat(2,R) ∼= Mat(8,R)⊕2

Cl0,5 ∼= Mat(2,H)⊕2

Cl0,6 ∼= Mat(4,H)

Cl0,7 ∼= Mat(8,C)

These entries agree with the table in theorem 6. Iterating lemma 3 once more
gives

Cln,0 ∼= Cln−8,0 ⊗Mat(16,R) , Cl0,n ∼= Cl0,n−8 ⊗Mat(16,R) .

Or, equivalently, for k ≥ 0,

Cln+8k,0
∼= Cln,0 ⊗Mat(28k/2,R) , Cl0,n+8k

∼= Cl0,n ⊗Mat(28k/2,R) .

This establishes the table for all Cld,0 and Cl0,d.
Finally, once more by lemmas 1 and 3, Clr+1,s+1

∼= Clr,s ⊗Mat(2,R), that is,
for k ≥ 0,

Clr+k,s+k ∼= Clr,s ⊗Mat(2k,R) .

This completes the proof of theorem 6.

Exercise 42

1. An H-H-bimodule is the same as an H⊗R Hop left module. The conjugation
( ) gives an R-algebra isomorphism H → Hop. Hence H is an H ⊗R H-left
module. By exercise 40, H⊗R H ∼= Mat(4,R). By theorem 1.2.9, Mat(4,R)
is semisimple and has the unique simple module R4.

2. Let f : H → αH be the bimodule isomorphism. Compatibility with the left
action means, for all p, q ∈ H, f(pq) = α(p)f(q). Compatibility with the
right action means f(pq) = f(p)q. Evaluating the first for q = 1 and the
second for p = 1 shows f(p) = α(p)f(1) and f(q) = f(1)q. Thus

α(p)f(1) = f(p) = f(1)p .

Now f(1) 6= 0 (or f would not be invertible) and so α(p) = f(1)pf(1)−1.
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