Solutions for exercise sheet \# 10 Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 39

1. We can just copy the solution to exercise 38 part 2: Let $f: V \rightarrow A$ be as in the universal property of a Clifford algebra.
Existence: By the universal property of the tensor algebra, we obtain an algebra homomorphism $\hat{f}: T(V) \rightarrow A$. Since $f(v) f(v)=-q(v) 1, \hat{f}$ annihilates the ideal $\langle v \otimes v+q(v) 1 \mid v \in V\rangle$ and hence factors through the quotient $C l(V, q)$, giving an algebra homomorphism $\tilde{f}: C l(V, q) \rightarrow A$ such that the required diagram commutes: $f=\tilde{f} \circ \iota$.
Uniqueness: $C l(V, q)$ is spanned as a K-vector spaces by products $\iota\left(v_{1}\right) \cdots \iota\left(v_{k}\right)$ of a finite number (including zero) of elements of V. But on each of these, \tilde{f} is uniquely determined by being an algebra homomorphism and by the commuting diagram to be $\tilde{f}\left(\iota\left(v_{1}\right) \cdots \iota\left(v_{k}\right)\right)=f\left(v_{1}\right) \cdots f\left(v_{k}\right)$.
2. To see the composition property, consider the three commuting squares

By the uniqueness in the universal property, we must have $C l\left(f_{1} \circ f_{2}\right)=$ $C l\left(f_{1}\right) \circ C l\left(f_{2}\right)$.

Exercise 40

1. Claim: The centre of \mathbb{H} is $\mathbb{R} 1$.

Proof: Let $z=a 1+b I+c J+d K$ and suppose that $z \in Z(\mathbb{H})$. Since $I z=a I 1+b I I+c I J+d I K=a I-b+c K-d J$ and $z I=a 1 I+b I I+c J I+$ $d K I=a I-b-c K+d J$, we must have $c=0$ and $d=0$. An analogous computation with J shows $b=0$.
2. Let $x=\sum_{a=1}^{L} p_{a} \otimes q_{a}$ be minimal as in the hint. The p_{a} must be linearly independent, or we could write x as a shorter sum of pure tensors. We have $x^{\prime}=x\left(1 \otimes q_{1}^{-1}\right)=\sum_{a=1}^{L} p_{a} \otimes \tilde{q}_{a}$, where $\tilde{q}_{a}=q_{a} q_{1}^{-1}$, so that $\tilde{q}_{1}=1$. As I is a two-sided ideal, $x^{\prime} \in I$. Since multiplication by $1 \otimes q_{1}^{-1}$ is invertible, $x^{\prime} \neq 0$.

Let now $y \in \mathbb{H}$ be arbitrary. The element $x^{\prime \prime}=(1 \otimes y) x^{\prime}-x^{\prime}(1 \otimes y)$ is equally contained in I. Explicitly,

$$
x^{\prime \prime}=\sum_{a=1}^{L} p_{a} \otimes\left(y \tilde{q}_{a}-\tilde{q}_{a} y\right)=\sum_{a=2}^{L} p_{a} \otimes\left(y \tilde{q}_{a}-\tilde{q}_{a} y\right),
$$

where in the second step we used that $\tilde{q}_{1}=1$. But by assumption, the shortest way to write a non-zero element in I in terms of pure tensors uses L terms. Hence $x^{\prime \prime}$ must be zero.
Since the p_{a} are linearly independent, we must have $y \tilde{q}_{a}-\tilde{q}_{a} y=0$ for $a=2, \ldots, L$. As this holds for all y, the \tilde{q}_{a} are central. By part 1 there exist $\lambda_{a} \in \mathbb{R}$ such that $q_{a}=\lambda_{a} 1$. Using this, we can rewrite x^{\prime} as

$$
x^{\prime}=\sum_{a=1}^{L} p_{a} \otimes\left(\lambda_{a} 1\right)=\left(\sum_{a=1}^{L} \lambda_{a} p_{a}\right) \otimes 1=p \otimes 1
$$

for an appropriate $p \in \mathbb{H}$.
As $x^{\prime} \neq 0$ we have $p \neq 0$. Multiplying by $p^{-1} \otimes 1$ gives $1 \otimes 1 \in I$. As this is the unit of $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{H}$, we have $I=\mathbb{H} \otimes_{\mathbb{R}} \mathbb{H}$.

Aside: Without modification, the same proof shows that for D a division algebra over a field k such that $Z(D)=k 1$, the k-algebra $D \otimes_{k} D$ does not have non-trivial ideals. A more general version with a slightly different proof can be found e.g. in Theorem 3.5 and Lemma 3.7 in Farb, Dennis, Noncommutative Algebra (Springer, 1993).

Exercise 41

1. Write $1, I, J, K$ for the basis of \mathbb{H}.
$C l_{2,0}$: Consider the map $f: \mathbb{R}^{2} \rightarrow \mathbb{H},(x, y) \mapsto x I+y J$. Then

$$
\begin{aligned}
f(x, y) f(x, y) & =(x I+y J)(x I+y J)=-x^{2}+x y I J+x y J I-y^{2}=-x^{2}-y^{2} \\
& =-q_{2,0}(x, y) 1
\end{aligned}
$$

By the universal property we obtain an algebra homomorphism $\tilde{f}: C l_{2,0} \rightarrow$ \mathbb{H}. \tilde{f} maps $1 \mapsto 1, e_{1} \mapsto I, e_{2} \mapsto J, e_{1} e_{2} \mapsto I J=K$. Hence it maps an \mathbb{R}-basis to an \mathbb{R}-basis and therefore is an isomorphism.
$C l_{2,0}$: Consider the map $f: \mathbb{R}^{2} \rightarrow \operatorname{Mat}(2, \mathbb{R}),(x, y) \mapsto\left(\begin{array}{cc}x & y \\ y & -x\end{array}\right)$. Then

$$
\begin{aligned}
f(x, y) f(x, y) & =\left(\begin{array}{cc}
x & y \\
y & -x
\end{array}\right)\left(\begin{array}{cc}
x & y \\
y & -x
\end{array}\right)=\left(\begin{array}{cc}
x^{2}+y^{2} & 0 \\
0 & x^{2}+y^{2}
\end{array}\right)=\left(x^{2}+y^{2}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =-q_{0,2}(x, y)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

The rest of the argument is as above.
2. The map $x \mapsto p x \bar{q}$ is \mathbb{R}-linear, as required. The map ψ is \mathbb{R}-linear, too. $\psi(1 \otimes 1)=(x \mapsto x)=i d_{\mathbb{H}}$, so ψ is unital and

$$
\psi((p \otimes q)(r \otimes s))(x)=\psi((p r) \otimes(q s))(x)=(p r) x \overline{(q s)}=p r x \bar{s} \bar{q}
$$

as well as

$$
(\psi(p \otimes q) \circ \psi(r \otimes s))(x)=\psi(p \otimes q)(r x \bar{s})=\operatorname{pr} x \bar{s} \bar{q},
$$

so that ψ is compatible with the product. Altogether, this shows that ψ is an \mathbb{R}-algebra homomorphism.
It remains to show bijectivity.
Elementary method: Pairing elements of $\{1, I, J, K\}$ with each other gives a 16 -element basis of $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{H}$. ψ applied to each of these 16 elements can be evaluated on that same basis, giving a 4×4 matrix. This produces 16 4×4 matrix (with entries $0, \pm 1$) which can then be checked to be linearly independent.

Abstract method: We have seen in exercise 40 that $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{H}$ has no nontrivial two-sided ideals. Thus the kernel of ψ is either 0 or $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{H}$. As $\psi(1 \otimes 1)=i d_{\mathbb{H}} \neq 0$, the kernel is not $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{H}$. Thus ψ is injective. Source and target of ψ have the sime dimension as \mathbb{R}-vector spaces. Hence ψ is also surjective.

Exercise 42

(All references are to section 3.3.) The starting point is lemma 1 (and the trivial case of a 0 -dim v.sp.):
$C l_{0,0} \cong \mathbb{R}, C l_{1,0} \cong \mathbb{C}, C l_{2,0} \cong \mathbb{H}, C l_{0,1} \cong \mathbb{R} \oplus \mathbb{R}, C l_{0,2} \cong \operatorname{Mat}(2, \mathbb{R})$.
From lemma 3 we learn

$$
\begin{aligned}
& C l_{n, 0} \cong C l_{0, n-2} \otimes C l_{2,0} \cong C l_{0, n-2} \otimes \mathbb{H} \\
& C l_{0, n} \cong C l_{n-2,0} \otimes C l_{0,2} \cong C l_{n-2,0} \otimes \operatorname{Mat}(2, \mathbb{R})
\end{aligned}
$$

From this we can determine more entries in the zero's row and column

$$
\begin{array}{ll}
C l_{3,0} \cong C l_{0,1} \otimes \mathbb{H} \cong \mathbb{H} \oplus \mathbb{H} & C l_{4,0} \cong \operatorname{Mat}(2, \mathbb{H}) \\
C l_{0,3} \cong C l_{1,0} \otimes \operatorname{Mat}(2, \mathbb{R}) \cong \operatorname{Mat}(2, \mathbb{C}) & C l_{0,4} \cong \operatorname{Mat}(2, \mathbb{H})
\end{array}
$$

For the remaining entries in the zero's row and column we iterate the above relation:

$$
\begin{aligned}
& C l_{n, 0} \cong C l_{0, n-2} \otimes \mathbb{H} \cong C l_{n-4,0} \otimes \mathbb{H} \otimes \operatorname{Mat}(2, \mathbb{R}), \\
& C l_{0, n} \cong C l_{0, n-4} \otimes \mathbb{H} \otimes \operatorname{Mat}(2, \mathbb{R}) .
\end{aligned}
$$

We can now determine the remaining of the first 8 entries in the 0 -row and column, using also lemma 5:

```
\(C l_{5,0} \cong C l_{1,0} \otimes \mathbb{H} \otimes \operatorname{Mat}(2, \mathbb{R}) \cong \mathbb{C} \otimes \mathbb{H} \otimes \operatorname{Mat}(2, \mathbb{R}) \cong \operatorname{Mat}(2, \mathbb{C}) \otimes \operatorname{Mat}(2, \mathbb{R}) \cong \operatorname{Mat}(4, \mathbb{C})\)
\(C l_{6,0} \cong \operatorname{Mat}(8, \mathbb{R})\)
\(C l_{7,0} \cong(\mathbb{H} \oplus \mathbb{H}) \otimes \mathbb{H} \otimes \operatorname{Mat}(2, \mathbb{R}) \cong \operatorname{Mat}(4, \mathbb{R})^{\oplus 2} \otimes \operatorname{Mat}(2, \mathbb{R}) \cong \operatorname{Mat}(8, \mathbb{R})^{\oplus 2}\)
\(C l_{0,5} \cong \operatorname{Mat}(2, \mathbb{H})^{\oplus 2}\)
\(C l_{0,6} \cong \operatorname{Mat}(4, \mathbb{H})\)
\(C l_{0,7} \cong \operatorname{Mat}(8, \mathbb{C})\)
```

These entries agree with the table in theorem 6. Iterating lemma 3 once more gives

$$
C l_{n, 0} \cong C l_{n-8,0} \otimes \operatorname{Mat}(16, \mathbb{R}) \quad, \quad C l_{0, n} \cong C l_{0, n-8} \otimes \operatorname{Mat}(16, \mathbb{R})
$$

Or, equivalently, for $k \geq 0$,

$$
C l_{n+8 k, 0} \cong C l_{n, 0} \otimes \operatorname{Mat}\left(2^{8 k / 2}, \mathbb{R}\right) \quad, \quad C l_{0, n+8 k} \cong C l_{0, n} \otimes \operatorname{Mat}\left(2^{8 k / 2}, \mathbb{R}\right)
$$

This establishes the table for all $C l_{d, 0}$ and $C l_{0, d}$.
Finally, once more by lemmas 1 and $3, C l_{r+1, s+1} \cong C l_{r, s} \otimes \operatorname{Mat}(2, \mathbb{R})$, that is, for $k \geq 0$,

$$
C l_{r+k, s+k} \cong C l_{r, s} \otimes \operatorname{Mat}\left(2^{k}, \mathbb{R}\right)
$$

This completes the proof of theorem 6 .

Exercise 42

1. An \mathbb{H} - \mathbb{H}-bimodule is the same as an $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{H}^{o p}$ left module. The conjugation $\overline{()}$ gives an \mathbb{R}-algebra isomorphism $\mathbb{H} \rightarrow \mathbb{H}^{o p}$. Hence \mathbb{H} is an $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{H}$-left module. By exercise $40, \mathbb{H} \otimes_{\mathbb{R}} \mathbb{H} \cong \operatorname{Mat}(4, \mathbb{R})$. By theorem 1.2.9, Mat $(4, \mathbb{R})$ is semisimple and has the unique simple module \mathbb{R}^{4}.
2. Let $f: \mathbb{H} \rightarrow{ }_{\alpha} \mathbb{H}$ be the bimodule isomorphism. Compatibility with the left action means, for all $p, q \in \mathbb{H}, f(p q)=\alpha(p) f(q)$. Compatibility with the right action means $f(p q)=f(p) q$. Evaluating the first for $q=1$ and the second for $p=1$ shows $f(p)=\alpha(p) f(1)$ and $f(q)=f(1) q$. Thus

$$
\alpha(p) f(1)=f(p)=f(1) p .
$$

Now $f(1) \neq 0$ (or f would not be invertible) and so $\alpha(p)=f(1) p f(1)^{-1}$.

