Solutions for exercise sheet # 10
Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 39

1. We can just copy the solution to exercise 38 part 2: Let f: V — A be as in
the universal property of a Clifford algebra.

Existence: By the universal property of the tensor algebra, we obtain an
algebra homomorphism f : T(V) — A. Since f(v)f(v) = —q(v)1, f annihi-
lates the ideal (v®@v+¢(v)l|v € V') and hence factors through the quotient
Cl(V,q), giving an algebra homomorphism f: Cl(V,q) — A such that the
required diagram commutes: f = f oL.

Uniqueness: Cl(V, q) is spanned as a K-vector spaces by products ¢(v1) - - - t(vg)
of a finite number (including zero) of elements of V. But on each of these,
f is uniquely determined by being an algebra homomorphism and by the
commuting diagram to be f(v(v1)---t(vg)) = f(v1)--- f(vp).

2. To see the composition property, consider the three commuting squares

U—" ClU,p) U ——= Cl(U,p)
| |
f2l | Cl(f2) fiofz | Cl(f1of2)
Y \
V —=Cl(V,q) W —= Cl(W,r)
|
f1l I Cl(f1)
\
W —% Cl(W,r)

By the uniqueness in the universal property, we must have CI(f; o fo) =

Cl(f1) © Cl(f2)-

Exercise 40

1. Claim: The centre of H is R1.

Proof: Let z = al + bl + ¢J + dK and suppose that z € Z(H). Since
Iz=all+bll+clJ+dIK =al —b+cK —dJ and zI = all +bI1+cJI+
dKI = al —b— ¢K 4 dJ, we must have ¢ = 0 and d = 0. An analogous
computation with J shows b = 0.

2. Let x = 25:1 Do ® qq be minimal as in the hint. The p, must be linearly
independent, or we could write = as a shorter sum of pure tensors. We have
o =z(1@q ) = ZaL:lpa @ {a, where §, = qag; *, so that §; = 1. As T is a
two-sided ideal, ' € I. Since multiplication by 1® ¢; ' is invertible, 2’ # 0.



Let now y € H be arbitrary. The element 2/ = (1®y)z’ —2'(1®y) is equally
contained in I. Explicitly,

L L
2 =" Pa® Wda = Gay) = Y Pa @ (Yda — Gay) ,
a=1 a=2

where in the second step we used that ¢ = 1. But by assumption, the
shortest way to write a non-zero element in I in terms of pure tensors uses
L terms. Hence 2"/ must be zero.

Since the p, are linearly independent, we must have yG, — G,y = 0 for
a=2,...,L. As this holds for all y, the ¢, are central. By part 1 there exist
A € R such that ¢, = A\,1. Using this, we can rewrite 2’ as

L L
7= pa®(Aal) = (Z)\apa) 9l=pal
a=1

a=1

for an appropriate p € H.
As ' # 0 we have p # 0. Multiplying by p~! ® 1 gives 1 ® 1 € I. As this is
the unit of H @ H, we have I = H ®@g H.

Aside: Without modification, the same proof shows that for D a division
algebra over a field k such that Z(D) = k1, the k-algebra D ®; D does
not have non-trivial ideals. A more general version with a slightly different
proof can be found e.g. in Theorem 3.5 and Lemma 3.7 in Farb, Dennis,
Noncommutative Algebra (Springer, 1993).

Exercise 41

1. Write 1,1, J, K for the basis of H.
Cls,o: Consider the map f: R? — H, (z,y) — xI +yJ. Then
flx,y)f(x,y) = (ol +yJ)(xl +yJ) = -2 +aylJ + xyJI —y? = —2* —¢*
- —QQ,0($79)1 .
By the universal property we obtain an algebra homomorphism f :Clag —

H. fmaps 1—1,e1— I, ea — J, eres — IJ = K. Hence it maps an
R-basis to an R-basis and therefore is an isomorphism.

Cls,o: Consider the map f : R? — Mat(2,R), (z,y) — (z ,y$). Then

fy) fy) = (5 %) G 2) = (75 200) =@ +4)(5?)
= —qo2(z,9)(§9) -

The rest of the argument is as above.



2. The map x — pxq is R-linear, as required. The map v is R-linear, too.
P(1®1) = (x — x) = idy, so ¢ is unital and

Y((p®q)(r®s))(z) =v((pr) @ (¢s))(x) = (pr)z(gs) =przsq,

as well as

W@ g oy(res))(r) =P q)(rrs) =prrsq,

so that v is compatible with the product. Altogether, this shows that v is
an R-algebra homomorphism.

It remains to show bijectivity.

Elementary method: Pairing elements of {1, I, .J, K} with each other gives
a 16-element basis of H ®g H. 1 applied to each of these 16 elements can
be evaluated on that same basis, giving a 4x4 matrix. This produces 16
4x4 matrix (with entries 0,£1) which can then be checked to be linearly
independent.

Abstract method: We have seen in exercise 40 that H ®g H has no non-
trivial two-sided ideals. Thus the kernel of 1 is either 0 or H ®@g H. As
Y(1® 1) =idy # 0, the kernel is not H ®g H. Thus ¢ is injective. Source
and target of 1) have the sime dimension as R-vector spaces. Hence 1) is also
surjective.

Exercise 42

(All references are to section 3.3.) The starting point is lemma 1 (and the trivial
case of a 0-dim v.sp.):

Cloo=R , Clhig=C , Clhoy=H , Clpp 2R&R , Clps = Mat(2,R).
From lemma 3 we learn

Cloo=Clyyn-2®Clyg=Clyp2@H,
Clo’n = Cln,Q’O ® Clo’g = Cln,270 & Mat(2,R) .

From this we can determine more entries in the zero’s row and column

C'l370 = C110,1 QH=HoH Cl470 = Mat(Z, H)
Clo’g = Cl1,0 ® Mat(ZR) = Mat(Q,C) 01074 = Mat(ZH)

For the remaining entries in the zero’s row and column we iterate the above
relation:

Clyo = Clon—9 @H = Cly 40 @ H® Mat(2,R) ,
Clo,y, = Cloy—a @ H® Mat(2,R) .



We can now determine the remaining of the first 8 entries in the 0-row and
column, using also lemma 5:

Cls o =2 Clip®@H®Mat(2,R) = C®H® Mat(2,R) = Mat(2,C) ® Mat(2,R) = Mat(4, C)
Clgo = Mat(8,R)

Clrp = (Ho H) ® H® Mat(2,R) = Mat(4, R)®? @ Mat(2,R) = Mat(8, R)®?

Cly5 = Mat (2, H)®?

Clo,c = Mat(4, H)

Clo.7 = Mat(8,C)

These entries agree with the table in theorem 6. Iterating lemma 3 once more
gives

Cln,O = Cln,&o X Mat(16, R) 5 Clo)n = ClO,n78 X Mat(16, R) .
Or, equivalently, for k£ > 0,
Clyigko = Clpo @ Mat(28¥/2R) | Clonisk = Cloy,, © Mat(25%/2 R) .

This establishes the table for all Clgo and Clg q.
Finally, once more by lemmas 1 and 3, Cl,41, 541 = Cl, s ® Mat(2,R), that is,
for k > 0,

Clyjro+k 2ClLs® Mat(Qk, R) .

This completes the proof of theorem 6.
Exercise 42

1. An H-H-bimodule is the same as an H ®g H? left module. The conjugation
() gives an R-algebra isomorphism H — H°P. Hence H is an H ®g H-left
module. By exercise 40, H ®g H = Mat(4,R). By theorem 1.2.9, Mat(4,R)
is semisimple and has the unique simple module R%.

2. Let f: H — ,H be the bimodule isomorphism. Compatibility with the left
action means, for all p,q € H, f(pq) = a(p)f(¢g). Compatibility with the
right action means f(pq) = f(p)q. Evaluating the first for ¢ = 1 and the
second for p = 1 shows f(p) = a(p)f(1) and f(q) = f(1)g. Thus

a(p)f(1) = f(p) = fF(W)p -
Now f(1) # 0 (or f would not be invertible) and so a(p) = f(1)pf(1)~*.



