Solutions for exercise sheet # 09
Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 35
Let A be a k-algebra and let f: V' — A be linear.

Existence: Define the map f, : V™ = A fn(v1,...,0,) = f(v1) - f(vn) € A.

This map is multilinear and hence there is a unique linear f, : V®" — A such
that f,,(v1 ®---®v,) = f(v1)--- f(vn). Define fo : k — A via fo(1) = 1. Define
f: T(V) — A as f|r» = f,. By construction, f = f o4. Furthermore, f is an
algebra homomorphism. Indeed, it is enough to verify this on pure tensors (as
they span T'(V), and we have, forx =21 ® - - Qu, and y = y1 @ - - - Q yp,

flay) = fla1©: - -@ra@y@---0yy) = f(21) - f(@a) fy1) -~ fwo) = F(@) f(y) -
Finally, again by construction f (1) =1.

Uniqueness: f is determined by its value on pure tensors. In order to be an alge-
bra homomorphism, we must have f(1) = 1 and f(v1®---®uy,) = f(v1)--- f(vn).
Hence f is uniquely determine by f.

Exercise 36

1. Consider the map f: V — T(V)®T(V) given by f(v) =i(v) ® 1+ 1®i(v).
By the universal property, there is a unique algebramap A : T(V) - T(V)®
T (V') with the stated property.

2. We have (omitting all “”):

Alzy) =A@)AY) = (z01+102)(y1+1R®y)
=2ey)Rl+zryt+yr+1(zy),

where in the last line, the summands lie in T2 @ T°, T' @ T, T' ® T1,
T° @ T?, respectively.

3. This follows from uniqueness in the universal property. Both, L := (id ®
A)o A and R := (A ®id) o A are algebra homomorphism T(V) — T(V) ®
T(V)®T(V). They furthermore satisfy

Li(v)=(doA)(ve1+10v)=1011+1uvel+11Qv
and
Ri(v)=(A®id)(v®14+10v)=v0181+1v1+101Qwv.

Thus L o¢ = Roi, and so by the universal property of the tensor algebra,
L=R.



Exercise 37

1. Existence: We need to define a product on A/I. Our ansatz is (a+1)(b+1) :=
ab+ I. To see that this is independent of the choice of representatives a, b,
let a’, b’ be such that a’+1 = a+1 and b’ +1 = b+ 1. Equivalently, a’ —a € I
and b’ — b € I. Then

a'b/+1 = (a+a'—a)(b+b'—b)+1I = ab+(a'—a)b+a(d —b)+(a'—a) (V) =b)+I = ab+1 |

where in the last step we used that a’ —a, b’ —b € I and that I is a two-sided
ideal.

Associativity of the product on A implies that of the just defined product
on A/I. The unit is 1+ I.

Note that by definition, 7(ab) = w(a)7(b) and w(1) =1+ I.

Uniqueness: Let p: A/I ® A/T — A/I be an associative unital product on
A with unit e, such that 7 is an algebra homomorphism.

Since 7 is unital, we have e = m(1) = 1 + I, so the unit is unique. For the
product, let a, 8 € A/I be arbitrary. Since 7 is surjective, there are a,b € A
such that o« = 7(a), 8 = 7(b). Then u(a ® B) = u(r(a) @ w(b)) = w(ab) =
(a+1I)(b+I), where in the last step we used the product constructed in the
existence part of the argument. Thus the product is uniquely determined.

2. With the notation in the diagram:

Claim (universal property): For each K-algebra B and algebra homomor-
phism f : A — B such that f(I) = 0, there exists a unique algebra homo-
morphism f: A/I — B such that for = f.

Proof: We first show that there is a unique linear map making the diagram
commute, and then that this linear map is necessarily an algebra homomor-
phism.

Existence and uniqueness of the linear map follows from the construction of
linear maps out of quotient spaces: as f vanishes on the K-linear subspace
1, it descends to a K-linear map A/I — B.

Now f(} +1)=fon(l) = f(1) =1, so that f preserves the unit. Further-
more, f((a +I)(b+ 1)) = f(x(a)n(b)) = f(x(ab)) = f(ab) = f(a)f(b) =
f(m(a))f(w(b)) = f(a+I)f(b+1I), so that f is compatible with the products

in A/T and B.

Exercise 38

1. Let V be a K-vector space. Let (A, \) and (A’, \') be two alternating algebras
for V. The universal property of A, applied to the linear map X' : V' — A’ (V)



(which satisfies \'(v)A'(v) = 0 by definition) yields an algebra homomor-
phism X" : A — A’, such that X o A = X". Conversely, one obtains an algebra
homomorphism A : A’ — A such that Ao X = \.

Thus also Ao X : A — A is an algebra homomorphism. It satisfies Ao X o \ =
Ao X = \. But also the identity on A satisfies idy o A = A. By uniqueness
in the universal property, we must have Ao X =idy. Similarly one sees that
5\/ o 5\ = idA/.

By construction, the Xand X are the unique isomorphisms compatible with
the maps A\, \’ in that Ao X = XA and M oA = X' (draw the diagrams for more
clarity).

. Denote the ideal defining A(V) by J = (v®@uv|v e V). Let f:V — A be as
in the universal property of an alternating algebra.

Existence: By the universal property of the tensor algebra, we obtain an
algebra homomorphism f : T(V) — A. Since f(v)f(v) = 0, f annihilates
the ideal J and hence factors through the quotient A(V'), giving an algebra
homomorphism f : A(V) — A such that the required diagram commutes:
f = foia.

Uniqueness: A(V) is spanned as a K-vector spaces by products i (v1) - - - ia (vk)
of a finite number (including zero) of elements of V. But on each of these,
f is uniquely determined by being an algebra homomorphism and by the
commuting diagram to be f(ip(v1) - ia(vr)) = f(v1) - f(vg)-

. Tt is clear that A(V) is spanned by the A™. It remains to show that the sum
is direct. Write A7™ = span(A"|n # m) = (P T™). We need to show
that A™ N A7™ = {0}.

Let u € A™ N A7™. Then there are x € T™ and y € ®,.2m T" such that
u=x+J and u = y+J. Thus z—y € J. We can therefore find homogeneous
elements a,,b. € T", v, € V such that

n#m

x—y:ZarQ@vT@vr@br.
T

We can now split this into two sums by degree: Write |a,| for the degree of
a,. Then

T—y= > ar @ Uy @y @ by + > ar @V, @V, @by
lar|+|br|+2=m mlar|+]br|+27m

But T(V) is a direct sum of the T%, k = 0,1,..., and for the above equality
to hold, we must have

T = Z arQUrQu,Qb. | y=— Z arRU,QU, b, .
r|ar|+|br|+2=m r,|ar|+[br|+2#m

In particular, z € J and y € J, and hence v = = + J = J, which means
u=0in A(V).



4. We will define maps F : S5(V) = A™ and G : A™ — S, (V) and show that
they are inverse to each other.

The map F: The vector space Sy(V) is the subspace of V®™ spanned by
elements

Z SgN(0)Vo(1) @ - D Vs(m) 5 V1,V2,...,Um €V .
TESH

We define F to be the restriction of the canonical projection 7 : V™ — A™
to S\V.

The map G: We first define a linear map g : V™ — S,V and then show that
it descends to a map G : A™ — S\ V. The map g is simply the normalised
symmetriser:

1
g1 ® - R@upy) = oo Z sgn(a)va(l) Q@ Vg(m) -
" o€Sm

Let x = ZT ar @ v ® v @ b, be an arbitrary homogeneous element of J of
degree m. We need to show that g(z) = 0. We may assume that a, and b,
are pure tensors, too. In fact, already g(a, ® v, ® v, ® b,.) = 0 before taking
the sum. To see this, let 7 be the transposition which exchanges the two
factors containing v,.. Then (a, ® v, ® v, ® b.).0c = (a, @ v, v, ® b,.).0T,
but these two terms contribute to the sum over .S, with opposite signs.

Hence there is a linear map G : A™ — S,V such that G(v1®- - - Qv +Jp) =
% Y ves,, SB(0)V(1) @+ ® Vg(m). Here, Jp, is the degree m subspace of

J
F oG =1id: We have
FGun @ - @um+Jn) =Fgr1 @ - Quyp)) =01 @+ @ Uy + I

since every of the m! summands in g(v; ® - - - ® v,,) can be reordered in A™
tov; ® - - ® vy, + Jin, cancelling the sign in the sum.

G o F = id: Note that elements of the form g(v; ® - -- ® v,,,) span S)\V, and
that g o ¢ = ¢g. By the same reordering argument as above, we compute

GF(gv1 @ ®vn)) =Go1 ® @ vm + Jp) = g(v1 @ - @ vy,) .

GL(V)-action: Since the GL(V')-action leaves the summands .J,,, of the ideal
J invariant, we get a well-defined action on A™, that is, 7 : V™ — A™
becomes a GL(V)-intertwiner. Thus, so is the restriction F of 7 to S\V,

and S\V =2 A™ as GL(V)-modules.



