
Solutions for exercise sheet #09
Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 35

Let A be a k-algebra and let f : V → A be linear.

Existence: Define the map fn : V ×n → A, fn(v1, . . . , vn) = f(v1) · · · f(vn) ∈ A.
This map is multilinear and hence there is a unique linear f̃n : V ⊗n → A such
that f̃n(v1⊗· · ·⊗vn) = f(v1) · · · f(vn). Define f0 : k → A via f̃0(1) = 1. Define
f̃ : T (V ) → A as f |Tn = fn. By construction, f = f̃ ◦ i. Furthermore, f̃ is an
algebra homomorphism. Indeed, it is enough to verify this on pure tensors (as
they span T (V ), and we have, for x = x1 ⊗ · · · ⊗ xa and y = y1 ⊗ · · · ⊗ yb,

f̃(xy) = f̃(x1⊗· · ·⊗xa⊗y1⊗· · ·⊗yb) = f(x1) · · · f(xa)f(y1) · · · f(yb) = f̃(x)f̃(y) .

Finally, again by construction f̃(1) = 1.

Uniqueness: f̃ is determined by its value on pure tensors. In order to be an alge-
bra homomorphism, we must have f̃(1) = 1 and f̃(v1⊗· · ·⊗vn) = f(v1) · · · f(vn).
Hence f̃ is uniquely determine by f .

Exercise 36

1. Consider the map f : V → T (V )⊗T (V ) given by f(v) = i(v)⊗ 1 + 1⊗ i(v).
By the universal property, there is a unique algebra map ∆ : T (V )→ T (V )⊗
T (V ) with the stated property.

2. We have (omitting all “i”):

∆(xy) = ∆(x)∆(y) = (x⊗ 1 + 1⊗ x)(y ⊗ 1 + 1⊗ y)

= (x⊗ y)⊗ 1 + x⊗ y + y ⊗ x+ 1⊗ (x⊗ y) ,

where in the last line, the summands lie in T 2 ⊗ T 0, T 1 ⊗ T 1, T 1 ⊗ T 1,
T 0 ⊗ T 2, respectively.

3. This follows from uniqueness in the universal property. Both, L := (id ⊗
∆) ◦∆ and R := (∆⊗ id) ◦∆ are algebra homomorphism T (V )→ T (V )⊗
T (V )⊗ T (V ). They furthermore satisfy

L(i(v)) = (id⊗∆)(v ⊗ 1 + 1⊗ v) = v ⊗ 1⊗ 1 + 1⊗ v ⊗ 1 + 1⊗ 1⊗ v

and

R(i(v)) = (∆⊗ id)(v ⊗ 1 + 1⊗ v) = v ⊗ 1⊗ 1 + 1⊗ v ⊗ 1 + 1⊗ 1⊗ v .

Thus L ◦ i = R ◦ i, and so by the universal property of the tensor algebra,
L = R.
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Exercise 37

1. Existence: We need to define a product on A/I. Our ansatz is (a+I)(b+I) :=
ab+ I. To see that this is independent of the choice of representatives a, b,
let a′, b′ be such that a′+I = a+I and b′+I = b+I. Equivalently, a′−a ∈ I
and b′ − b ∈ I. Then

a′b′+I = (a+a′−a)(b+b′−b)+I = ab+(a′−a)b+a(b′−b)+(a′−a)(b′−b)+I = ab+I ,

where in the last step we used that a′−a, b′−b ∈ I and that I is a two-sided
ideal.

Associativity of the product on A implies that of the just defined product
on A/I. The unit is 1 + I.

Note that by definition, π(ab) = π(a)π(b) and π(1) = 1 + I.

Uniqueness: Let µ : A/I ⊗ A/I → A/I be an associative unital product on
A with unit e, such that π is an algebra homomorphism.

Since π is unital, we have e = π(1) = 1 + I, so the unit is unique. For the
product, let α, β ∈ A/I be arbitrary. Since π is surjective, there are a, b ∈ A
such that α = π(a), β = π(b). Then µ(α ⊗ β) = µ(π(a) ⊗ π(b)) = π(ab) =
(a+ I)(b+ I), where in the last step we used the product constructed in the
existence part of the argument. Thus the product is uniquely determined.

2. With the notation in the diagram:

Claim (universal property): For each K-algebra B and algebra homomor-
phism f : A → B such that f(I) = 0, there exists a unique algebra homo-
morphism f̃ : A/I → B such that f̃ ◦ π = f .

Proof: We first show that there is a unique linear map making the diagram
commute, and then that this linear map is necessarily an algebra homomor-
phism.

Existence and uniqueness of the linear map follows from the construction of
linear maps out of quotient spaces: as f vanishes on the K-linear subspace
I, it descends to a K-linear map A/I → B.

Now f̃(1 + I) = f̃ ◦ π(1) = f(1) = 1, so that f̃ preserves the unit. Further-
more, f̃((a + I)(b + I)) = f̃(π(a)π(b)) = f̃(π(ab)) = f(ab) = f(a)f(b) =
f̃(π(a))f̃(π(b)) = f̃(a+I)f̃(b+I), so that f̃ is compatible with the products
in A/I and B.

Exercise 38

1. Let V be aK-vector space. Let (Λ, λ) and (Λ′, λ′) be two alternating algebras
for V . The universal property of Λ, applied to the linear map λ′ : V → Λ′(V )
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(which satisfies λ′(v)λ′(v) = 0 by definition) yields an algebra homomor-
phism λ̃′ : Λ→ Λ′, such that λ̃′ ◦λ = λ′. Conversely, one obtains an algebra
homomorphism λ̃ : Λ′ → Λ such that λ̃ ◦ λ′ = λ.

Thus also λ̃◦ λ̃′ : Λ→ Λ is an algebra homomorphism. It satisfies λ̃◦ λ̃′ ◦λ =
λ̃ ◦ λ′ = λ. But also the identity on Λ satisfies idΛ ◦ λ = λ. By uniqueness
in the universal property, we must have λ̃ ◦ λ̃′ = idΛ. Similarly one sees that
λ̃′ ◦ λ̃ = idΛ′ .

By construction, the λ̃ and λ̃′ are the unique isomorphisms compatible with
the maps λ, λ′ in that λ̃◦λ′ = λ and λ̃′ ◦λ = λ′ (draw the diagrams for more
clarity).

2. Denote the ideal defining Λ(V ) by J = 〈v ⊗ v | v ∈ V 〉. Let f : V → A be as
in the universal property of an alternating algebra.

Existence: By the universal property of the tensor algebra, we obtain an
algebra homomorphism f̂ : T (V ) → A. Since f(v)f(v) = 0, f̂ annihilates
the ideal J and hence factors through the quotient Λ(V ), giving an algebra
homomorphism f̃ : Λ(V ) → A such that the required diagram commutes:
f = f̃ ◦ iΛ.

Uniqueness: Λ(V ) is spanned as aK-vector spaces by products iΛ(v1) · · · iΛ(vk)
of a finite number (including zero) of elements of V . But on each of these,
f̃ is uniquely determined by being an algebra homomorphism and by the
commuting diagram to be f̃(iΛ(v1) · · · iΛ(vk)) = f(v1) · · · f(vk).

3. It is clear that Λ(V ) is spanned by the Λm. It remains to show that the sum
is direct. Write Λ6=m = span(Λn|n 6= m) = π(

⊕
n 6=m T

n). We need to show

that Λm ∩ Λ6=m = {0}.
Let u ∈ Λm ∩ Λ 6=m. Then there are x ∈ Tm and y ∈

⊕
n 6=m T

n such that
u = x+J and u = y+J . Thus x−y ∈ J . We can therefore find homogeneous
elements ar, br ∈ T r, vr ∈ V such that

x− y =
∑
r

ar ⊗ vr ⊗ vr ⊗ br .

We can now split this into two sums by degree: Write |ar| for the degree of
ar. Then

x− y =
∑

r,|ar|+|br|+2=m

ar ⊗ vr ⊗ vr ⊗ br +
∑

r,|ar|+|br|+26=m

ar ⊗ vr ⊗ vr ⊗ br .

But T (V ) is a direct sum of the T k, k = 0, 1, . . . , and for the above equality
to hold, we must have

x =
∑

r,|ar|+|br|+2=m

ar⊗vr⊗vr⊗br , y = −
∑

r,|ar|+|br|+26=m

ar⊗vr⊗vr⊗br .

In particular, x ∈ J and y ∈ J , and hence u = x + J = J , which means
u = 0 in Λ(V ).
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4. We will define maps F : Sλ(V ) → Λm and G : Λm → Sλ(V ) and show that
they are inverse to each other.

The map F : The vector space Sλ(V ) is the subspace of V ⊗m spanned by
elements ∑

σ∈Sm

sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(m) , v1, v2, . . . , vm ∈ V .

We define F to be the restriction of the canonical projection π : V ⊗m → Λm

to SλV .

The map G: We first define a linear map g : V ⊗m → SλV and then show that
it descends to a map G : Λm → SλV . The map g is simply the normalised
symmetriser:

g(v1 ⊗ · · · ⊗ vm) =
1

m!

∑
σ∈Sm

sgn(σ) vσ(1) ⊗ · · · ⊗ vσ(m) .

Let x =
∑
r ar ⊗ vr ⊗ vr ⊗ br be an arbitrary homogeneous element of J of

degree m. We need to show that g(x) = 0. We may assume that ar and br
are pure tensors, too. In fact, already g(ar ⊗ vr ⊗ vr ⊗ br) = 0 before taking
the sum. To see this, let τ be the transposition which exchanges the two
factors containing vr. Then (ar ⊗ vr ⊗ vr ⊗ br).σ = (ar ⊗ vr ⊗ vr ⊗ br).στ ,
but these two terms contribute to the sum over Sm with opposite signs.

Hence there is a linear map G : Λm → SλV such that G(v1⊗· · ·⊗vm+Jm) =
1
m!

∑
σ∈Sm

sgn(σ)vσ(1) ⊗ · · · ⊗ vσ(m). Here, Jm is the degree m subspace of
J .

F ◦G = id: We have

F (G(v1 ⊗ · · · ⊗ vm + Jm)) = F (g(v1 ⊗ · · · ⊗ vm)) = v1 ⊗ · · · ⊗ vm + Jm ,

since every of the m! summands in g(v1 ⊗ · · · ⊗ vm) can be reordered in Λm

to v1 ⊗ · · · ⊗ vm + Jm, cancelling the sign in the sum.

G ◦ F = id: Note that elements of the form g(v1 ⊗ · · · ⊗ vm) span SλV , and
that g ◦ g = g. By the same reordering argument as above, we compute

G(F (g(v1 ⊗ · · · ⊗ vm))) = G(v1 ⊗ · · · ⊗ vm + Jm) = g(v1 ⊗ · · · ⊗ vm) .

GL(V )-action: Since the GL(V )-action leaves the summands Jm of the ideal
J invariant, we get a well-defined action on Λm, that is, π : V ⊗m → Λm

becomes a GL(V )-intertwiner. Thus, so is the restriction F of π to SλV ,
and SλV ∼= Λm as GL(V )-modules.
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