Solutions for exercise sheet \# 08 Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 30

1. This is simply the transformation formula for integrals: $\tilde{\Lambda}$ is a diffeomorphism from \mathbb{R}^{3} to itself, and so for all integrable functions $g: \mathbb{R}^{3} \rightarrow \mathbb{C}$ we have

$$
\int_{\mathbb{R}^{3}} g(x) d^{3} x=\int_{\mathbb{R}^{3}} g(\tilde{\Lambda} y)|\operatorname{det} D \tilde{\Lambda}(y)| d^{3} y
$$

Thus

$$
\begin{aligned}
I(f \circ \tilde{\Lambda}) & =\int_{\mathbb{R}^{3}} f(\tilde{\Lambda}(y)) \mu(y) d^{3} y \stackrel{(*)}{=} \int_{\mathbb{R}^{3}} f(\tilde{\Lambda}(y)) \mu(\tilde{\Lambda}(y))|\operatorname{det} D \tilde{\Lambda}(y)| d^{3} y \\
& \stackrel{(* *)}{=} \int_{\mathbb{R}^{3}} f(x) \mu(x) d^{3} x=I(f) .
\end{aligned}
$$

Here, $\left({ }^{*}\right)$ is the assumed property of μ in the problem and $\left(^{* *}\right)$ the above transformation of the integral, applied to $g(x)=f(x) \mu(x)$.
2. For a rotation $R \in S O(3)$ let $\Lambda \in S O(1,3)$ be the corresponding element in the Lorenz group (a block matrix with 1 in the upper left corner). Then $\tilde{\Lambda}=R$ and so $\operatorname{det} \tilde{\Lambda}=\operatorname{det} R=1$. Since $\mu(\vec{p})$ only depends on $|\vec{p}|$ also $\mu(\tilde{\Lambda} \vec{p})=\mu(\vec{p})$.
Consider now a boost. Let $s=\sinh (\theta), c=\cosh (\theta)$ and

$$
\Lambda=\left(\begin{array}{cccc}
c & 0 & 0 \\
s & c & 0 \\
0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & 1
\end{array}\right)
$$

Let $\vec{p} \in \mathbb{R}^{3}$ and write $p=\pi^{-1}(\vec{p})=\left(p_{0}, \vec{p}\right)$ with $p_{0}=\sqrt{m^{2}+|\vec{p}|^{2}}$. Then

$$
\Lambda(p)=\left(c p_{0}+s p_{1}, s p_{0}+c p_{1}, p_{2}, p_{3}\right)
$$

and

$$
\tilde{\Lambda}(\vec{p})=\left(s p_{0}+c p_{1}, p_{2}, p_{3}\right)=\left(s \sqrt{m^{2}+p_{1}^{2}+p_{2}^{2}+p_{3}^{2}}+c p_{1}, p_{2}, p_{3}\right) .
$$

Now $(D \tilde{\Lambda}(\vec{p}))_{i j}=\frac{\partial}{\partial p_{j}} \tilde{\Lambda}_{i}(\vec{p})$. Note that $\frac{\partial}{\partial p_{j}} p_{0}=p_{j} / p_{0}$. Thus

$$
D \tilde{\Lambda}(\vec{p})=\left(\begin{array}{ccc}
s p_{1} / p_{0}+c & s p_{2} & s p_{3} \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad, \quad \operatorname{det} \tilde{\Lambda}(\vec{p})=s \frac{p_{1}}{p_{0}}+c
$$

Finally,

$$
\frac{\mu(\vec{p})}{\mu(\tilde{\Lambda}(\vec{p})}=\frac{(\Lambda p)_{0}}{p_{0}}=\frac{c p_{0}+s p_{1}}{p_{0}}
$$

which establishes the transformation rule for boosts.
By exercise 17, every element of L_{+}^{\uparrow} is a product (rotation)(boost as a above)(rotation). Since $\Lambda \mapsto \tilde{\Lambda}$ is a group homomorphism and the determinant is multiplicative, this proves the lemma.
3. Since $S O(1,3)$ acts transitively on $\mathbb{R}^{3},\left(^{*}\right)$ determines $\mu(\vec{p})$ uniquely in terms of $\mu(0)$. Hence all possible choices of μ agree up to a scalar factor (namely the value at 0).

Exercise 31

We have

$$
m i d+\hat{q}=\left(\begin{array}{cc}
m+q_{0}+q_{3} & q_{1}-i q_{2} \\
q_{1}+i q_{2} & m+q_{0}-q_{3}
\end{array}\right)
$$

so that

$$
\operatorname{det}(m i d+\hat{q})=\left(m+q_{0}\right)^{2}-q_{3}^{2}-q_{1}^{2}-q_{2}^{2}=m^{2}+2 m q_{0}+m^{2}=2 m\left(m+q_{0}\right)
$$

This shows $\operatorname{det} T_{q}=1$.
Since $\hat{a}=$ mid, we need to compute

$$
T_{q} \hat{a} T_{q}^{\dagger}=T_{q} T_{q}=m \frac{(m i d+\hat{q})^{2}}{2 m\left(m+q_{0}\right)}=\frac{m^{2} i d+2 m \hat{q}+\hat{q}^{2}}{2\left(m+q_{0}\right)}
$$

A short calculation using $q_{0}^{2}-q_{1}^{2}-q_{2}^{2}-q_{3}^{2}=m^{2}$ gives

$$
\hat{q}^{2}=-m^{2} i d+2 q_{0} \hat{q}
$$

which shows that $T_{q} \hat{a} T_{q}^{\dagger}=\hat{q}$.

Exercise 32

We will not write π and π^{-1}. If an element of \mathbb{R}^{3} serves as an argument for a function expecting \mathbb{R}^{4}, the application of π^{-1} is understood, and vice versa.
We abbreviate, for $p \in \mathbb{R}^{3}, g \in S L(2, \mathbb{C}), R(p, g)=W\left(\phi(g)^{-1} p, g\right)=T_{p}^{-1} g T_{\phi\left(g^{-1}\right) p}$.
Let R be a finite dimensional unitary representation of the little group $S U(2)$.
On $L^{2}\left(\mathbb{R}^{3}, R\right)$ the action is

$$
((x, g) \psi)(p)=e^{i \eta(x, p)} R(p, g) \psi\left(\widetilde{\phi\left(g^{-1}\right)} p\right)
$$

Then

$$
\begin{aligned}
((x, g)((y, h) \psi))(p) & =e^{i \eta(x, p)} R(p, g)((y, h) \psi)\left(\widetilde{\phi\left(g^{-1}\right)} p\right) \\
& \left.\left.=e^{i \eta(x, p)} R(p, g) e^{i \eta\left(y, \phi\left(g^{-1}\right) p\right)} R\left(\widetilde{\left(g^{-1}\right.}\right) p, h\right) \psi\left(\widetilde{\left(\phi \left(h^{-1}\right.\right.}\right) \widetilde{\phi\left(g^{-1}\right)} p\right) \\
& =e^{i \eta(x, p)} e^{i \eta(\phi(g) y, p)} R(p, g) R\left(\widetilde{\left.\phi\left(g^{-1}\right) p, h\right) \psi\left(\phi\left(\widetilde{(g h)^{-1}}\right) p\right)}\right.
\end{aligned}
$$

Note that

$$
R(p, g) R\left(\widetilde{\phi\left(g^{-1}\right)} p, h\right)=T_{p}^{-1} g T_{\phi\left(g^{-1}\right) p} T_{\phi\left(g^{-1}\right) p}^{-1} h T_{\phi\left(h^{-1}\right) \phi\left(g^{-1}\right) p}=R(p, g h)
$$

Thus altogether

$$
((x, g)((y, h) \psi))(p)=e^{i \eta(x+\phi(g) y, p)} R(p, g h) \psi\left(\phi\left(\widetilde{(g h)^{-1}}\right) p\right) .
$$

Since $(x, g)(y, h)=(x+\phi(g) y, g h)$, and since the right hand side is equal to $((x+\phi(g) y, g h) \psi)(p)$, this shows the claim.

Exercise 33

1. For the given choice of a we have $\widehat{a}=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. The left hand side of the condition $M \hat{a} M^{\dagger}=\hat{a}$ reads

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
\bar{\alpha} & \bar{\gamma} \\
\bar{\beta} & \bar{\delta}
\end{array}\right)=\left(\begin{array}{ll}
\alpha \bar{\alpha} & \alpha \bar{\gamma} \\
\gamma \bar{\alpha} & \gamma \bar{\gamma}
\end{array}\right) .
$$

Thus $M \hat{a} M^{\dagger}=\hat{a}$ is equivalent to $|\alpha|=1$ and $\gamma=0$. Since $M \in S L(2, \mathbb{C})$ we also have $\alpha \delta=1$, i.e. $\delta=\bar{\alpha}$. This shows the claim.
2. That τ is a surjective is clear. For the group homomorphism property note that

$$
\begin{aligned}
& \left(\begin{array}{cc}
e^{i \theta / 2} & z e^{-i \theta / 2} \\
0 & e^{-i \theta / 2}
\end{array}\right)\left(\begin{array}{cc}
e^{i \theta^{\prime} / 2} & z^{\prime} e^{-i \theta^{\prime} / 2} \\
0 & e^{-i \theta^{\prime} / 2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
e^{i\left(\theta+\theta^{\prime}\right) / 2} & z^{\prime} e^{i\left(\theta-\theta^{\prime}\right) / 2}+z e^{-i\left(\theta+\theta^{\prime}\right) / 2} \\
0 & e^{-i\left(\theta+\theta^{\prime}\right) / 2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
e^{i\left(\theta+\theta^{\prime}\right) / 2} & e^{-i\left(\theta+\theta^{\prime}\right) / 2}\left(z+z^{\prime} e^{i \theta}\right) \\
0 & e^{-i\left(\theta+\theta^{\prime}\right) / 2}
\end{array}\right) .
\end{aligned}
$$

The kernel is $\{ \pm i d\}$.

Exercise 34

1. For \mathcal{O}_{m}^{+}and \mathcal{O}_{0}^{+}(orbits 1 and 4 in our list), this was already done in the lecture. In both cases, the little group did allow for finite-dimensional unitary irreps.
2. Orbit 2: Let $m>0$ and choose $a=(-m, 0,0,0)$. Since the stabiliser is of $m i d_{2 \times 2}$ is the same as that of $-m i d_{2 \times 2}$, the result is the same as for \mathcal{O}_{m}^{+}: The little group is $S U(2)$, and does allow for finite-dimensional representations.
3. Orbit 6: We may take $a=\left(-\frac{1}{2}, 0,0,-\frac{1}{2}\right)$, for which $\widehat{a}=\left(\begin{array}{cc}-1 & 0 \\ 0 & 0\end{array}\right)$. Again the stabiliser of a and $-a$ are the same, and the resulting little group is the same as for \mathcal{O}_{0}^{+}.
4. Orbit 3: Pick $a=(0,0, m, 0)$ for $m>0$. Then $\widehat{a}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$. Thus $M \in$ $\operatorname{Stab}(a)$ if and only if (we can cancel the factor of i)

$$
M\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) M^{\dagger}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Writing this out in components for $M=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right)$ gives

$$
\left(\begin{array}{cc}
2 i \operatorname{Im}(\bar{a} b) & b \bar{c}-a \bar{d} \\
\bar{a} d-\bar{b} c & 2 i \operatorname{Im}(\bar{c} d)
\end{array}\right)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

Writing a, b, c, d in "signed polar coordinates", i.e. $z=x e^{i \theta}$ with $\theta \in[0, \pi)$ and $x \in \mathbb{R}$, we see that the diagonal entries force a, b to have the same phase, say $a=r e^{i \theta}, b=s e^{i \theta}$, and similarly $c=t e^{i \psi}, b=u e^{i \psi}$. The off-diagonal conditions then further force $\theta=\psi$, and the fact that $M \in S L(2, \mathbb{C})$, i.e. that $a d-b c=1$, forces $\theta=0$. Thus a, b, c, d are in fact real, and so must be in $S L(2, \mathbb{R})$. Conversely, every element of $S L(2, \mathbb{R})$ solves the above condition.

The same argument used for $S L(2, \mathbb{C})$ shows that $S L(2, \mathbb{R})$ does not have non-trivial finite-dimensional unitary representations.
5. Orbit 5: The stabiliser is all of \tilde{P}, whose only finite-dimensional unitary representations are the ones with trivial action.

