
Solutions for exercise sheet #07
Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 26

1. L is already a subgroup of GL(4,R) and we take this as the action of L on
R4. The product of Rr o L is then

(v,Λ)(w,Γ) = (v + Λ(w),ΛΓ) .

Consider the map

f : Rr o L −→ P , (v,Λ) 7−→ (x 7→ Λx+ v) .

This map is a bijection by the definition of P . We check that it is a group
homomorphism. We have

f((v,Λ)(w,Γ)) = f(v + Λ(w),ΛΓ) =
(
x 7→ ΛΓ(x) + v + Λ(w)

)
and

f(v,Λ) ◦ f(w,Γ) =
(
x 7→ (Λ(−) + v)(Γ(x) + w)

)
=
(
x 7→ (Λ(Γ(x) + w) + v)

)
=
(
x 7→ ΛΓ(x) + Λ(w) + v

)
,

which agrees.

2. (a) Write h : R4 → H for the map (̂ ) from the lecture. Then for v ∈ R4,
φ(M)(v) = h−1(Mh(v)M†). Using det(h(v)) = η(v, v) we compute, for
all v ∈ R4,

η(φ(M)v, φ(M)v) = det(h(φ(M)v)) = det(Mh(v)M†) = det(h(v)) = η(v, v) .

Applying this to v = x+y shows that also η(φ(M)x, φ(M)y) = η(x, y).
Thus φ(M) ∈ L.

From Exercise 11 we know that SL(2,C) is connected. The map h is
continuous, and so the image of SL(2,C) under h is connected, too.
Since φ(id) = id, the image of h lies in the connected component of id

in L, which is L↑+.

(b) We compute

(φ(M)φ(N))(v) = h−1(Mh(φ(N)(v))M†) = h−1(MNh(v)N†M†) = φ(MN)(v)

(c) Suppose M ∈ SL(2,C) satisfies φ(M)(v) = v for all v ∈ R3. This is
equivalent toMXM† = X for all hermitian matricesX. SettingX = id
shows that MM† = id, i.e. that M† = M−1. But then MXM† = X is
equivalent to MX = XM . This condition is C-linear in X, and so it
holds for all hermitian X iff it holds for all complex 2× 2 matrices X.
The centre of Mat(2,C) is λid. Since M ∈ SL(2,C) and M−1 = M†,
we see that M ∈ SU(2). The only diagonal matrices in SU(2) are ±id.
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Exercise 27

The universal property of pullback squares (Lemma 2.4.1) we obtain a group
homomorphism f such that

G̃

ρ̃
##

π

��
f

""
Ĝ

p
//

ρ̂��

G

U(H)

commutes. We obtain a group homomorphism g : π1(G)→ U(1) such that

π1(G)
ι //

g

��

G̃
π //

f

��

G

U(1)
j // Ĝ

p // G

commutes since p ◦ f ◦ ι = 1, and so f ◦ ι factors through U(1).

Claim: g = ζ

Since j is injective, g is the unique map such that jg = fι. Denoting the
embedding U(1)→ U(H) by ε, the map ζ is the unique one such that εζ = ρ̃ι.
But ρ̃ = ρ̂f by construction of f and so εζ = ρ̂fι = ρ̂jg. Now ρ̂j = ε by the first
commuting diagram in the statement of the exercise, so finally εζ = εj which
by injectivity of ε implies ζ = g.

Claim: f is not surjective.
Indeed, suppose f is surjective. Let u ∈ Ĝ lie in the image of U(1). Let x ∈ G̃ be
such that u = f(x). Then p(f(x)) = 1, hence π(x) = 1. Therefore x ∈ π1(G),
and so u = g(x). But π1(G) is at most countable and U(1) is not, so there
cannot be a surjection π1(G)→ U(1).

Claim: f is injective iff g is injective.
Suppose f is injective. Let x ∈ π1(G) satisfy g(x) = 1. Then also j(g(x)) = 1
and hence f(ι(x)) = 1. But f and ι are injective, and so x = 1. Hence g is
injective.
Conversely, suppose g is injective. Let y ∈ G̃ satisfy f(y) = 1. Then also
f(p(y)) = 1, hence π(y) = 1 and so y = ι(x) for some x ∈ π1(G). But then
1 = f(y) = f(ι(x)) = j(g(x)) and j and g are injective. So x = 1 and thereby
also y = 1.

Altogether we see that f is injective iff ρ is such that every element of π1(G)
acts non-trivially on U(H).

Exercise 28
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1. The implications follow from the bounds ‖(f(x)−f(y))v‖ ≤ ‖f(x)−f(y)‖ ‖v‖
(by the definition of the operator norm as a supremum) and |(u, (f(x) −
f(y))v)| ≤ ‖u‖‖(f(x)− f(y))v‖ (Cauchy ineuality).

2. Claim: f is weakly continuous

Let u =
∑
n unen and dito for v. Since

∑
n |un|2 converges, the un go to

zero for n→∞. Thus, for n−1 → 0,

(u, f( 1
n )v) = (u,

∑
k

vkek+n) =
∑
k

ūk+nvk = (Lnu, v) ≤ ‖Lnu‖ ‖v‖ ,

where Ln is the left shift. But ‖u‖2 is the norm-squared of the first n − 1
components of u with ‖Lnu‖2, which shows that ‖Lnu‖ → 0 for n→∞.

Claim: f is not strongly continuous

We have ‖f( 1
n )ek‖ = ‖en+k‖ = 1 which does not go to zero for n→∞.

3. That (Tφ(f), Tφ(g)) = (f, g) follows from translation invariance of the inte-
gral.

Claim: T is not norm continuous.

Let α ∈ [−π, π], α 6= 0 be given. We have ‖Tα − id‖ ≥ ‖Tαf − f‖ for
any choice f ∈ L2(U(1)) with ‖f‖ = 1. Pick a continuous function f with
support in [−α/2, α/2] and ‖f‖ = 1. Note that f and Tαf are orthogonal
as they have disjoint support. Thus

‖Tαf − f‖2 = ‖Tαf‖2 + ‖f‖2 = 2 ,

where we used that Tα is unitary. We already saw that ‖Tα − id‖ ≤ 2 so
that we in fact have

‖Tα − id‖ = 2 for all α ∈ [−π, π], α 6= 0 .

This does not approach zero as α→ 0.

Let us also check that T is strongly continuous.

Note that T is a group homomorphism. Thus ‖Tαf−Tβf‖ ≤ ‖Tβ‖ ‖Tα−βf−
f‖. Thus to see that for α → β we have ‖Tαf − Tβf‖ → 0 it is enough to
check that for all α→ 0 we have ‖Tαf − f‖ → 0.

Claim: If ‖Tαen−en‖ → 0 for α→ 0 for all elements of an ON-basis {en}n∈N
then Tn is strongly continuous.

Let f =
∑∞
n=1 fnen and ε > 0 be given. Split f = x + y where x =∑N

n=0 fnen and y =
∑∞
n=N+1 fnen. By choosing N large enough we can

achieve ‖y‖ < ε. Pick δ small enough such that for |ϕ| < δ we have ‖Tϕfnen−
fnen‖ < ε/N for all n = 1, . . . , N . Then

‖(Tϕ− id)f‖ ≤
N∑
n=1

‖(Tϕ− id)fnen‖+‖(Tϕ− id)y‖ ≤ Nε/N+‖(Tϕ− id)‖ε
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But Tϕ is unitary and so ‖Tϕ− id‖ ≤ ‖Tϕ‖+ ‖id‖ = 2. Hence for all |ϕ| < δ
we have ‖(Tϕ − id)f‖ < 3ε.

Consider the ON-basis en(ψ) = einψ as in Exercise 29. On this ON-basis
one quickly checks that ‖Tαen − en‖ → 0 for α→ 0 does indeed hold.

Exercise 29

1. (Rm(
∑
λnen), Rm(

∑
µnen)) =

∑
λ̄nµn = (

∑
λnen,

∑
µnen).

2. Using the hint we see that Rm maps smooth functions to smooth functions.
So does Tϕ. Thus the linear subspace of all smooth functions in L2(U(1)) is
invariant. (But it is not closed.)

3. Let v ∈ H be a non-zero vector. Write L ⊂ H for the closure of span(G.v).
Then L is a Hilbert space containing Tϕ(v) for all ϕ. The function f :
[0, 2π] → H, ϕ 7→ Tϕ(v) is continuous (since by Exercise 28 part 3 the map

T is strongly continuous). Let ξ :=
∫ 2π

0
f(ϕ)dϕ. As the integral can be

approximated by Riemann sums, each of which lies in span(G.v), we have
ξ ∈ L. Now by definition of the integral,

(em, ξ) =

∫ 2π

0

(em, Tϕ(v))dϕ =

∫ 2π

0

(T−ϕ(em), v)dϕ =

∫ 2π

0

eimϕ(em, v)dϕ

= 2πδm,0(e0, v) .

Thus ξ = 2π(e0, v)e0 and so if (e0, v) 6= 0, then also e0 ∈ L. Applying this
to Rmv shows that all em for which (em, v) 6= 0 are contained in L. Since
v 6= 0, there is at least one m such that (em, v) 6= 0. But if L contains one
em, then it contains all as we can shift via Rk. Hence L = H.

4. Consider the subspace L = L2([0, π]) ⊂ L2(U(1)) of all functions which are
identically zero on half of the unit circle. By the hint in part 2, Rm maps L
to itself. Thus {0} * L * H is a closed invariant subspace.

However, there are no one-dimensional invariant subspaces. Indeed, suppose
a non-zero v ∈ H satisfies Rmv = µmv for all m ∈ Z and some µm ∈ C,
|µm| = 1. Evaluating this on ϕ gives

eimϕv(ϕ) = µmv(ϕ) ,

for all ϕ ∈ R, which is impossible for m 6= 0.
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