Solutions for exercise sheet # 07
Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 26

1. L is already a subgroup of GL(4,R) and we take this as the action of L on
R%. The product of R" x L is then

(v, A)(w,T) = (v+ A(w), AT) .
Consider the map
fiRIxL—P | (vA)— (x—Ax+v).

This map is a bijection by the definition of P. We check that it is a group
homomorphism. We have

f((,A)(w,T)) = f(v+ Aw), AT) = (z — AT(z) + v + A(w))
and
f.A)o f(w,T) = (2= (A=) +0)(T(z) + w)) = (z = (AT (2) +w) +v))
= (z — Al(z) + A(w) +v) ,

which agrees.

—

2. (a) Write h : R* — H for the map () from the lecture. Then for v € R*,
d(M)(v) = h~H(Mh(v)M?'). Using det(h(v)) = n(v,v) we compute, for
all v € R%,

n(&(M)v, o(M)v) = det(h(¢(M)v)) = det(Mh(v)M") = det(h(v)) = n(v,v).

Applying this to v = x + y shows that also n(¢(M)z, p(M)y) = n(x,y).
Thus ¢(M) € L.

From Exercise 11 we know that SL(2,C) is connected. The map h is
continuous, and so the image of SL(2,C) under h is connected, too.
Since ¢(id) = id, the image of h lies in the connected component of id
in L, which is L.

(b) We compute
(G(M)$(N))(v) = b~ (Mh($(N)(v)) M) = h~ (MNh(v)NTMT) = $(MN)(v)

(c) Suppose M € SL(2,C) satisfies ¢(M)(v) = v for all v € R®. This is
equivalent to M X MT = X for all hermitian matrices X. Setting X = id
shows that MM*t = id, i.e. that Mt = M~'. But then MXMT = X is
equivalent to M X = X M. This condition is C-linear in X, and so it
holds for all hermitian X iff it holds for all complex 2 x 2 matrices X.
The centre of Mat(2,C) is Aid. Since M € SL(2,C) and M~! = M,
we see that M € SU(2). The only diagonal matrices in SU(2) are +id.



Exercise 27

The universal property of pullback squares (Lemma 2.4.1) we obtain a group
homomorphism f such that
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commutes. We obtain a group homomorphism g : 71 (G) — U(1) such that
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commutes since po f ot =1, and so f o factors through U(1).
Claim: g = ¢

Since j is injective, g is the unique map such that jg = fi. Denoting the
embedding U(1) — U(H) by ¢, the map ( is the unique one such that e¢ = pu.
But p = pf by construction of f and so e{ = pft = pjg. Now pj = € by the first
commuting diagram in the statement of the exercise, so finally e( = 5 which
by injectivity of € implies ( = g.

Claim: f is not surjective. N B
Indeed, suppose f is surjective. Let u € G lie in the image of U(1). Let z € G be
such that «w = f(z). Then p(f(x)) = 1, hence w(x) = 1. Therefore z € m(G),
and so u = g(z). But 7 (G) is at most countable and U(1) is not, so there
cannot be a surjection m (G) — U(1).

Claim: f is injective iff g is injective.

Suppose f is injective. Let x € m1(G) satisfy g(x) = 1. Then also j(g(z)) =1
and hence f(t«(z)) = 1. But f and ¢ are injective, and so x = 1. Hence g is
injective. _

Conversely, suppose g is injective. Let y € G satisfy f(y) = 1. Then also
f(p(y)) = 1, hence 7(y) = 1 and so y = «(x) for some z € 71(G). But then
1= f(y) = f(«(z)) = j(g9(z)) and j and g are injective. So x = 1 and thereby
also y = 1.

Altogether we see that f is injective iff p is such that every element of w1 (G)
acts non-trivially on U(H).

Exercise 28



1. The implications follow from the bounds ||(f(x)—f(y))v|| < || f

)=F@) ]l
|(u, (f () —

(z
(by the definition of the operator norm as a supremum) and
F@)o)l < Mlullll(f(x) = f(y)v[l (Cauchy ineuality).
. Claim: f is weakly continuous

Let u = Y upe, and dito for v. Since Y |u,|? converges, the u, go to
zero for n — oo. Thus, for n=! — 0,

(u, f(5 ka€k+n Zuk+nvk = (Lnu,v) < |[Lnull[|v]] ,

where L, is the left shift. But ||u||? is the norm-squared of the first n — 1
components of u with ||L,u||?, which shows that || L,u| — 0 for n — co.

Claim: f is not strongly continuous

We have || f(L)ex| = ||entr| = 1 which does not go to zero for n — oo.

. That (T4(f),T(9)) = (f,g) follows from translation invariance of the inte-
gral.

Claim: T is not norm continuous.

Let a € [—m, 7], @ # 0 be given. We have || T, — id|| > ||Tuf — f]| for
any choice f € L2(U(1)) with ||f|| = 1. Pick a continuous function f with
support in [—«a/2,«/2] and ||f|| = 1. Note that f and T, f are orthogonal
as they have disjoint support. Thus

ITuf — fII? = ITufl® + 11> =2,

where we used that T, is unitary. We already saw that ||T,, — id|| < 2 so
that we in fact have

ITo —id|| =2 forall a € [—m, 7], a#0.
This does not approach zero as a — 0.

Let us also check that T is strongly continuous.

Note that T is a group homomorphism. Thus ||To f—Taf|| < |||l |Ta=sf—
fll- Thus to see that for & — 8 we have |T,,f — T f|| — 0 it is enough to
check that for all @ — 0 we have ||T,,f — f|| — 0.

Claim: If || Toen —en|| = 0 for a — 0 for all elements of an ON-basis {ey, }nen
then T, is strongly continuous.

Let f = Y07, fnen and € > 0 be given. Split f = x + y where z =
Zg:o fnen and y = ZZOZN_H fnén. By choosing N large enough we can
achieve ||y|| < e. Pick § small enough such that for |¢| < § we have ||T,, fren—
fnenll <e/N for alln=1,...,N. Then

(T, —id) fH<Z|| —id) fren||+ (T, —id)y|| < Ne/N+[[(T, —id)|le



But T, is unitary and so ||T, —id|| < || T,|| + ||id|| = 2. Hence for all |¢| < ¢
we have ||(T, —id) f]| < 3e.

Consider the ON-basis e,(¢)) = €% as in Exercise 29. On this ON-basis
one quickly checks that ||Tye, — en]| = 0 for & — 0 does indeed hold.

Exercise 29

L (R (X Anen), R (D2 pnen)) = Zj\n/‘n = (22 Anen, 2 Hnen).

2. Using the hint we see that R,, maps smooth functions to smooth functions.
So does T,. Thus the linear subspace of all smooth functions in L*(U(1)) is
invariant. (But it is not closed.)

3. Let v € H be a non-zero vector. Write £ C H for the closure of span(G.v).
Then £ is a Hilbert space containing T, (v) for all ¢. The function f :

[0,27] — H, ¢ — T, (v) is continuous (since by Exercise 28 part 3 the map

T is strongly continuous). Let £ := 027T f(p)de. As the integral can be

approximated by Riemann sums, each of which lies in span(G.v), we have
¢ € L. Now by definition of the integral,

27

(em, &) = /Ozﬂ(em,Tw(v))dga = /0 (T_y(em),v)dp = /027r e (e, v)dp

= 270, 0(e0,v) .

Thus £ = 27(eg, v)eg and so if (eg,v) # 0, then also ey € L. Applying this
to R,,v shows that all e,, for which (e,,,v) # 0 are contained in £. Since
v # 0, there is at least one m such that (e,,,v) # 0. But if £ contains one
em, then it contains all as we can shift via Ry. Hence £ = H.

4. Consider the subspace £ = L?([0,n]) € L?(U(1)) of all functions which are
identically zero on half of the unit circle. By the hint in part 2, R,, maps £
to itself. Thus {0} € £ ¢ H is a closed invariant subspace.

However, there are no one-dimensional invariant subspaces. Indeed, suppose
a non-zero v € H satisfies R,,v = upv for all m € Z and some pu,, € C,
|tm| = 1. Evaluating this on ¢ gives

e u(p) = pmo(p)

for all ¢ € R, which is impossible for m # 0.



