Solutions for exercise sheet \#07 Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 26

1. L is already a subgroup of $G L(4, \mathbb{R})$ and we take this as the action of L on \mathbb{R}^{4}. The product of $\mathbb{R}^{r} \rtimes L$ is then

$$
(v, \Lambda)(w, \Gamma)=(v+\Lambda(w), \Lambda \Gamma)
$$

Consider the map

$$
f: \mathbb{R}^{r} \rtimes L \longrightarrow P \quad, \quad(v, \Lambda) \longmapsto(x \mapsto \Lambda x+v) .
$$

This map is a bijection by the definition of P. We check that it is a group homomorphism. We have

$$
f((v, \Lambda)(w, \Gamma))=f(v+\Lambda(w), \Lambda \Gamma)=(x \mapsto \Lambda \Gamma(x)+v+\Lambda(w))
$$

and

$$
\begin{aligned}
f(v, \Lambda) \circ f(w, \Gamma) & =(x \mapsto(\Lambda(-)+v)(\Gamma(x)+w))=(x \mapsto(\Lambda(\Gamma(x)+w)+v)) \\
& =(x \mapsto \Lambda \Gamma(x)+\Lambda(w)+v)
\end{aligned}
$$

which agrees.
2. (a) Write $h: \mathbb{R}^{4} \rightarrow H$ for the map $\widehat{()}$ from the lecture. Then for $v \in \mathbb{R}^{4}$, $\phi(M)(v)=h^{-1}\left(M h(v) M^{\dagger}\right)$. Using $\operatorname{det}(h(v))=\eta(v, v)$ we compute, for all $v \in \mathbb{R}^{4}$,

$$
\eta(\phi(M) v, \phi(M) v)=\operatorname{det}(h(\phi(M) v))=\operatorname{det}\left(M h(v) M^{\dagger}\right)=\operatorname{det}(h(v))=\eta(v, v) .
$$

Applying this to $v=x+y$ shows that also $\eta(\phi(M) x, \phi(M) y)=\eta(x, y)$. Thus $\phi(M) \in L$.
From Exercise 11 we know that $S L(2, \mathbb{C})$ is connected. The map h is continuous, and so the image of $S L(2, \mathbb{C})$ under h is connected, too. Since $\phi(i d)=i d$, the image of h lies in the connected component of $i d$ in L, which is L_{+}^{\uparrow}.
(b) We compute

$$
(\phi(M) \phi(N))(v)=h^{-1}\left(M h(\phi(N)(v)) M^{\dagger}\right)=h^{-1}\left(M N h(v) N^{\dagger} M^{\dagger}\right)=\phi(M N)(v)
$$

(c) Suppose $M \in S L(2, \mathbb{C})$ satisfies $\phi(M)(v)=v$ for all $v \in \mathbb{R}^{3}$. This is equivalent to $M X M^{\dagger}=X$ for all hermitian matrices X. Setting $X=i d$ shows that $M M^{\dagger}=i d$, i.e. that $M^{\dagger}=M^{-1}$. But then $M X M^{\dagger}=X$ is equivalent to $M X=X M$. This condition is \mathbb{C}-linear in X, and so it holds for all hermitian X iff it holds for all complex 2×2 matrices X. The centre of $\operatorname{Mat}(2, \mathbb{C})$ is $\lambda i d$. Since $M \in S L(2, \mathbb{C})$ and $M^{-1}=M^{\dagger}$, we see that $M \in S U(2)$. The only diagonal matrices in $S U(2)$ are $\pm i d$.

Exercise 27

The universal property of pullback squares (Lemma 2.4.1) we obtain a group homomorphism f such that

commutes. We obtain a group homomorphism $g: \pi_{1}(G) \rightarrow U(1)$ such that

commutes since $p \circ f \circ \iota=1$, and so $f \circ \iota$ factors through $U(1)$.
Claim: $g=\zeta$
Since j is injective, g is the unique map such that $j g=f \iota$. Denoting the embedding $U(1) \rightarrow U(\mathcal{H})$ by ε, the map ζ is the unique one such that $\varepsilon \zeta=\widetilde{\rho} \iota$. But $\widetilde{\rho}=\widehat{\rho} f$ by construction of f and so $\varepsilon \zeta=\widehat{\rho} f \iota=\widehat{\rho} j g$. Now $\widehat{\rho} j=\varepsilon$ by the first commuting diagram in the statement of the exercise, so finally $\varepsilon \zeta=\varepsilon j$ which by injectivity of ε implies $\zeta=g$.

Claim: f is not surjective.
Indeed, suppose f is surjective. Let $u \in \widehat{G}$ lie in the image of $U(1)$. Let $x \in \widetilde{G}$ be such that $u=f(x)$. Then $p(f(x))=1$, hence $\pi(x)=1$. Therefore $x \in \pi_{1}(G)$, and so $u=g(x)$. But $\pi_{1}(G)$ is at most countable and $U(1)$ is not, so there cannot be a surjection $\pi_{1}(G) \rightarrow U(1)$.

Claim: f is injective iff g is injective.
Suppose f is injective. Let $x \in \pi_{1}(G)$ satisfy $g(x)=1$. Then also $j(g(x))=1$ and hence $f(\iota(x))=1$. But f and ι are injective, and so $x=1$. Hence g is injective.
Conversely, suppose g is injective. Let $y \in \widetilde{G}$ satisfy $f(y)=1$. Then also $f(p(y))=1$, hence $\pi(y)=1$ and so $y=\iota(x)$ for some $x \in \pi_{1}(G)$. But then $1=f(y)=f(\iota(x))=j(g(x))$ and j and g are injective. So $x=1$ and thereby also $y=1$.

Altogether we see that f is injective iff ρ is such that every element of $\pi_{1}(G)$ acts non-trivially on $U(\mathcal{H})$.

Exercise 28

1. The implications follow from the bounds $\|(f(x)-f(y)) v\| \leq\|f(x)-f(y)\|\|v\|$ (by the definition of the operator norm as a supremum) and $\mid(u,(f(x)-$ $f(y)) v) \mid \leq\|u\|\|(f(x)-f(y)) v\|$ (Cauchy ineuality).
2. Claim: f is weakly continuous

Let $u=\sum_{n} u_{n} e_{n}$ and dito for v. Since $\sum_{n}\left|u_{n}\right|^{2}$ converges, the u_{n} go to zero for $n \rightarrow \infty$. Thus, for $n^{-1} \rightarrow 0$,

$$
\left(u, f\left(\frac{1}{n}\right) v\right)=\left(u, \sum_{k} v_{k} e_{k+n}\right)=\sum_{k} \bar{u}_{k+n} v_{k}=\left(L_{n} u, v\right) \leq\left\|L_{n} u\right\|\|v\|,
$$

where L_{n} is the left shift. But $\|u\|^{2}$ is the norm-squared of the first $n-1$ components of u with $\left\|L_{n} u\right\|^{2}$, which shows that $\left\|L_{n} u\right\| \rightarrow 0$ for $n \rightarrow \infty$.

Claim: f is not strongly continuous
We have $\left\|f\left(\frac{1}{n}\right) e_{k}\right\|=\left\|e_{n+k}\right\|=1$ which does not go to zero for $n \rightarrow \infty$.
3. That $\left(T_{\phi}(f), T_{\phi}(g)\right)=(f, g)$ follows from translation invariance of the integral.

Claim: T is not norm continuous.
Let $\alpha \in[-\pi, \pi], \alpha \neq 0$ be given. We have $\left\|T_{\alpha}-i d\right\| \geq\left\|T_{\alpha} f-f\right\|$ for any choice $f \in L^{2}(U(1))$ with $\|f\|=1$. Pick a continuous function f with support in $[-\alpha / 2, \alpha / 2]$ and $\|f\|=1$. Note that f and $T_{\alpha} f$ are orthogonal as they have disjoint support. Thus

$$
\left\|T_{\alpha} f-f\right\|^{2}=\left\|T_{\alpha} f\right\|^{2}+\|f\|^{2}=2,
$$

where we used that T_{α} is unitary. We already saw that $\left\|T_{\alpha}-i d\right\| \leq 2$ so that we in fact have

$$
\left\|T_{\alpha}-i d\right\|=2 \quad \text { for all } \alpha \in[-\pi, \pi], \alpha \neq 0
$$

This does not approach zero as $\alpha \rightarrow 0$.
Let us also check that T is strongly continuous.
Note that T is a group homomorphism. Thus $\left\|T_{\alpha} f-T_{\beta} f\right\| \leq\left\|T_{\beta}\right\| \| T_{\alpha-\beta} f-$ $f \|$. Thus to see that for $\alpha \rightarrow \beta$ we have $\left\|T_{\alpha} f-T_{\beta} f\right\| \rightarrow 0$ it is enough to check that for all $\alpha \rightarrow 0$ we have $\left\|T_{\alpha} f-f\right\| \rightarrow 0$.

Claim: If $\left\|T_{\alpha} e_{n}-e_{n}\right\| \rightarrow 0$ for $\alpha \rightarrow 0$ for all elements of an ON-basis $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ then T_{n} is strongly continuous.
Let $f=\sum_{n=1}^{\infty} f_{n} e_{n}$ and $\varepsilon>0$ be given. Split $f=x+y$ where $x=$ $\sum_{n=0}^{N} f_{n} e_{n}$ and $y=\sum_{n=N+1}^{\infty} f_{n} e_{n}$. By choosing N large enough we can achieve $\|y\|<\varepsilon$. Pick δ small enough such that for $|\varphi|<\delta$ we have $\| T_{\varphi} f_{n} e_{n}-$ $f_{n} e_{n} \|<\varepsilon / N$ for all $n=1, \ldots, N$. Then

$$
\left\|\left(T_{\varphi}-i d\right) f\right\| \leq \sum_{n=1}^{N}\left\|\left(T_{\varphi}-i d\right) f_{n} e_{n}\right\|+\left\|\left(T_{\varphi}-i d\right) y\right\| \leq N \varepsilon / N+\left\|\left(T_{\varphi}-i d\right)\right\| \varepsilon
$$

But T_{φ} is unitary and so $\left\|T_{\varphi}-i d\right\| \leq\left\|T_{\varphi}\right\|+\|i d\|=2$. Hence for all $|\varphi|<\delta$ we have $\left\|\left(T_{\varphi}-i d\right) f\right\|<3 \varepsilon$.

Consider the ON-basis $e_{n}(\psi)=e^{i n \psi}$ as in Exercise 29. On this ON-basis one quickly checks that $\left\|T_{\alpha} e_{n}-e_{n}\right\| \rightarrow 0$ for $\alpha \rightarrow 0$ does indeed hold.

Exercise 29

1. $\left(R_{m}\left(\sum \lambda_{n} e_{n}\right), R_{m}\left(\sum \mu_{n} e_{n}\right)\right)=\sum \bar{\lambda}_{n} \mu_{n}=\left(\sum \lambda_{n} e_{n}, \sum \mu_{n} e_{n}\right)$.
2. Using the hint we see that R_{m} maps smooth functions to smooth functions. So does T_{φ}. Thus the linear subspace of all smooth functions in $L^{2}(U(1))$ is invariant. (But it is not closed.)
3. Let $v \in \mathcal{H}$ be a non-zero vector. Write $\mathcal{L} \subset \mathcal{H}$ for the closure of $\operatorname{span}(G . v)$. Then \mathcal{L} is a Hilbert space containing $T_{\varphi}(v)$ for all φ. The function f : $[0,2 \pi] \rightarrow \mathcal{H}, \varphi \mapsto T_{\varphi}(v)$ is continuous (since by Exercise 28 part 3 the map T is strongly continuous). Let $\xi:=\int_{0}^{2 \pi} f(\varphi) d \varphi$. As the integral can be approximated by Riemann sums, each of which lies in $\operatorname{span}(G . v)$, we have $\xi \in \mathcal{L}$. Now by definition of the integral,

$$
\begin{aligned}
\left(e_{m}, \xi\right) & =\int_{0}^{2 \pi}\left(e_{m}, T_{\varphi}(v)\right) d \varphi=\int_{0}^{2 \pi}\left(T_{-\varphi}\left(e_{m}\right), v\right) d \varphi=\int_{0}^{2 \pi} e^{i m \varphi}\left(e_{m}, v\right) d \varphi \\
& =2 \pi \delta_{m, 0}\left(e_{0}, v\right)
\end{aligned}
$$

Thus $\xi=2 \pi\left(e_{0}, v\right) e_{0}$ and so if $\left(e_{0}, v\right) \neq 0$, then also $e_{0} \in \mathcal{L}$. Applying this to $R_{m} v$ shows that all e_{m} for which $\left(e_{m}, v\right) \neq 0$ are contained in \mathcal{L}. Since $v \neq 0$, there is at least one m such that $\left(e_{m}, v\right) \neq 0$. But if \mathcal{L} contains one e_{m}, then it contains all as we can shift via R_{k}. Hence $\mathcal{L}=\mathcal{H}$.
4. Consider the subspace $\mathcal{L}=L^{2}([0, \pi]) \subset L^{2}(U(1))$ of all functions which are identically zero on half of the unit circle. By the hint in part $2, R_{m}$ maps \mathcal{L} to itself. Thus $\{0\} \nsubseteq \mathcal{L} \nsubseteq \mathcal{H}$ is a closed invariant subspace.
However, there are no one-dimensional invariant subspaces. Indeed, suppose a non-zero $v \in \mathcal{H}$ satisfies $R_{m} v=\mu_{m} v$ for all $m \in \mathbb{Z}$ and some $\mu_{m} \in \mathbb{C}$, $\left|\mu_{m}\right|=1$. Evaluating this on φ gives

$$
e^{i m \varphi} v(\varphi)=\mu_{m} v(\varphi),
$$

for all $\varphi \in \mathbb{R}$, which is impossible for $m \neq 0$.

