Solutions for exercise sheet # 07Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 26

1. L is already a subgroup of $GL(4, \mathbb{R})$ and we take this as the action of L on \mathbb{R}^4 . The product of $\mathbb{R}^r \rtimes L$ is then

$$(v, \Lambda)(w, \Gamma) = (v + \Lambda(w), \Lambda\Gamma)$$
.

Consider the map

$$f: \mathbb{R}^r \rtimes L \longrightarrow P \quad , \quad (v, \Lambda) \longmapsto (x \mapsto \Lambda x + v) \; .$$

This map is a bijection by the definition of P. We check that it is a group homomorphism. We have

$$f((v,\Lambda)(w,\Gamma)) = f(v+\Lambda(w),\Lambda\Gamma) = \left(x \mapsto \Lambda\Gamma(x) + v + \Lambda(w)\right)$$

and

$$f(v,\Lambda) \circ f(w,\Gamma) = (x \mapsto (\Lambda(-) + v)(\Gamma(x) + w)) = (x \mapsto (\Lambda(\Gamma(x) + w) + v))$$
$$= (x \mapsto \Lambda\Gamma(x) + \Lambda(w) + v) ,$$

which agrees.

2. (a) Write $h : \mathbb{R}^4 \to H$ for the map $\widehat{(\)}$ from the lecture. Then for $v \in \mathbb{R}^4$, $\phi(M)(v) = h^{-1}(Mh(v)M^{\dagger})$. Using $\det(h(v)) = \eta(v, v)$ we compute, for all $v \in \mathbb{R}^4$,

$$\eta(\phi(M)v,\phi(M)v) = \det(h(\phi(M)v)) = \det(Mh(v)M^{\dagger}) = \det(h(v)) = \eta(v,v) .$$

Applying this to v = x + y shows that also $\eta(\phi(M)x, \phi(M)y) = \eta(x, y)$. Thus $\phi(M) \in L$.

From Exercise 11 we know that $SL(2, \mathbb{C})$ is connected. The map h is continuous, and so the image of $SL(2, \mathbb{C})$ under h is connected, too. Since $\phi(id) = id$, the image of h lies in the connected component of id in L, which is L^{\uparrow}_{+} .

(b) We compute

$$(\phi(M)\phi(N))(v) = h^{-1}(Mh(\phi(N)(v))M^{\dagger}) = h^{-1}(MNh(v)N^{\dagger}M^{\dagger}) = \phi(MN)(v)$$

(c) Suppose $M \in SL(2, \mathbb{C})$ satisfies $\phi(M)(v) = v$ for all $v \in \mathbb{R}^3$. This is equivalent to $MXM^{\dagger} = X$ for all hermitian matrices X. Setting X = idshows that $MM^{\dagger} = id$, i.e. that $M^{\dagger} = M^{-1}$. But then $MXM^{\dagger} = X$ is equivalent to MX = XM. This condition is \mathbb{C} -linear in X, and so it holds for all hermitian X iff it holds for all complex 2×2 matrices X. The centre of Mat $(2, \mathbb{C})$ is λid . Since $M \in SL(2, \mathbb{C})$ and $M^{-1} = M^{\dagger}$, we see that $M \in SU(2)$. The only diagonal matrices in SU(2) are $\pm id$.

Exercise 27

The universal property of pullback squares (Lemma 2.4.1) we obtain a group homomorphism f such that

commutes. We obtain a group homomorphism $g: \pi_1(G) \to U(1)$ such that

commutes since $p \circ f \circ \iota = 1$, and so $f \circ \iota$ factors through U(1).

Claim: $g = \zeta$

Since j is injective, g is the unique map such that $jg = f\iota$. Denoting the embedding $U(1) \to U(\mathcal{H})$ by ε , the map ζ is the unique one such that $\varepsilon \zeta = \tilde{\rho}\iota$. But $\tilde{\rho} = \hat{\rho}f$ by construction of f and so $\varepsilon \zeta = \hat{\rho}f\iota = \hat{\rho}jg$. Now $\hat{\rho}j = \varepsilon$ by the first commuting diagram in the statement of the exercise, so finally $\varepsilon \zeta = \varepsilon j$ which by injectivity of ε implies $\zeta = g$.

Claim: f is not surjective.

Indeed, suppose f is surjective. Let $u \in \widehat{G}$ lie in the image of U(1). Let $x \in \widetilde{G}$ be such that u = f(x). Then p(f(x)) = 1, hence $\pi(x) = 1$. Therefore $x \in \pi_1(G)$, and so u = g(x). But $\pi_1(G)$ is at most countable and U(1) is not, so there cannot be a surjection $\pi_1(G) \to U(1)$.

Claim: f is injective iff g is injective.

Suppose f is injective. Let $x \in \pi_1(G)$ satisfy g(x) = 1. Then also j(g(x)) = 1 and hence $f(\iota(x)) = 1$. But f and ι are injective, and so x = 1. Hence g is injective.

Conversely, suppose g is injective. Let $y \in \widetilde{G}$ satisfy f(y) = 1. Then also f(p(y)) = 1, hence $\pi(y) = 1$ and so $y = \iota(x)$ for some $x \in \pi_1(G)$. But then $1 = f(y) = f(\iota(x)) = j(g(x))$ and j and g are injective. So x = 1 and thereby also y = 1.

Altogether we see that f is injective iff ρ is such that every element of $\pi_1(G)$ acts non-trivially on $U(\mathcal{H})$.

Exercise 28

- 1. The implications follow from the bounds $||(f(x)-f(y))v|| \le ||f(x)-f(y)|| ||v||$ (by the definition of the operator norm as a supremum) and $|(u, (f(x) - f(y))v)| \le ||u|| ||(f(x) - f(y))v||$ (Cauchy ineuality).
- 2. Claim: f is weakly continuous

Let $u = \sum_{n} u_n e_n$ and dito for v. Since $\sum_{n} |u_n|^2$ converges, the u_n go to zero for $n \to \infty$. Thus, for $n^{-1} \to 0$,

$$(u, f(\frac{1}{n})v) = (u, \sum_{k} v_k e_{k+n}) = \sum_{k} \bar{u}_{k+n} v_k = (L_n u, v) \le ||L_n u|| ||v|| ,$$

where L_n is the left shift. But $||u||^2$ is the norm-squared of the first n-1 components of u with $||L_n u||^2$, which shows that $||L_n u|| \to 0$ for $n \to \infty$.

Claim: f is not strongly continuous

We have $||f(\frac{1}{n})e_k|| = ||e_{n+k}|| = 1$ which does not go to zero for $n \to \infty$.

3. That $(T_{\phi}(f), T_{\phi}(g)) = (f, g)$ follows from translation invariance of the integral.

Claim: T is not norm continuous.

Let $\alpha \in [-\pi, \pi]$, $\alpha \neq 0$ be given. We have $||T_{\alpha} - id|| \geq ||T_{\alpha}f - f||$ for any choice $f \in L^2(U(1))$ with ||f|| = 1. Pick a continuous function f with support in $[-\alpha/2, \alpha/2]$ and ||f|| = 1. Note that f and $T_{\alpha}f$ are orthogonal as they have disjoint support. Thus

$$||T_{\alpha}f - f||^{2} = ||T_{\alpha}f||^{2} + ||f||^{2} = 2,$$

where we used that T_{α} is unitary. We already saw that $||T_{\alpha} - id|| \leq 2$ so that we in fact have

$$||T_{\alpha} - id|| = 2$$
 for all $\alpha \in [-\pi, \pi], \alpha \neq 0$.

This does not approach zero as $\alpha \to 0$.

Let us also check that T is strongly continuous.

Note that T is a group homomorphism. Thus $||T_{\alpha}f - T_{\beta}f|| \leq ||T_{\beta}|| ||T_{\alpha-\beta}f - f||$. Thus to see that for $\alpha \to \beta$ we have $||T_{\alpha}f - T_{\beta}f|| \to 0$ it is enough to check that for all $\alpha \to 0$ we have $||T_{\alpha}f - f|| \to 0$.

Claim: If $||T_{\alpha}e_n - e_n|| \to 0$ for $\alpha \to 0$ for all elements of an ON-basis $\{e_n\}_{n \in \mathbb{N}}$ then T_n is strongly continuous.

Let $f = \sum_{n=1}^{\infty} f_n e_n$ and $\varepsilon > 0$ be given. Split f = x + y where $x = \sum_{n=0}^{N} f_n e_n$ and $y = \sum_{n=N+1}^{\infty} f_n e_n$. By choosing N large enough we can achieve $||y|| < \varepsilon$. Pick δ small enough such that for $|\varphi| < \delta$ we have $||T_{\varphi}f_n e_n - f_n e_n|| < \varepsilon/N$ for all $n = 1, \ldots, N$. Then

$$\|(T_{\varphi} - id)f\| \le \sum_{n=1}^{N} \|(T_{\varphi} - id)f_n e_n\| + \|(T_{\varphi} - id)y\| \le N\varepsilon/N + \|(T_{\varphi} - id)\|\varepsilon$$

But T_{φ} is unitary and so $||T_{\varphi} - id|| \le ||T_{\varphi}|| + ||id|| = 2$. Hence for all $|\varphi| < \delta$ we have $||(T_{\varphi} - id)f|| < 3\varepsilon$.

Consider the ON-basis $e_n(\psi) = e^{in\psi}$ as in Exercise 29. On this ON-basis one quickly checks that $||T_{\alpha}e_n - e_n|| \to 0$ for $\alpha \to 0$ does indeed hold.

Exercise 29

- 1. $(R_m(\sum \lambda_n e_n), R_m(\sum \mu_n e_n)) = \sum \overline{\lambda}_n \mu_n = (\sum \lambda_n e_n, \sum \mu_n e_n).$
- 2. Using the hint we see that R_m maps smooth functions to smooth functions. So does T_{φ} . Thus the linear subspace of all smooth functions in $L^2(U(1))$ is invariant. (But it is not closed.)
- 3. Let $v \in \mathcal{H}$ be a non-zero vector. Write $\mathcal{L} \subset \mathcal{H}$ for the closure of span(G.v). Then \mathcal{L} is a Hilbert space containing $T_{\varphi}(v)$ for all φ . The function $f : [0, 2\pi] \to \mathcal{H}, \varphi \mapsto T_{\varphi}(v)$ is continuous (since by Exercise 28 part 3 the map T is strongly continuous). Let $\xi := \int_{0}^{2\pi} f(\varphi) d\varphi$. As the integral can be approximated by Riemann sums, each of which lies in span(G.v), we have $\xi \in \mathcal{L}$. Now by definition of the integral,

$$(e_m,\xi) = \int_0^{2\pi} (e_m, T_{\varphi}(v)) d\varphi = \int_0^{2\pi} (T_{-\varphi}(e_m), v) d\varphi = \int_0^{2\pi} e^{im\varphi}(e_m, v) d\varphi$$
$$= 2\pi \delta_{m,0}(e_0, v) .$$

Thus $\xi = 2\pi(e_0, v)e_0$ and so if $(e_0, v) \neq 0$, then also $e_0 \in \mathcal{L}$. Applying this to $R_m v$ shows that all e_m for which $(e_m, v) \neq 0$ are contained in \mathcal{L} . Since $v \neq 0$, there is at least one m such that $(e_m, v) \neq 0$. But if \mathcal{L} contains one e_m , then it contains all as we can shift via R_k . Hence $\mathcal{L} = \mathcal{H}$.

4. Consider the subspace $\mathcal{L} = L^2([0,\pi]) \subset L^2(U(1))$ of all functions which are identically zero on half of the unit circle. By the hint in part 2, R_m maps \mathcal{L} to itself. Thus $\{0\} \not\subseteq \mathcal{L} \not\subseteq \mathcal{H}$ is a closed invariant subspace.

However, there are no one-dimensional invariant subspaces. Indeed, suppose a non-zero $v \in \mathcal{H}$ satisfies $R_m v = \mu_m v$ for all $m \in \mathbb{Z}$ and some $\mu_m \in \mathbb{C}$, $|\mu_m| = 1$. Evaluating this on φ gives

$$e^{im\varphi}v(\varphi) = \mu_m v(\varphi) \; ,$$

for all $\varphi \in \mathbb{R}$, which is impossible for $m \neq 0$.