Solutions for exercise sheet # 06
Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 22

1. We have, for an appropriate A € k*,
p(g)p(h) = 7(p(g)p(h)) = m(Ap(gh)) = m(Xid)m(p(gh)) = p(gh)) -

2. “=”: By assumption, there is a linear isomorphism f : W — W’ such that
for all g € G, fop(g) =Ag-p'(g)o f for some constants A\, € k*. Thus

p'(9) =7(p'(9)) =7\, fplg)f ) = (A, Mid)w (fp(g) f )
=f()f Tom(p(g)) -

“<”: Similar as above: From ' (g) = f()f~! o p(g) one concludes the
existence of \; € k> such that \jp'(g) = fop(g)o f1

plg

3. Since 7(p(g)p(h)p(gh)~") = m(p(g)7(p(h))m(p(gh)~" = o(g)o(h)o(gh)~*
1, we conclude that p(g)p(h)p(gh)™t = w for some A € kX, that is,
p(g)p(h) € k* - p(gh).
Analogously, for another choice p’ we have 7(p’(9)p(9) %) = 7 (p'(9))7(p(g9)) ! =
o(g)o(g)~" =1, hence p'(g) = pg - p(g) for some constants y, € k*. This
shows that the identity map W — W provides an isomorphism of projective
representations (W, p) — (W, p').
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Exercise 23
f exists: Recall that G = {(F, g) € GL(W) x G|x(F) = p(g)}. Define

f(h) = (b(h),a(h)) .

This is indeed an element of G by the first commuting diagram in the exercise
that H is assumed to satisfy. It also makes the second diagram in the exercise
commute: p(f(h)) = a(h) and p(f(h)) = b(h) by construction, as p and p just
project to the first and second entry, respectively.

f is unique: Suppose another group homomorphism f’ makes the second dia-
gram commute. Then we can write f/'(h) = (u(h),v(h)). But u(h) = p(f'(h)) =
b(h), etc., and so f' = f.



Exercise 24

1.

(a) The condition dx = 1 reads

x(h, k) x(gh, k)" x(g,hk) x(g,h) "' =1,

Setting h = e in the above expression gives

x(e.k)x(g,e) ' =1.

Further setting k = e or setting g = e gives the first result.

1

For the second result set h = ¢~ and k = ¢ in the condition dx = 1 to

get
x(97"9) x(e.9) " 'x(g.€) x(9,97 1) =1
As we just checked, the two middle terms cancel.
(b) We make the ansatz 3(g) = x(g,9)~ . Then

(08)(e. 9) = B(9)B(9) ' Ble) = x(e,e) ",
and in the same way (08)(g,e) = B(e). Define x’ = xd5. Then

X'(e,9) = x(e,9)(8)(g,¢) = x(e, g)x(e,e)H =1
by part a. Again by part a, this implies x'(g,¢e) = 1 as well.

e (unit) The unit is (x(e,e)~ !, e). For example,

(a,9)(x(e;e) 7", e) = (ax(e,e)"'x(g,€), 9) = (a,9) ,
where in the last equality we used part la.

e (inverse) The inverse of (a,g) is (a"'x(g,97)"%,¢7%). To check that
this is a 2-sided inverse one again needs to use part la.

e (central extension) We need to check that j(a) := (ax(e,e)1,e) is a
group homomorphism, the rest is clear. We have

3(a)j(b) = (ax(e,e) ™", e)(bx(e, €)', e) = (abx(e, e)*x(e,€), €) = j(ab).

Exercise 25

1.

Write h = p(g). Since g2 € j(A) we have e = p(g?) = h%. Suppose there is
a group homomorphism s : H — G such that p(s(h)) = h for all h € H.

We have p(s(h)g™!) = p(s(h))p(g)~* = hh~! = ¢, and so s(h)g~* = j(a) for
some a € A. Or, equivalently, s(h) = j(a)g. Thus
e =s(e) = s(h*) = s(h)s(h) = j(a)*g” .

But then g% = j(a=1)?, in contradiction to the assumption that g? cannot
be written as a square in A.



2. No element in A = {1} squares to —1. But the element g = diag(i, —i) €
SU(2) satisfies g2 = —id.

3. There exists a unique group homomorphism ¢ : PSU(2) — PU(2) making
the diagram
SU(2) —— PSU(2)

U(2) —— PU(2)
commute. In fact, 7 is a bijection: it is surjective (the composition SU(2) —
U(2) — PU(2) is surjective) and injective (if i(7(z)) = 0, then x = \id, i.e.
m(z) =1).

Suppose there is a splitting homomorphism s : PU(2) — U(2).

Claim: For all x € PU(2), det(s(x)) = 1.

Proof: We get a group homomorphism

det

SU2) I PSU(2) 5 PU2) S U(2) 2% U(1) .

As SU(2) is generated by commutators and U(1) is commutative, all ele-

ments of SU(2) must get mapped to 1. But SU(2) = PSU(2) 5 PU(2) is
surjective, and so det(s(z)) = 1 must hold for all z, proving the claim.

The claim shows that the image of s is actually in SU(2). Combining with Z,
we obtain a group homomorphism s’ : PSU(2) — SU(2) such that wo s’ =
idpsy(2)- But this would be a splitting homomorphism for

{£1} — SU(2) — PSU(2) ,
which by part 2 does not exist.

4. Let us go through the argument of parts 1-3 backwards. Suppse U(1) —
U(N) — PU(N) splits via a group homomorphism s : PU(N) — U(N).
Then we get a group homomorphism

SU(N) % PSU(N) = PU(N) 5 U(N) 2% U(1) .
SU(N) (and every semisimple compact Lie group for that matter) is gener-
ated by commutators, and so again its image is 1. We are reduced to looking
at the central extension

e /N g

ZN SU(N) % PSU(N) .

Now one generalises the argument in part 1 from “square” to “N’th power”
to see that this sequence does not split.



The central extension U(1) — UA(H) - AutP(H) also does not split.
Indeed, let U(P(H)) := v(U(#H)) be the image of all unitary maps. This is
a subgroup, and we have an exact sequence (and central extension)

U(l) - UH) 5 UPH)) .
The fact that this is an exact sequence implies in particular that U(P(H)) =
U(H)/U(1) = PU(H).
Since a splitting of U(1) — UA(H) — AutP(H) also gives a splitting of
U(l) = UH) 5 U(P(H)), we see that for H = CN, N > 2, this central
extension does not split.

The fact that U(1) — UA(H) - Aut P(#H) is a central extensions implies in
particular that UA(#H)/U(1) = Aut P(H).



