
Solutions for exercise sheet #06
Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 22

1. We have, for an appropriate λ ∈ k×,

ρ̄(g)ρ̄(h) = π(ρ(g)ρ(h)) = π(λρ(gh)) = π(λid)π(ρ(gh)) = ρ̄(gh)) .

2. “⇒”: By assumption, there is a linear isomorphism f : W → W ′ such that
for all g ∈ G, f ◦ ρ(g) = λg · ρ′(g) ◦ f for some constants λg ∈ k×. Thus

ρ̄′(g) = π(ρ′(g)) = π(λ−1g fρ(g)f−1) = π(λ−1g id)π(fρ(g)f−1)

= f( )f−1 ◦ π(ρ(g)) .

“⇐”: Similar as above: From ρ̄′(g) = f( )f−1 ◦ ρ̄(g) one concludes the
existence of λg ∈ k× such that λgρ

′(g) = f ◦ ρ(g) ◦ f−1.

3. Since π(ρ(g)ρ(h)ρ(gh)−1) = π(ρ(g))π(ρ(h))π(ρ(gh))−1 = σ(g)σ(h)σ(gh)−1 =
1, we conclude that ρ(g)ρ(h)ρ(gh)−1 = λidW for some λ ∈ k×, that is,
ρ(g)ρ(h) ∈ k× · ρ(gh).

Analogously, for another choice ρ′ we have π(ρ′(g)ρ(g)−1) = π(ρ′(g))π(ρ(g))−1 =
σ(g)σ(g)−1 = 1, hence ρ′(g) = µg · ρ(g) for some constants µg ∈ k×. This
shows that the identity map W →W provides an isomorphism of projective
representations (W,ρ)→ (W,ρ′).

Exercise 23

f exists: Recall that Ĝ = {(F, g) ∈ GL(W )×G|π(F ) = ρ̄(g)}. Define

f(h) := (b(h), a(h)) .

This is indeed an element of Ĝ by the first commuting diagram in the exercise
that H is assumed to satisfy. It also makes the second diagram in the exercise
commute: p(f(h)) = a(h) and ρ̂(f(h)) = b(h) by construction, as p and ρ̂ just
project to the first and second entry, respectively.

f is unique: Suppose another group homomorphism f ′ makes the second dia-
gram commute. Then we can write f ′(h) = (u(h), v(h)). But u(h) = ρ̂(f ′(h)) =
b(h), etc., and so f ′ = f .
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Exercise 24

1. (a) The condition δχ = 1 reads

χ(h, k)χ(gh, k)−1χ(g, hk)χ(g, h)−1 = 1 .

Setting h = e in the above expression gives

χ(e, k)χ(g, e)−1 = 1 .

Further setting k = e or setting g = e gives the first result.

For the second result set h = g−1 and k = g in the condition δχ = 1 to
get

χ(g−1, g)χ(e, g)−1χ(g, e)χ(g, g−1)−1 = 1 .

As we just checked, the two middle terms cancel.

(b) We make the ansatz β(g) = χ(g, g)−1. Then

(δβ)(e, g) = β(g)β(g)−1β(e) = χ(e, e)−1 ,

and in the same way (δβ)(g, e) = β(e). Define χ′ = χδβ. Then

χ′(e, g) = χ(e, g)(δβ)(g, e) = χ(e, g)χ(e, e)−1 = 1

by part a. Again by part a, this implies χ′(g, e) = 1 as well.

2. • (unit) The unit is (χ(e, e)−1, e). For example,

(a, g)(χ(e, e)−1, e) = (aχ(e, e)−1χ(g, e), g) = (a, g) ,

where in the last equality we used part 1a.

• (inverse) The inverse of (a, g) is (a−1χ(g, g−1)−1, g−1). To check that
this is a 2-sided inverse one again needs to use part 1a.

• (central extension) We need to check that j(a) := (aχ(e, e)−1, e) is a
group homomorphism, the rest is clear. We have

j(a)j(b) = (aχ(e, e)−1, e)(bχ(e, e)−1, e) = (abχ(e, e)−2χ(e, e), e) = j(ab) .

Exercise 25

1. Write h = p(g). Since g2 ∈ j(A) we have e = p(g2) = h2. Suppose there is
a group homomorphism s : H → G such that p(s(h)) = h for all h ∈ H.

We have p(s(h)g−1) = p(s(h))p(g)−1 = hh−1 = e, and so s(h)g−1 = j(a) for
some a ∈ A. Or, equivalently, s(h) = j(a)g. Thus

e = s(e) = s(h2) = s(h)s(h) = j(a)2g2 .

But then g2 = j(a−1)2, in contradiction to the assumption that g2 cannot
be written as a square in A.
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2. No element in A = {±1} squares to −1. But the element g = diag(i,−i) ∈
SU(2) satisfies g2 = −id.

3. There exists a unique group homomorphism ι̃ : PSU(2) → PU(2) making
the diagram

SU(2)

ι

��

// PSU(2)

ι̃

��
U(2) // PU(2)

commute. In fact, ι̃ is a bijection: it is surjective (the composition SU(2)→
U(2)→ PU(2) is surjective) and injective (if ι̃(π(x)) = 0, then x = λid, i.e.
π(x) = 1).

Suppose there is a splitting homomorphism s : PU(2)→ U(2).

Claim: For all x ∈ PU(2), det(s(x)) = 1.

Proof: We get a group homomorphism

SU(2)
π−→ PSU(2)

ι̃−→ PU(2)
s−→ U(2)

det−−→ U(1) .

As SU(2) is generated by commutators and U(1) is commutative, all ele-

ments of SU(2) must get mapped to 1. But SU(2)
π−→ PSU(2)

ι̃−→ PU(2) is
surjective, and so det(s(x)) = 1 must hold for all x, proving the claim.

The claim shows that the image of s is actually in SU(2). Combining with ι̃,
we obtain a group homomorphism s′ : PSU(2)→ SU(2) such that π ◦ s′ =
idPSU(2). But this would be a splitting homomorphism for

{±1} −→ SU(2) −→ PSU(2) ,

which by part 2 does not exist.

4. Let us go through the argument of parts 1–3 backwards. Suppse U(1) →
U(N) → PU(N) splits via a group homomorphism s : PU(N) → U(N).
Then we get a group homomorphism

SU(N)
π−→ PSU(N)

∼−→ PU(N)
s−→ U(N)

det−−→ U(1) .

SU(N) (and every semisimple compact Lie group for that matter) is gener-
ated by commutators, and so again its image is 1. We are reduced to looking
at the central extension

ZN
x 7→e2πix/N id−−−−−−−−→ SU(N)

π−→ PSU(N) .

Now one generalises the argument in part 1 from “square” to “N ’th power”
to see that this sequence does not split.
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The central extension U(1) → UA(H)
γ−→ AutP(H) also does not split.

Indeed, let U(P(H)) := γ(U(H)) be the image of all unitary maps. This is
a subgroup, and we have an exact sequence (and central extension)

U(1)→ U(H)
γ−→ U(P(H)) .

The fact that this is an exact sequence implies in particular that U(P(H)) ∼=
U(H)/U(1) = PU(H).

Since a splitting of U(1) → UA(H) → AutP(H) also gives a splitting of

U(1) → U(H)
γ−→ U(P(H)), we see that for H = CN , N ≥ 2, this central

extension does not split.

The fact that U(1)→ UA(H)
γ−→ AutP(H) is a central extensions implies in

particular that UA(H)/U(1) ∼= AutP(H).
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