Solutions for exercise sheet # 05
Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 18

1. The only thing we need to show is that for any choice of €', f/ we have
(¢/, f/) = 0. But this is immediate from

o([e'], [f']) = 6(Te], T[f]) = 6([e], [f)) =0 .
2. Write x = Ae + puf. Choose 2’ € H s.th. [2'] = T[z] and ||z|| = ||2’||. Then
Iz = (¢, a)e’ = (f", ) f'I* = - = [l'|* = 2I(e/, ") [* = 2|(f, 2")

(
= [l2'lI* — 2ll2"I*8([e], [']) — 2ll2"[I*6([f], ['])
l]1* = 2l|z[*3([e], [2]) — 2ll=1*6([£], [2])

fao)flF=0.

== (e z)e— (.
This shows that ' = Ne' + p/f' with ' = (¢/,2) and ' = (f/,2').

Exercise 19
Let v = Ae+ v and w = pe + w with v,w € P and let z € C. Then

Xv+w)=X(A+pe+0+w)=xA+pe +V(o+w)
=x(N\)e + x(p)e +V(0) + V(w) = X(v) + X (w) .

Similarly:
X(zv) =x(2)X(v) .

Thus X is (anti-)linear.
To see compatibility with the scalar product compute

) = x(
where we used in particular that (V(9), V(w)) = x((9, @)).
Finally, for v # 0, X satisfies

[Xv] = [x(Ne' + V()] = (x)

If A =0 we use Claim 1, namely that (x) = [V(0)] = T[?] to get [Xv] = T[v]. If
A # 0 we continue with

(x) = [ + x(ANHV ()] = [ + V(AN0)] = Tle + A '9] = T[Ae + 7]

where in the next to last step we substituted the definition of V.



Exercise 20

1. Applying v to f := p(g)p(h)p(gh)~! and using that v is a group homomor-
phism together with the commuting diagram gives:

() =B (Bh)v(B(gh) " = p(g)p(h)p(gh)~" = id

where in the last step we used that p is a group homomorphism. Since
dimH > 2, kery = U(1) and so

plg)p(h)p(gh)~! = x(g,h)id
for some (unique) x(g,h) € U(1).

2. This follows form associativity of the composition of maps:

(9)

& p(g)x(h, k)p(hk) = x(g, h)p(gh)p(k

A Oég( ( (97 (
& ag(x(

The result now follows from associativity of the composition in G.

3. By the same reason as above, for all g we have j'(9)p(9)~* = B(g)id for
some $(g) € U(1). From this one computes

Tt ¢ ¢
QQ;Q:\
SIS
Q
Q

Exercise 21

1. Let A € C. The line through (1,0) and (0, ) is parametrised by I(¢)
(1—t)(1,0)+¢(0, A). This line intersects the unit sphere whenever |I(t)|? =
i.e. when

L

L—tP+[tA?P=1 & t-2+t+tA\*) =0.
One of the intersection points is (1,0) at ¢ = 0 and the other is at ¢ =
2/(1+ |A|?). Altogether,

—1+|7?
l(1+|2/\‘2) = 1+J’|_/|\‘2‘ (170) + ﬁ(o, A) :

From the construction it is clear that this map is injective and surjective.

To complete the maps given in the exercise to a map from all of 52 to all of
P(C?) we declare that the point (1,0) € S? gets mapped to Cey € P(C?).



Denote the overall isomorphism P(C?) — S? by .

For later use we note that the Euclidean scalar product on R? under the
identification with R x C takes the form

((:17, 2), (y, w)) =y + %(Zw + zw) .

Let a, B € P(C?). For the relation between dg> and drs we distinguish three
cases

e o = 3 = Cey: Both distances are zero.

o a = Cey, 8 # Cey: The image points are () = (1,0) and, for 8 =

[61 +)\€2],
1 2
= — —-1,2
Now 8(a, 8) = |(ea, e1 + Ae2)[2/(1 + |A[2) = [A2/(1 +|A[2). By the hint
we get
_ AP

cosdps(a,f) =26(a,8) — 1 = R

But this is the same as the inner product ((1,0),¢(3)) of unit vectors
in R3, i.e. as the cosine of the angle between these unit vectors, or the
cosine of the geodesic distance between the points:

cos dsz(p(a), p(B)) = (p(a),¢(8)) -
e «a, 3 # Cey: Write oo = [e1 + Aes], S = [e1 + pes]. Then

_ |(e1 + Nea, eq + pes)|? B 14 Al
B = TP W) AT DA AP

and

_ 24+ 20+ 20+ 2P| — 1 — AP — Jul® — APl

cosdpgs(a, f) (T4 A2+ |u?)

_ L2 200+ R = AP - |l
(L4 AP+ [pl?)

On the other hand

(A2 = D(Juf? = 1) + L2320 + 2X28)
L+ PP+ [uP) ’

(p(a), p(B)) =

which is the same.



2. A metric has three properties: 1) it takes values in R>o and distance 0
implies the arguments are equal; 2) it is symmetric; 3) it satisfies the triangle
inequality: for all points a, b, ¢,

d(a,c) <d(a,b) +d(b,c) .

We abbreviate d := dpg(3) for the Fubini Studi function on H, which we
want to establish to be a metric. Only the third property is not obvious.
For dimH = 1 there is nothing to do (PH is a single point). Assume now
dimH > 2.

Let «, 8,7 € P(H) be arbitrary and choose a, b, c € H such that o = [a], etc.
We distinguish two cases:

e Suppse a, b, c are linearly dependent. Then the lie in some two-dimensional
subspace £ C H. Choose an embedding 1 : C?> — H with image £, com-
patible with the inner product. Let a’, V', ¢’ € C? satisfy a = ¢ (a’), etc.
Then

(v, B) = on([(a)], [ (V)]) = oc2([a’], [b']) ,
and similar for all other pairs. Thus the triangle inequality for o, 8,y €

P(H) reduces to that of [a'], [V'],[c¢] € P(C?), which we proved in part
1.

e Suppse a,b,c are linearly independent. Let £ be the two-dimensional
subspace of H spanned by a and c. Write b’ € £ for the image of b under
orthogonal projection H — £. In formulas, for an ON basis e, es of &,

bl = (61,[))61 — (62,b)€2 .

Note that b — b’ is orthogonal to £.

Suppose b = 0. Then b is orthogonal to @ and b and one computes
3({a]. [b)) = 0 = 8([8], ). Thus dppgaey([al, 1) = 7 = drgro(el, ),
and dpp)([al, [c]) < dppm)(lal, [b]) +dppao ([b], [c]) = 27 is trivially
true.

Suppose that b # 0. It then makes sense to consider [b']. From the
previous case we know that

drp ([al, [d]) < dppay(lal, [U']) + dppen (D], () -

The general result follows from the observation that

(a,0) |?

el 1107

2
()

(a,")
llall 1o

/ 2
(cos Lz tblVY" — 5, ((a), ) =

2

(a,b)

(*>*)
([l [o]

2
= du((a), []) = (cos 2z lLLD)"




Here (x) follows as b — b’ is orthogonal to a by construction, and (xx)
follows from ||| < ||b]|. Since cos is monotonically decreasing in the
relevant range d € [0, 7], we get

dra(lal, [V']) < dppey((a], [B]) -
Thus

drpa([al, ') +drpa (], [c]) < drpao([al, [b]) +drpa ([0, [d)

completing the proof of the triangle inequality.



