Solutions for exercise sheet \#05 Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 18

1. The only thing we need to show is that for any choice of e^{\prime}, f^{\prime} we have $\left(e^{\prime}, f^{\prime}\right)=0$. But this is immediate from

$$
\delta\left(\left[e^{\prime}\right],\left[f^{\prime}\right]\right)=\delta(T[e], T[f])=\delta([e],[f])=0
$$

2. Write $x=\lambda e+\mu f$. Choose $x^{\prime} \in \mathcal{H}$ s.th. $\left[x^{\prime}\right]=T[x]$ and $\|x\|=\left\|x^{\prime}\right\|$. Then

$$
\begin{aligned}
\left\|x^{\prime}-\left(e^{\prime}, x^{\prime}\right) e^{\prime}-\left(f^{\prime}, x^{\prime}\right) f^{\prime}\right\|^{2} & =\cdots=\left\|x^{\prime}\right\|^{2}-2\left|\left(e^{\prime}, x^{\prime}\right)\right|^{2}-2\left|\left(f^{\prime}, x^{\prime}\right)\right|^{2} \\
& =\left\|x^{\prime}\right\|^{2}-2\left\|x^{\prime}\right\|^{2} \delta\left(\left[e^{\prime}\right],\left[x^{\prime}\right]\right)-2\left\|x^{\prime}\right\|^{2} \delta\left(\left[f^{\prime}\right],\left[x^{\prime}\right]\right) \\
& =\|x\|^{2}-2\|x\|^{2} \delta([e],[x])-2\|x\|^{2} \delta([f],[x]) \\
& =\cdots=\|x-(e, x) e-(f, x) f\|^{2}=0 .
\end{aligned}
$$

This shows that $x^{\prime}=\lambda^{\prime} e^{\prime}+\mu^{\prime} f^{\prime}$ with $\lambda^{\prime}=\left(e^{\prime}, x^{\prime}\right)$ and $\mu^{\prime}=\left(f^{\prime}, x^{\prime}\right)$.

Exercise 19

Let $v=\lambda e+\tilde{v}$ and $w=\mu e+\tilde{w}$ with $\tilde{v}, \tilde{w} \in \mathcal{P}$ and let $z \in \mathbb{C}$. Then

$$
\begin{aligned}
X(v+w) & =X((\lambda+\mu) e+\tilde{v}+\tilde{w})=\chi(\lambda+\mu) e^{\prime}+V(\tilde{v}+\tilde{w}) \\
& =\chi(\lambda) e^{\prime}+\chi(\mu) e^{\prime}+V(\tilde{v})+V(\tilde{w})=X(v)+X(w) .
\end{aligned}
$$

Similarly:

$$
X(z v)=\chi(z) X(v)
$$

Thus X is (anti-)linear.
To see compatibility with the scalar product compute

$$
\begin{aligned}
(X v, X w) & \left.=\left(\chi(\lambda) e^{\prime}+V(\tilde{v}), \chi(\mu) e^{\prime}+V(\tilde{w})\right)=\overline{\chi(\lambda)} \chi(\mu)+(V(\tilde{v}), V(\tilde{w}))\right) \\
& =\chi(\bar{\lambda} \mu+(\tilde{v}, \tilde{w}))=\chi((\lambda e+\tilde{v}, \mu e+\tilde{w}))=\chi((v, w))
\end{aligned}
$$

where we used in particular that $(V(\tilde{v}), V(\tilde{w}))=\chi((\tilde{v}, \tilde{w}))$.
Finally, for $v \neq 0, X$ satisfies

$$
[X v]=\left[\chi(\lambda) e^{\prime}+V(\tilde{v})\right]=(*)
$$

If $\lambda=0$ we use Claim 1, namely that $(*)=[V(\tilde{v})]=T[\tilde{v}]$ to get $[X v]=T[v]$. If $\lambda \neq 0$ we continue with

$$
(*)=\left[e^{\prime}+\chi\left(\lambda^{-1}\right) V(\tilde{v})\right]=\left[e^{\prime}+V\left(\lambda^{-1} \tilde{v}\right)\right]=T\left[e+\lambda^{-1} \tilde{v}\right]=T[\lambda e+\tilde{v}]
$$

where in the next to last step we substituted the definition of V.

Exercise 20

1. Applying γ to $f:=\tilde{\rho}(g) \tilde{\rho}(h) \tilde{\rho}(g h)^{-1}$ and using that γ is a group homomorphism together with the commuting diagram gives:

$$
\gamma(f)=\gamma(\tilde{\rho}(g)) \gamma(\tilde{\rho}(h)) \gamma(\tilde{\rho}(g h))^{-1}=\rho(g) \rho(h) \rho(g h)^{-1}=i d
$$

where in the last step we used that ρ is a group homomorphism. Since $\operatorname{dim} \mathcal{H} \geq 2, \operatorname{ker} \gamma=U(1)$ and so

$$
\tilde{\rho}(g) \tilde{\rho}(h) \tilde{\rho}(g h)^{-1}=\chi(g, h) i d
$$

for some (unique) $\chi(g, h) \in U(1)$.
2. This follows form associativity of the composition of maps:

$$
\begin{aligned}
& \tilde{\rho}(g)(\tilde{\rho}(h) \tilde{\rho}(k))=(\tilde{\rho}(g) \tilde{\rho}(h)) \tilde{\rho}(k) \\
\Leftrightarrow & \tilde{\rho}(g) \chi(h, k) \tilde{\rho}(h k)=\chi(g, h) \tilde{\rho}(g h) \tilde{\rho}(k) \\
\Leftrightarrow & \alpha_{g}(\chi(h, k)) \tilde{\rho}(g) \tilde{\rho}(h k)=\chi(g, h) \tilde{\rho}(g h) \tilde{\rho}(k) \\
\Leftrightarrow & \alpha_{g}(\chi(h, k)) \chi(g, h k) \tilde{\rho}(g(h k))=\chi(g, h) \chi(g h, k) \tilde{\rho}((g h) k)
\end{aligned}
$$

The result now follows from associativity of the composition in G.
3. By the same reason as above, for all g we have $\tilde{\rho}^{\prime}(g) \tilde{\rho}(g)^{-1}=\beta(g)$ id for some $\beta(g) \in U(1)$. From this one computes

$$
\begin{aligned}
& \tilde{\rho}^{\prime}(g) \tilde{\rho}^{\prime}(h)=\chi^{\prime}(g, h) \tilde{\rho}^{\prime}(g h) \\
\Leftrightarrow & \beta(g) \tilde{\rho}(g) \beta(h) \tilde{\rho}(h)=\beta(g h) \tilde{\rho}(g h) \\
\Leftrightarrow & \beta(g) \alpha_{g}(\beta(h)) \tilde{\rho}(g) \tilde{\rho}(h)=\beta(g h) \tilde{\rho}(g h) \\
\Leftrightarrow & \beta(g) \alpha_{g}(\beta(h)) \chi(g, h) \tilde{\rho}(g h)=\beta(g h) \tilde{\rho}(g h) .
\end{aligned}
$$

Exercise 21

1. Let $\lambda \in \mathbb{C}$. The line through $(1,0)$ and $(0, \lambda)$ is parametrised by $l(t)=$ $(1-t)(1,0)+t(0, \lambda)$. This line intersects the unit sphere whenever $|l(t)|^{2}=1$, i.e. when

$$
|1-t|^{2}+|t \lambda|^{2}=1 \quad \Leftrightarrow \quad t\left(-2+t+t|\lambda|^{2}\right)=0
$$

One of the intersection points is $(1,0)$ at $t=0$ and the other is at $t=$ $2 /\left(1+|\lambda|^{2}\right)$. Altogether,

$$
l\left(\frac{2}{1+|\lambda|^{2}}\right)=\frac{-1+|\lambda|^{2}}{1+|\lambda|^{2}}(1,0)+\frac{2}{1+|\lambda|^{2}}(0, \lambda) .
$$

From the construction it is clear that this map is injective and surjective.
To complete the maps given in the exercise to a map from all of S^{2} to all of $\mathbb{P}\left(\mathbb{C}^{2}\right)$ we declare that the point $(1,0) \in S^{2}$ gets mapped to $\mathbb{C} e_{2} \in \mathbb{P}\left(\mathbb{C}^{2}\right)$.

Denote the overall isomorphism $\mathbb{P}\left(\mathbb{C}^{2}\right) \rightarrow S^{2}$ by φ.
For later use we note that the Euclidean scalar product on \mathbb{R}^{3} under the identification with $\mathbb{R} \times \mathbb{C}$ takes the form

$$
((x, z),(y, w))=x y+\frac{1}{2}(\bar{z} w+z \bar{w}) .
$$

Let $\alpha, \beta \in \mathbb{P}\left(\mathbb{C}^{2}\right)$. For the relation between $d_{S^{2}}$ and $d_{F S}$ we distinguish three cases

- $\alpha=\beta=\mathbb{C} e_{2}$: Both distances are zero.
- $\alpha=\mathbb{C} e_{2}, \beta \neq \mathbb{C} e_{2}$: The image points are $\varphi(\alpha)=(1,0)$ and, for $\beta=$ $\left[e_{1}+\lambda e_{2}\right]$,

$$
\varphi(\beta)=\frac{1}{|\lambda|^{2}+1}\left(|\lambda|^{2}-1,2 \lambda\right)
$$

Now $\delta(\alpha, \beta)=\left|\left(e_{2}, e_{1}+\lambda e_{2}\right)\right|^{2} /\left(1+|\lambda|^{2}\right)=|\lambda|^{2} /\left(1+|\lambda|^{2}\right)$. By the hint we get

$$
\cos d_{F S}(\alpha, \beta)=2 \delta(\alpha, \beta)-1=\frac{|\lambda|^{2}-1}{1+|\lambda|^{2}}
$$

But this is the same as the inner product $((1,0), \varphi(\beta))$ of unit vectors in \mathbb{R}^{3}, i.e. as the cosine of the angle between these unit vectors, or the cosine of the geodesic distance between the points:

$$
\cos d_{S^{2}}(\varphi(\alpha), \varphi(\beta))=(\varphi(\alpha), \varphi(\beta))
$$

- $\alpha, \beta \neq \mathbb{C} e_{2}$: Write $\alpha=\left[e_{1}+\lambda e_{2}\right], \beta=\left[e_{1}+\mu e_{2}\right]$. Then

$$
\delta(\alpha, \beta)=\frac{\left|\left(e_{1}+\lambda e_{2}, e_{1}+\mu e_{2}\right)\right|^{2}}{\left(1+|\lambda|^{2}\right)\left(1+|\mu|^{2}\right)}=\frac{|1+\bar{\lambda} \mu|^{2}}{\left(1+|\lambda|^{2}\right)\left(1+|\mu|^{2}\right)}
$$

and

$$
\begin{aligned}
\cos d_{F S}(\alpha, \beta) & =\frac{2+2 \bar{\lambda} \mu+2 \lambda \bar{\mu}+2|\lambda|^{2}|\mu|^{2}-1-|\lambda|^{2}-|\mu|^{2}-|\lambda|^{2}|\mu|^{2}}{\left(1+|\lambda|^{2}\right)\left(1+|\mu|^{2}\right)} \\
& =\frac{1+2 \bar{\lambda} \mu+2 \lambda \bar{\mu}+|\lambda|^{2}|\mu|^{2}-|\lambda|^{2}-|\mu|^{2}}{\left(1+|\lambda|^{2}\right)\left(1+|\mu|^{2}\right)}
\end{aligned}
$$

On the other hand

$$
(\varphi(\alpha), \varphi(\beta))=\frac{\left(|\lambda|^{2}-1\right)\left(|\mu|^{2}-1\right)+\frac{1}{2}(2 \bar{\lambda} 2 \mu+2 \lambda 2 \bar{\mu})}{\left(1+|\lambda|^{2}\right)\left(1+|\mu|^{2}\right)},
$$

which is the same.
2. A metric has three properties: 1) it takes values in $\mathbb{R}_{\geq 0}$ and distance 0 implies the arguments are equal; 2) it is symmetric; 3) it satisfies the triangle inequality: for all points a, b, c,

$$
d(a, c) \leq d(a, b)+d(b, c) .
$$

We abbreviate $d:=d_{F S(\mathcal{H})}$ for the Fubini Studi function on \mathcal{H}, which we want to establish to be a metric. Only the third property is not obvious.
For $\operatorname{dim} \mathcal{H}=1$ there is nothing to $\operatorname{do}(\mathbb{P H}$ is a single point). Assume now $\operatorname{dim} \mathcal{H} \geq 2$.
Let $\alpha, \beta, \gamma \in \mathbb{P}(\mathcal{H})$ be arbitrary and choose $a, b, c \in \mathcal{H}$ such that $\alpha=[a]$, etc. We distinguish two cases:

- Suppse a, b, c are linearly dependent. Then the lie in some two-dimensional subspace $\mathcal{E} \subset \mathcal{H}$. Choose an embedding $\psi: \mathbb{C}^{2} \rightarrow \mathcal{H}$ with image \mathcal{E}, compatible with the inner product. Let $a^{\prime}, b^{\prime}, c^{\prime} \in \mathbb{C}^{2}$ satisfy $a=\psi\left(a^{\prime}\right)$, etc. Then

$$
\delta_{\mathcal{H}}(\alpha, \beta)=\delta_{\mathcal{H}}\left(\left[\psi\left(a^{\prime}\right)\right],\left[\psi\left(b^{\prime}\right)\right]\right)=\delta_{\mathbb{C}^{2}}\left(\left[a^{\prime}\right],\left[b^{\prime}\right]\right),
$$

and similar for all other pairs. Thus the triangle inequality for $\alpha, \beta, \gamma \in$ $\mathbb{P}(\mathcal{H})$ reduces to that of $\left[a^{\prime}\right],\left[b^{\prime}\right],\left[c^{\prime}\right] \in \mathbb{P}\left(\mathbb{C}^{2}\right)$, which we proved in part 1.

- Suppse a, b, c are linearly independent. Let \mathcal{E} be the two-dimensional subspace of \mathcal{H} spanned by a and c. Write $b^{\prime} \in \mathcal{E}$ for the image of b under orthogonal projection $\mathcal{H} \rightarrow \mathcal{E}$. In formulas, for an ON basis e_{1}, e_{2} of \mathcal{E},

$$
b^{\prime}=\left(e_{1}, b\right) e_{1}-\left(e_{2}, b\right) e_{2}
$$

Note that $b-b^{\prime}$ is orthogonal to \mathcal{E}.
Suppose $b^{\prime}=0$. Then b is orthogonal to a and b and one computes $\delta([a],[b])=0=\delta([b],[c])$. Thus $d_{F B(\mathcal{H})}([a],[b])=\pi=d_{F B(\mathcal{H})}([c],[b])$, and $d_{F B(\mathcal{H})}([a],[c]) \leq d_{F B(\mathcal{H})}([a],[b])+d_{F B(\mathcal{H})}([b],[c])=2 \pi$ is trivially true.
Suppose that $b^{\prime} \neq 0$. It then makes sense to consider $\left[b^{\prime}\right]$. From the previous case we know that

$$
d_{F B(\mathcal{H})}([a],[c]) \leq d_{F B(\mathcal{H})}\left([a],\left[b^{\prime}\right]\right)+d_{F B(\mathcal{H})}\left(\left[b^{\prime}\right],[c]\right) .
$$

The general result follows from the observation that

$$
\begin{aligned}
& \left(\cos \frac{d_{F B(\mathcal{H})}\left([a],\left[b^{\prime}\right]\right)}{2}\right)^{2}=\delta_{\mathcal{H}}\left([a],\left[b^{\prime}\right]\right)=\left|\frac{\left(a, b^{\prime}\right)}{\|a\|\left\|b^{\prime}\right\|}\right|^{2} \stackrel{(*)}{=}\left|\frac{(a, b)}{\|a\|\left\|b^{\prime}\right\|}\right|^{2} \\
& \stackrel{(* *)}{\geq}\left|\frac{(a, b)}{\|a\|\|b\|}\right|^{2}=\delta_{\mathcal{H}}([a],[b])=\left(\cos \frac{d_{F B(\mathcal{H})}([a],[b])}{2}\right)^{2} .
\end{aligned}
$$

Here (*) follows as $b-b^{\prime}$ is orthogonal to a by construction, and ($* *$) follows from $\left\|b^{\prime} \mid \leq\right\| b \|$. Since cos is monotonically decreasing in the relevant range $d \in[0, \pi]$, we get

$$
d_{F B(\mathcal{H})}\left([a],\left[b^{\prime}\right]\right) \leq d_{F B(\mathcal{H})}([a],[b]) .
$$

Thus

$$
d_{F B(\mathcal{H})}\left([a],\left[b^{\prime}\right]\right)+d_{F B(\mathcal{H})}\left(\left[b^{\prime}\right],[c]\right) \leq d_{F B(\mathcal{H})}([a],[b])+d_{F B(\mathcal{H})}([b],[c]),
$$

completing the proof of the triangle inequality.

