
Solutions for exercise sheet #05
Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 18

1. The only thing we need to show is that for any choice of e′, f ′ we have
(e′, f ′) = 0. But this is immediate from

δ([e′], [f ′]) = δ(T [e], T [f ]) = δ([e], [f ]) = 0 .

2. Write x = λe+ µf . Choose x′ ∈ H s.th. [x′] = T [x] and ‖x‖ = ‖x′‖. Then

‖x′ − (e′, x′)e′ − (f ′, x′)f ′‖2 = · · · = ‖x′‖2 − 2|(e′, x′)|2 − 2|(f ′, x′)|2

= ‖x′‖2 − 2‖x′‖2δ([e′], [x′])− 2‖x′‖2δ([f ′], [x′])
= ‖x‖2 − 2‖x‖2δ([e], [x])− 2‖x‖2δ([f ], [x])

= · · · = ‖x− (e, x)e− (f, x)f‖2 = 0 .

This shows that x′ = λ′e′ + µ′f ′ with λ′ = (e′, x′) and µ′ = (f ′, x′).

Exercise 19

Let v = λe+ ṽ and w = µe+ w̃ with ṽ, w̃ ∈ P and let z ∈ C. Then

X(v + w) = X((λ+ µ)e+ ṽ + w̃) = χ(λ+ µ)e′ + V (ṽ + w̃)

= χ(λ)e′ + χ(µ)e′ + V (ṽ) + V (w̃) = X(v) +X(w) .

Similarly:
X(zv) = χ(z)X(v) .

Thus X is (anti-)linear.
To see compatibility with the scalar product compute

(Xv,Xw) = (χ(λ)e′ + V (ṽ), χ(µ)e′ + V (w̃)) = χ(λ)χ(µ) + (V (ṽ), V (w̃)))

= χ(λ̄µ+ (ṽ, w̃)) = χ((λe+ ṽ, µe+ w̃)) = χ((v, w)) ,

where we used in particular that (V (ṽ), V (w̃)) = χ((ṽ, w̃)).
Finally, for v 6= 0, X satisfies

[Xv] = [χ(λ)e′ + V (ṽ)] = (∗)

If λ = 0 we use Claim 1, namely that (∗) = [V (ṽ)] = T [ṽ] to get [Xv] = T [v]. If
λ 6= 0 we continue with

(∗) = [e′ + χ(λ−1)V (ṽ)] = [e′ + V (λ−1ṽ)] = T [e+ λ−1ṽ] = T [λe+ ṽ]

where in the next to last step we substituted the definition of V .
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Exercise 20

1. Applying γ to f := ρ̃(g)ρ̃(h)ρ̃(gh)−1 and using that γ is a group homomor-
phism together with the commuting diagram gives:

γ(f) = γ(ρ̃(g))γ(ρ̃(h))γ(ρ̃(gh))−1 = ρ(g)ρ(h)ρ(gh)−1 = id

where in the last step we used that ρ is a group homomorphism. Since
dimH ≥ 2, ker γ = U(1) and so

ρ̃(g)ρ̃(h)ρ̃(gh)−1 = χ(g, h)id

for some (unique) χ(g, h) ∈ U(1).

2. This follows form associativity of the composition of maps:

ρ̃(g)(ρ̃(h)ρ̃(k)) = (ρ̃(g)ρ̃(h))ρ̃(k)

⇔ ρ̃(g)χ(h, k)ρ̃(hk) = χ(g, h)ρ̃(gh)ρ̃(k)

⇔ αg(χ(h, k))ρ̃(g)ρ̃(hk) = χ(g, h)ρ̃(gh)ρ̃(k)

⇔ αg(χ(h, k))χ(g, hk)ρ̃(g(hk)) = χ(g, h)χ(gh, k)ρ̃((gh)k)

The result now follows from associativity of the composition in G.

3. By the same reason as above, for all g we have ρ̃′(g)ρ̃(g)−1 = β(g)id for
some β(g) ∈ U(1). From this one computes

ρ̃′(g)ρ̃′(h) = χ′(g, h)ρ̃′(gh)

⇔ β(g)ρ̃(g)β(h)ρ̃(h) = β(gh)ρ̃(gh)

⇔ β(g)αg(β(h))ρ̃(g)ρ̃(h) = β(gh)ρ̃(gh)

⇔ β(g)αg(β(h))χ(g, h)ρ̃(gh) = β(gh)ρ̃(gh) .

Exercise 21

1. Let λ ∈ C. The line through (1, 0) and (0, λ) is parametrised by l(t) =
(1−t)(1, 0)+t(0, λ). This line intersects the unit sphere whenever |l(t)|2 = 1,
i.e. when

|1− t|2 + |tλ|2 = 1 ⇔ t(−2 + t+ t|λ|2) = 0 .

One of the intersection points is (1, 0) at t = 0 and the other is at t =
2/(1 + |λ|2). Altogether,

l( 2
1+|λ|2 ) = −1+|λ|2

1+|λ|2 (1, 0) + 2
1+|λ|2 (0, λ) .

From the construction it is clear that this map is injective and surjective.

To complete the maps given in the exercise to a map from all of S2 to all of
P(C2) we declare that the point (1, 0) ∈ S2 gets mapped to Ce2 ∈ P(C2).
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Denote the overall isomorphism P(C2)→ S2 by ϕ.

For later use we note that the Euclidean scalar product on R3 under the
identification with R× C takes the form(

(x, z), (y, w)
)

= xy + 1
2 (z̄w + zw̄) .

Let α, β ∈ P(C2). For the relation between dS2 and dFS we distinguish three
cases

• α = β = Ce2: Both distances are zero.

• α = Ce2, β 6= Ce2: The image points are ϕ(α) = (1, 0) and, for β =
[e1 + λe2],

ϕ(β) =
1

|λ|2 + 1

(
|λ|2 − 1 , 2λ

)
Now δ(α, β) = |(e2, e1 +λe2)|2/(1 + |λ|2) = |λ|2/(1 + |λ|2). By the hint
we get

cos dFS(α, β) = 2δ(α, β)− 1 =
|λ|2 − 1

1 + |λ|2
.

But this is the same as the inner product ((1, 0), ϕ(β)) of unit vectors
in R3, i.e. as the cosine of the angle between these unit vectors, or the
cosine of the geodesic distance between the points:

cos dS2(ϕ(α), ϕ(β)) =
(
ϕ(α), ϕ(β)

)
.

• α, β 6= Ce2: Write α = [e1 + λe2], β = [e1 + µe2]. Then

δ(α, β) =
|(e1 + λe2, e1 + µe2)|2

(1 + |λ|2)(1 + |µ|2)
=

|1 + λ̄µ|2

(1 + |λ|2)(1 + |µ|2)

and

cos dFS(α, β) =
2 + 2λ̄µ+ 2λµ̄+ 2|λ|2|µ|2 − 1− |λ|2 − |µ|2 − |λ|2|µ|2

(1 + |λ|2)(1 + |µ|2)

=
1 + 2λ̄µ+ 2λµ̄+ |λ|2|µ|2 − |λ|2 − |µ|2

(1 + |λ|2)(1 + |µ|2)
.

On the other hand

(ϕ(α), ϕ(β)) =
(|λ|2 − 1)(|µ|2 − 1) + 1

2 (2λ̄2µ+ 2λ2µ̄)

(1 + |λ|2)(1 + |µ|2)
,

which is the same.
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2. A metric has three properties: 1) it takes values in R≥0 and distance 0
implies the arguments are equal; 2) it is symmetric; 3) it satisfies the triangle
inequality: for all points a, b, c,

d(a, c) ≤ d(a, b) + d(b, c) .

We abbreviate d := dFS(H) for the Fubini Studi function on H, which we
want to establish to be a metric. Only the third property is not obvious.

For dimH = 1 there is nothing to do (PH is a single point). Assume now
dimH ≥ 2.

Let α, β, γ ∈ P(H) be arbitrary and choose a, b, c ∈ H such that α = [a], etc.
We distinguish two cases:

• Suppse a, b, c are linearly dependent. Then the lie in some two-dimensional
subspace E ⊂ H. Choose an embedding ψ : C2 → H with image E , com-
patible with the inner product. Let a′, b′, c′ ∈ C2 satisfy a = ψ(a′), etc.
Then

δH(α, β) = δH([ψ(a′)], [ψ(b′)]) = δC2([a′], [b′]) ,

and similar for all other pairs. Thus the triangle inequality for α, β, γ ∈
P(H) reduces to that of [a′], [b′], [c′] ∈ P(C2), which we proved in part
1.

• Suppse a, b, c are linearly independent. Let E be the two-dimensional
subspace ofH spanned by a and c. Write b′ ∈ E for the image of b under
orthogonal projection H → E . In formulas, for an ON basis e1, e2 of E ,

b′ = (e1, b)e1 − (e2, b)e2 .

Note that b− b′ is orthogonal to E .

Suppose b′ = 0. Then b is orthogonal to a and b and one computes
δ([a], [b]) = 0 = δ([b], [c]). Thus dFB(H)([a], [b]) = π = dFB(H)([c], [b]),
and dFB(H)([a], [c]) ≤ dFB(H)([a], [b]) + dFB(H)([b], [c]) = 2π is trivially
true.

Suppose that b′ 6= 0. It then makes sense to consider [b′]. From the
previous case we know that

dFB(H)([a], [c]) ≤ dFB(H)([a], [b′]) + dFB(H)([b
′], [c]) .

The general result follows from the observation that(
cos

dFB(H)([a],[b
′])

2

)2

= δH([a], [b′]) =

∣∣∣∣ (a, b′)

‖a‖ ‖b′‖

∣∣∣∣2 (∗)
=

∣∣∣∣ (a, b)

‖a‖ ‖b′‖

∣∣∣∣2
(∗∗)
≥

∣∣∣∣ (a, b)

‖a‖ ‖b‖

∣∣∣∣2 = δH([a], [b]) =
(

cos
dFB(H)([a],[b])

2

)2

.
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Here (∗) follows as b − b′ is orthogonal to a by construction, and (∗∗)
follows from ‖b′| ≤ ‖b‖. Since cos is monotonically decreasing in the
relevant range d ∈ [0, π], we get

dFB(H)([a], [b′]) ≤ dFB(H)([a], [b]) .

Thus

dFB(H)([a], [b′])+dFB(H)([b
′], [c]) ≤ dFB(H)([a], [b])+dFB(H)([b], [c]) ,

completing the proof of the triangle inequality.
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