Solutions for exercise sheet \# 03 Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 9

1. Each Q-representation $\rho: Q \rightarrow \operatorname{End}(W)$ defines an A-representation via $\rho \circ \pi: A \rightarrow \operatorname{End}(W)$.
An A-representation $\tilde{\rho}: A \rightarrow \operatorname{End}(W)$ defines a Q-representation if and only if it vanishes on the kernel of π. In this case there is a unique ρ such that the diagram

commutes.
Let $\left(\rho_{M}, M\right)$ and $\left(\rho_{N}, N\right)$ be Q-representations. Denote the correponding A-representations by \tilde{M}, \tilde{N}. Then $\operatorname{Hom}_{Q}(M, N)=\operatorname{Hom}_{A}(\tilde{M}, \tilde{N})$ (they are the same subspace of the space of k-linear maps $M \rightarrow N)$.
This shows that two distinct simple Q-representations are also distinct simple A-representations. However, in general not every simple A-representation descends to a Q-representation. Thus \#(simple A-modules) $\geq \#$ (simple Q-modules).
2. Let Q be a quotient of A, i.e. there is a surjective algebra homomorphism $\pi: A \rightarrow Q$. Suppose A is semisimple.
Let M be a Q-module. We need to show that $M=\bigoplus_{i} M_{i}$ for some family of simple Q-modules M_{i}. As in part 1 , let \tilde{M} be the corresponding A-module. As A is semisimple, there are simple A-modules W_{j} such that $\tilde{M}=\bigoplus_{j} W_{j}$. But by definition, the action $\tilde{\rho}=\rho \circ \pi: A \rightarrow \operatorname{End}(M)$ vanishes on $\operatorname{ker}(\pi)$. Hence so does the action of A on all W_{j}. By part 1, we obtain a simple Q-module which we will also call W_{j} and a decomposition $M=\bigoplus_{j} W_{j}$ of Q-modules.

Thus every Q-module is a direct sum of simple ones, hence semisimple.

Exercise 10

We will first show that subspaces contain derivatives and then that all coefficients of monomials are contained.

Let V be a finite-dimensional complex vector space and W a sub-vector space.
Let $F:(-\varepsilon, \varepsilon) \rightarrow W$ be differentiable at 0 . Then

$$
F^{\prime}(0)=\lim _{t \rightarrow 0} \frac{F(t)-F(0)}{t} \in W
$$

since each term in the limit lies in W by virtue of W being a linear subspace, and the limit lies in W as finite-dimensional sub-vector spaces are closed.
For $F\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ one can extract the coefficients by iterated differentiation. For example, the coefficient of $\lambda_{1} \cdots \lambda_{n}$ is given by

$$
\left.\frac{d}{d \lambda_{1}} \cdots \frac{d}{d \lambda_{n}} F\left(\lambda_{1}, \ldots, \lambda_{n}\right)\right|_{\lambda_{1}=\cdots=\lambda_{n}=0}
$$

and is hence contained in $\operatorname{span}_{\mathbb{C}}\left\{H^{\otimes n} \mid H \in G L(V)\right\}$.

Exercise 11

The $Q R$-decomposition for $A \in \operatorname{Mat}(N, \mathbb{C})$ states that we can write $A=Q R$ with $Q \in U(n)$ and R upper triangular.
If A is invertible, then so is R, i.e. all its diagonal entries are non-zero. If $\operatorname{det} A=1$ we may also take $\operatorname{det} R=1$. Pick a path γ such that $\gamma(0)=R$ and $\gamma(1)=D$ where D is the diagonal part of R. This can be done by linearly shrinking all off-diagonal entries to zero. Since we are not changing the diagonal, the path stays in $G L(N, \mathbb{C})$ or $S L(N, \mathbb{C})$, respectively. (What fails in this argument if we start from a matrix that is not upper triangular, e.g. if we were to use A directly instead of R ?) Thus A is connected to $Q D$.
We can now pick a path γ in $\left(\mathbb{C}^{\times}\right)^{n} \hookrightarrow \operatorname{Mat}(N, \mathbb{C})$ such that $\gamma(0)=D$ and $\gamma(1)=I d$. Again, if $\operatorname{det} D=1$ we can choose γ to stay inside diagonal matrices of determinant 1 . Thus A is connected to Q.
If $\operatorname{det}(Q)=e^{i \varphi}$, the path $\gamma(t)=e^{-i \varphi t / N} Q$ is in $U(N)$ and satisfies $\gamma(0)=Q$ and $\operatorname{det}(\gamma(1))=\operatorname{det}\left(e^{-i \varphi / N} Q\right)=1$, so that $\gamma(1) \in S U(N)$. Thus A is connected to an element of $S U(N)$.

It remains to show that $S U(N)$ is connected. We will do this in two ways, each of which will show that every element in $S U(N)$ can be connected to the identity by a path in $S U(N)$.

Via induction on N :
For $N=2$ we have $S U(2)=S^{3}$, the three-sphere, as manifolds. Hence $S U(2)$ is connected.

Suppose we have already shown that $\operatorname{SU}(N-1)$ is connected for $N \geq 3$. Let $A \in S U(N)$ be given. Write a_{N} for the N^{\prime} th column vector of A and e_{N} for the N 'th basis vector of the standard basis of \mathbb{C}^{N}.
If $a_{N}=\lambda e_{N}$ for some $\lambda \in \mathbb{C}^{\times}$, we are done as then A is block-diagonal with a block of size $N-1$, call it A^{\prime}, and a block of size 1 containing λ. As before we can pick a path in $S U(N)$ which sets λ to 1 by multiplying with appropriate diagonal matrices. Thus A is connected to a block matrix with a block of size
$N-1$ containing an element of $S U(N-1)$ and a block of size 1 containing a 1 , which is connected to $I d$ by induction hypothesis.
If a_{N} is not proportional to e_{N}, consider the vectors

$$
v_{1}=e_{N} \quad, \quad v_{2}=\left(a_{N}-A_{N N} e_{N}\right) /\left|a_{N}-A_{N N} e_{N}\right|
$$

These are orthonormal by construction. Complete them to an orthonormal basis v_{1}, \ldots, v_{N} and let $U \in U(N)$ denote the corresponding change of basis, i.e. $U e_{1}=v_{1}$, etc. In terms of the new basis, we have

$$
a_{N}=x v_{1}+y v_{2},
$$

where $x=A_{N N}$ and $y=\left|a_{N}-A_{N N} e_{N}\right|$. Note that $x^{2}+y^{2}=1$ (as it must be as a_{N} has unit length). Pick an element $Z \in S U(2)$ which maps (x, y) to $(1,0)$. This is connected to the identity (as $S U(2)$ is connected by the base case). Let γ be a path with $\gamma(0)=I d, \gamma(1)=Z$.
By abuse of notation, we write γ for the path in $S U(N)$ where the 2×2 matrices are placed in the upper right corner.
Set $\tilde{\gamma}(t)=U \gamma(t) U^{-1}$. Then $\tilde{\gamma}(0)=I d$ and

$$
\tilde{\gamma}(1) a_{N}=U Z U^{-1}\left(x v_{1}+y v_{2}\right)=U Z\left(x e_{1}+y e_{2}\right)=U e_{1}=v_{1}=e_{N} .
$$

Hence

$$
t \mapsto \tilde{\gamma}(t) A
$$

is a path in $S U(N)$ which is A for $t=0$ and which satisfies, for $A^{\prime}:=\tilde{\gamma}(1) A$, that $A^{\prime} e_{N}=\tilde{\gamma}(1) a_{N}=e_{N}$. Hence A^{\prime} is now block-diagonal.

Via diagonalisation: (much shorter, but I did not think of it before seeing it in the exercise class)
Let $A \in S U(N)$ be given. We can find $U \in U(N)$ such that $A=U D U^{-1}$ where D is a diagonal matrix. Since all diagonal entries of D have modulus 1 , we can write $D=\operatorname{diag}\left(e^{i \lambda_{1}}, \ldots, e^{i \lambda_{N}}\right)$ for some $\lambda_{j} \in \mathbb{R}$. Since $\operatorname{det}(D)=\operatorname{det}(A)=1$ we may choose the λ_{j} such that $\lambda_{1}+\cdots+\lambda_{N}=0$. The path

$$
\gamma(t)=U D(t) U^{-1} \quad, \quad D(t)=\operatorname{diag}\left(e^{i \lambda_{1} t}, \ldots, e^{i \lambda_{N} t}\right)
$$

is in $S U(N)$ for all t and satisfies $\gamma(1)=A, \gamma(0)=I d$.

Exercise 12

1. Tensoring together elements of the standard basis of \mathbb{C}^{N} gives a basis on which D acts diagonal. If D has entries D_{1}, \ldots, D_{N} along the diagonal, then

$$
D .\left(e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{N}}\right)=D_{i_{1}} D_{i_{2}} \cdots D_{i_{N}} \cdot e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{N}}
$$

Let λ be a Young diagram with n boxes and write $\pi=(-) . \hat{c}_{\lambda}$ for the projection $\pi:\left(\mathbb{C}^{N}\right)^{\otimes n} \rightarrow S_{\lambda}\left(\mathbb{C}^{N}\right)$. Since π is a $G L(N, \mathbb{C})$ intertwiner, the $\pi\left(e_{i_{1}} \otimes e_{i_{2}} \otimes \cdots \otimes e_{i_{N}}\right)$ are eigenvectors for the D action on $S_{\lambda}\left(\mathbb{C}^{N}\right)$. They clearly span $S_{\lambda}\left(\mathbb{C}^{N}\right)$, and so by omitting vectors one can find a basis of $S_{\lambda}\left(\mathbb{C}^{N}\right)$ consisting of eigenvectors of the D-action.
2. We saw in the lecture that d acts by $\sum_{j=1}^{n} d_{j}$. Let $\delta_{1}, \ldots, \delta_{N}$ be the diagonal entries of d. Then

$$
d .\left(e_{i_{1}} \otimes \cdots \otimes e_{i_{N}}\right)=\left(\delta_{i_{1}}+\cdots+\delta_{i_{N}}\right) \cdot e_{i_{1}} \otimes \cdots \otimes e_{i_{N}} .
$$

In particular E_{11} countes the number of times e_{1} occurs. Hence the maximal eigenvalue is attained by $w:=e_{1} \otimes e_{1} \otimes \cdots \otimes e_{1}$. The eigenvalue is n and the corresponding eigenspace is one-dimensional and spanned by w.
Let π be as in part 1. Then $c_{\lambda}=a_{\lambda} b_{\lambda}$ and a_{λ} just multiplies w by the order of P_{λ}. But $w \cdot b_{\lambda}$ is zero unless $b_{\lambda}=1$, which happens if and only if $Q_{\lambda}=\{i d\}$, i.e. if there is exactly one row.
Thus the vector w is contained only in $\operatorname{Sym}^{n}\left(\mathbb{C}^{N}\right)$.

