Solutions for exercise sheet # 02
Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 5

1.

(a)

By definition, b = % desn sgn(g)eg(1) ® -+ - @ eg(ny. All the vectors in
this sum are linearly independent, and so in particular, b # 0.

Write u = ¢;, ® --- ® ¢;, . If two indicies in (i1,...,%,) are equal,
m(u) = 0 as we have t.u = u for a transposition exchanging these two
tensor factors. But 7 (t.u) = —7(u), and so m(u) = 0. If all indices are

distinct, there is a unique h € S,, such that u = h.(e; ® --- ® e,). We
get

m(u) =sgn(h)m(e1 ® - Qe,) =sgn(h)b .
Thus, for every basis vector u of V", 7w(u) € Cb. Hence im(r) = Cb
is one-dimensional.

Let F(e;) = >, Fjie; be the matrix representation of F' € GL(V).
Then
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Here, (1) is the definition of b; (2) uses that 7 is a GL(V)-intertwiner;
in (3) the expression of F' in a basis is substituted; in (4) we use part
(a) which say that either 7 gives zero, or there is a unique permutation
h which gives the indices; (5) is again a result of part (a).

2. Let us choose a Young tableau T for A where the boxes in each column are
labelled in increasing order.

Claim: The image of (—).br is Cb® --- ® b (k factors).

Write 7 for the antisymmetriser on n factors as in part la. Let v =1 ®---®
v, where each v; € V®". Then one checks that v.br = (const)b® --- ® b.

Since the image of (—).by is one-dimensional, that of (—).cy is either zero
or one-dimensional. But the vector b ® - -- ® b is invariant under ar (up to
a constant), and so the image of (—).cr is one-dimensional.



Finally F.b®F = (F.b)®% = det(F)* b&F.

Exercise 6

1. Just write out the conditions, using that e;,-1e,-1 = e(q)-1 and sgn(g)egsgn(h)e, =

sgn(gh)egp.

2. We define T to be a reflection along the top-right to bottom-left diagonal.
In particular, rows and columns are exchanged:

Pr=Qr , Qr:=Pr.

Then e.g.
plbr) = @( Y senlg)eg) = D sen(g)p(ey)
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3. Let crx € VT. Then

p(erz) = plarbrz) = p(x)(br)p(ar) = p(x)arbre = p(x)er: € Vir
Thus <p(VT) C Vpe. For the other inclusion one can repeat the above com-
putation to get o~ (Vpe) C Vr.

The above computation also shows that the linear isomorphism ¢ : Vi — Vi
satisfies p(ux) = (z)p(u), i.e. after precomposing the left T-actin on Vi
with ¢ and thinking of it as a right module, it is isomorphic to V7.

4. Let us do the second part of Theorem 1.1.4 as an example, the other parts
are similar. Let S C Vr be an invariant subspace. Then ¢(S) is an invariant
subspace of Vp:: Let s € ¢(S) and x € T'. Then

zo(s) = oo~ (x))p(s) = p(sp~ " (x)) € p(S)

where in the last step we used that S is invariant with respect to the right
action by I'. But Vr: is irreducible by Theorem 1.1.4. Hence ¢(S) = {0} or
©(S) = Ve, giving S = {0} or S = Vr.

Exercise 7

1. Let a € A. We need to show that a € A”. Let y € A’ be arbitrary. Then
ya = ay by definition of A’ and so a € A”.

2. Clear.



3. We have A’ ¢ A" by part 1. By part 2, A C A” implies A’ D A”. Hence
they are equal.

4. Clearly 1 € A’ and A’ is a sub-vector space (its defining condition is linear).
Finally, if a,b € A’, then for all z € A: zab = axb = abz, and so ab € A'.

Exercise 8
Write I'y, = CSy. The proof is similar to that of Lemma 1.2.6. Write

P:SVeSV— Hompm+m(‘~/>\ oV, VEMIY () = (x> u.x) .

Y(u) is a Ty yp-intertwiner by the same argument as in Lemma 1.2.6.

For surjectivity let ¢ : Vy @ Vu — V®m+n) be given. By definition é ® ¢y €
Vy e Vu and so we can set u := p(éx ® ¢,). The rest of the computation is the
same as in Lemma 1.2.6.

For injectivity, suppose ¥ (u) = 0. Then in particular 0 = ¥(u)(é\ ® é,) =
u.(éx ®¢,). But u itself can be written as v.(é\ ® é,) for some v € VO™ @ VO™,
Combining this, we conclude u = 0.

Regarding the aside: We have
VyieV, = (f/)\ Qc V#) ®r,,®C, I'm+n »

ie. Vye f/# is the induced T, ,-right module Indﬁzggn(% ° ‘7#)
To see this we write module homomorphisms in both ways which are inverse to
each other. Let L be the lhs and R be the rhs above, and define f : L — R and
g:R— L as
fl(ex®éu)z) = (ex ® &) ®r, 01, @
and
g((érxa ® é,b) ®r,, er, ) = (Ex ® &,)abx .

One now needs to check that these maps are indeed well-defined, land in the
correct spaces and are intertwiners of I';,, 4, -right modules. It is then clear that
they are inverse to each other.



