Solutions for exercise sheet \# 02
 Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 5

1. (a) By definition, $b=\frac{1}{n!} \sum_{g \in S_{n}} \operatorname{sgn}(g) e_{g(1)} \otimes \cdots \otimes e_{g(n)}$. All the vectors in this sum are linearly independent, and so in particular, $b \neq 0$.
Write $u=e_{i_{1}} \otimes \cdots \otimes e_{i_{n}}$. If two indicies in $\left(i_{1}, \ldots, i_{n}\right)$ are equal, $\pi(u)=0$ as we have $t . u=u$ for a transposition exchanging these two tensor factors. But $\pi(t \cdot u)=-\pi(u)$, and so $\pi(u)=0$. If all indices are distinct, there is a unique $h \in S_{n}$ such that $u=h .\left(e_{1} \otimes \cdots \otimes e_{n}\right)$. We get

$$
\pi(u)=\operatorname{sgn}(h) \pi\left(e_{1} \otimes \cdots \otimes e_{n}\right)=\operatorname{sgn}(h) b .
$$

Thus, for every basis vector u of $V^{\otimes n}, \pi(u) \in \mathbb{C} b$. Hence $\operatorname{im}(\pi)=\mathbb{C} b$ is one-dimensional.
(b) Let $F\left(e_{i}\right)=\sum_{j} F_{j i} e_{j}$ be the matrix representation of $F \in G L(V)$. Then

$$
\begin{aligned}
F . b & \stackrel{(1)}{=} F . \pi\left(e_{1} \otimes \cdots \otimes e_{n}\right) \\
& \stackrel{(2)}{=} \pi\left(F .\left(e_{1} \otimes \cdots \otimes e_{n}\right)\right)=\pi\left(F\left(e_{1}\right) \otimes \cdots \otimes F\left(e_{n}\right)\right) \\
& \stackrel{(3)}{=} \sum_{i_{1}, \ldots, i_{n}} F_{1 i_{1}} \cdots F_{n i_{n}} \pi\left(e_{i_{1}} \otimes \cdots \otimes e_{i_{n}}\right) \\
& \stackrel{(4)}{=} \sum_{h \in S_{n}} F_{1 h(1)} \cdots F_{n h(n)} \pi\left(e_{h(1)} \otimes \cdots \otimes e_{h(n)}\right) \\
& \stackrel{(5)}{=} \sum_{h \in S_{n}} F_{1 h(1)} \cdots F_{n h(n)} \operatorname{sgn}(h) b=\operatorname{det}(F) b .
\end{aligned}
$$

Here, (1) is the definition of $b ;(2)$ uses that π is a $G L(V)$-intertwiner; in (3) the expression of F in a basis is substituted; in (4) we use part (a) which say that either π gives zero, or there is a unique permutation h which gives the indices; (5) is again a result of part (a).
2. Let us choose a Young tableau T for λ where the boxes in each column are labelled in increasing order.
Claim: The image of $(-) \cdot b_{T}$ is $\mathbb{C} b \otimes \cdots \otimes b$ (k factors).
Write π for the antisymmetriser on n factors as in part 1a. Let $v=v_{1} \otimes \cdots \otimes$ v_{k}, where each $v_{i} \in V^{\otimes n}$. Then one checks that $v . b_{T}=($ const $) b \otimes \cdots \otimes b$.

Since the image of $(-) \cdot b_{T}$ is one-dimensional, that of $(-) \cdot c_{T}$ is either zero or one-dimensional. But the vector $b \otimes \cdots \otimes b$ is invariant under a_{T} (up to a constant), and so the image of $(-) \cdot c_{T}$ is one-dimensional.

Finally $F . b^{\otimes k}=(F . b)^{\otimes k}=\operatorname{det}(F)^{k} b^{\otimes k}$.

Exercise 6

1. Just write out the conditions, using that $e_{g^{-1}} e_{h^{-1}}=e_{(h g)^{-1}}$ and $\operatorname{sgn}(g) e_{g} \operatorname{sgn}(h) e_{h}=$ $\operatorname{sgn}(g h) e_{g h}$.
2. We define T^{t} to be a reflection along the top-right to bottom-left diagonal. In particular, rows and columns are exchanged:

$$
P_{T}=Q_{T^{t}} \quad, \quad Q_{T^{t}}=P_{T}
$$

Then e.g.

$$
\begin{aligned}
\varphi\left(b_{T}\right) & =\varphi\left(\sum_{g \in Q_{T}} \operatorname{sgn}(g) e_{g}\right)=\sum_{g \in Q_{T}} \operatorname{sgn}(g) \varphi\left(e_{g}\right) \\
& =\sum_{g \in Q_{T}} \operatorname{sgn}(g)^{2} \varphi\left(e_{g^{-1}}\right)=\sum_{h \in P_{T^{t}}} \varphi\left(e_{h}\right)=a_{T^{t}}
\end{aligned}
$$

3. Let $c_{T} x \in \tilde{V}_{T}$. Then

$$
\varphi\left(c_{T} x\right)=\varphi\left(a_{T} b_{T} x\right)=\varphi(x) \varphi\left(b_{T}\right) \varphi\left(a_{T}\right)=\varphi(x) a_{T^{t}} b_{T^{t}}=\varphi(x) c_{T^{t}} \in V_{T^{t}}
$$

Thus $\varphi\left(\tilde{V}_{T}\right) \subset V_{T^{t}}$. For the other inclusion one can repeat the above computation to get $\varphi^{-1}\left(V_{T^{t}}\right) \subset \tilde{V}_{T}$.
The above computation also shows that the linear isomorphism $\varphi: \tilde{V}_{T} \rightarrow V_{T^{t}}$ satisfies $\varphi(u x)=\varphi(x) \varphi(u)$, i.e. after precomposing the left Γ-actin on $V_{T^{t}}$ with φ and thinking of it as a right module, it is isomorphic to \tilde{V}_{T}.
4. Let us do the second part of Theorem 1.1.4 as an example, the other parts are similar. Let $S \subset \tilde{V}_{T}$ be an invariant subspace. Then $\varphi(S)$ is an invariant subspace of $V_{T^{t}}$: Let $s \in \varphi(S)$ and $x \in \Gamma$. Then

$$
x \varphi(s)=\varphi\left(\varphi^{-1}(x)\right) \varphi(s)=\varphi\left(s \varphi^{-1}(x)\right) \in \varphi(S)
$$

where in the last step we used that S is invariant with respect to the right action by Γ. But $V_{T^{t}}$ is irreducible by Theorem 1.1.4. Hence $\varphi(S)=\{0\}$ or $\varphi(S)=V_{T^{t}}$, giving $S=\{0\}$ or $S=\tilde{V}_{T}$.

Exercise 7

1. Let $a \in A$. We need to show that $a \in A^{\prime \prime}$. Let $y \in A^{\prime}$ be arbitrary. Then $y a=a y$ by definition of A^{\prime} and so $a \in A^{\prime \prime}$.
2. Clear.
3. We have $A^{\prime} \subset A^{\prime \prime \prime}$ by part 1. By part $2, A \subset A^{\prime \prime}$ implies $A^{\prime} \supset A^{\prime \prime \prime}$. Hence they are equal.
4. Clearly $1 \in A^{\prime}$ and A^{\prime} is a sub-vector space (its defining condition is linear). Finally, if $a, b \in A^{\prime}$, then for all $x \in A: x a b=a x b=a b x$, and so $a b \in A^{\prime}$.

Exercise 8

Write $\Gamma_{k}=\mathbb{C} S_{k}$. The proof is similar to that of Lemma 1.2.6. Write

$$
\psi: S_{\lambda} V \otimes S_{\mu} V \rightarrow \operatorname{Hom}_{\Gamma_{m+m}}\left(\tilde{V}_{\lambda} \bullet \tilde{V}_{\mu}, V^{\otimes(m+n)}\right) \quad, \quad \psi(u)=(x \mapsto u \cdot x)
$$

$\psi(u)$ is a Γ_{m+n}-intertwiner by the same argument as in Lemma 1.2.6.
For surjectivity let $\varphi: \tilde{V}_{\lambda} \bullet \tilde{V}_{\mu} \rightarrow V^{\otimes(m+n)}$ be given. By definition $\hat{c}_{\lambda} \otimes \hat{c}_{\mu} \in$ $\tilde{V}_{\lambda} \bullet \tilde{V}_{\mu}$ and so we can set $u:=\varphi\left(\hat{c}_{\lambda} \otimes \hat{c}_{\mu}\right)$. The rest of the computation is the same as in Lemma 1.2.6.
For injectivity, suppose $\psi(u)=0$. Then in particular $0=\psi(u)\left(\hat{c}_{\lambda} \otimes \hat{c}_{\mu}\right)=$ $u .\left(\hat{c}_{\lambda} \otimes \hat{c}_{\mu}\right)$. But u itself can be written as $v .\left(\hat{c}_{\lambda} \otimes \hat{c}_{\mu}\right)$ for some $v \in V^{\otimes m} \otimes V^{\otimes n}$. Combining this, we conclude $u=0$.

Regarding the aside: We have

$$
\tilde{V}_{\lambda} \bullet \tilde{V}_{\mu} \cong\left(\tilde{V}_{\lambda} \otimes_{\mathbb{C}} \tilde{V}_{\mu}\right) \otimes_{\Gamma_{m} \otimes \Gamma_{n}} \Gamma_{m+n}
$$

i.e. $\tilde{V}_{\lambda} \bullet \tilde{V}_{\mu}$ is the induced Γ_{m+n}-right module $\operatorname{Ind}_{\Gamma_{m} \otimes \Gamma_{n}}^{\Gamma_{m+m}}\left(\tilde{V}_{\lambda} \bullet \tilde{V}_{\mu}\right)$.

To see this we write module homomorphisms in both ways which are inverse to each other. Let L be the lhs and R be the rhs above, and define $f: L \rightarrow R$ and $g: R \rightarrow L$ as

$$
f\left(\left(\hat{c}_{\lambda} \otimes \hat{c}_{\mu}\right) x\right)=\left(\hat{c}_{\lambda} \otimes \hat{c}_{\mu}\right) \otimes_{\Gamma_{m} \otimes \Gamma_{n}} x
$$

and

$$
g\left(\left(\hat{c}_{\lambda} a \otimes \hat{c}_{\mu} b\right) \otimes_{\Gamma_{m} \otimes \Gamma_{n}} x\right)=\left(\hat{c}_{\lambda} \otimes \hat{c}_{\mu}\right) a b x
$$

One now needs to check that these maps are indeed well-defined, land in the correct spaces and are intertwiners of Γ_{m+n}-right modules. It is then clear that they are inverse to each other.

