Solutions for exercise sheet #02Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 5

1. (a) By definition, $b = \frac{1}{n!} \sum_{g \in S_n} \operatorname{sgn}(g) e_{g(1)} \otimes \cdots \otimes e_{g(n)}$. All the vectors in this sum are linearly independent, and so in particular, $b \neq 0$.

Write $u = e_{i_1} \otimes \cdots \otimes e_{i_n}$. If two indicies in (i_1, \ldots, i_n) are equal, $\pi(u) = 0$ as we have t.u = u for a transposition exchanging these two tensor factors. But $\pi(t.u) = -\pi(u)$, and so $\pi(u) = 0$. If all indices are distinct, there is a unique $h \in S_n$ such that $u = h.(e_1 \otimes \cdots \otimes e_n)$. We get

$$\pi(u) = \operatorname{sgn}(h)\pi(e_1 \otimes \cdots \otimes e_n) = \operatorname{sgn}(h) b .$$

Thus, for every basis vector u of $V^{\otimes n}$, $\pi(u) \in \mathbb{C}b$. Hence $\operatorname{im}(\pi) = \mathbb{C}b$ is one-dimensional.

(b) Let $F(e_i) = \sum_j F_{ji}e_j$ be the matrix representation of $F \in GL(V)$. Then

$$F.b \stackrel{(1)}{=} F.\pi(e_1 \otimes \cdots \otimes e_n)$$

$$\stackrel{(2)}{=} \pi(F.(e_1 \otimes \cdots \otimes e_n)) = \pi(F(e_1) \otimes \cdots \otimes F(e_n))$$

$$\stackrel{(3)}{=} \sum_{i_1,\dots,i_n} F_{1i_1} \cdots F_{ni_n} \pi(e_{i_1} \otimes \cdots \otimes e_{i_n})$$

$$\stackrel{(4)}{=} \sum_{h \in S_n} F_{1h(1)} \cdots F_{nh(n)} \pi(e_{h(1)} \otimes \cdots \otimes e_{h(n)})$$

$$\stackrel{(5)}{=} \sum_{h \in S_n} F_{1h(1)} \cdots F_{nh(n)} \operatorname{sgn}(h)b = \det(F)b.$$

Here, (1) is the definition of b; (2) uses that π is a GL(V)-intertwiner; in (3) the expression of F in a basis is substituted; in (4) we use part (a) which say that either π gives zero, or there is a unique permutation h which gives the indices; (5) is again a result of part (a).

2. Let us choose a Young tableau T for λ where the boxes in each column are labelled in increasing order.

Claim: The image of $(-).b_T$ is $\mathbb{C} b \otimes \cdots \otimes b$ (k factors).

Write π for the antisymmetriser on n factors as in part 1a. Let $v = v_1 \otimes \cdots \otimes v_k$, where each $v_i \in V^{\otimes n}$. Then one checks that $v.b_T = (const) b \otimes \cdots \otimes b$.

Since the image of $(-).b_T$ is one-dimensional, that of $(-).c_T$ is either zero or one-dimensional. But the vector $b \otimes \cdots \otimes b$ is invariant under a_T (up to a constant), and so the image of $(-).c_T$ is one-dimensional.

Finally $F.b^{\otimes k} = (F.b)^{\otimes k} = \det(F)^k b^{\otimes k}$.

Exercise 6

- 1. Just write out the conditions, using that $e_{g^{-1}}e_{h^{-1}} = e_{(hg)^{-1}}$ and $\operatorname{sgn}(g)e_g\operatorname{sgn}(h)e_h = \operatorname{sgn}(gh)e_{gh}$.
- 2. We define T^t to be a reflection along the top-right to bottom-left diagonal. In particular, rows and columns are exchanged:

$$P_T = Q_{T^t} \quad , \quad Q_{T^t} = P_T \; .$$

Then e.g.

$$\varphi(b_T) = \varphi(\sum_{g \in Q_T} \operatorname{sgn}(g)e_g) = \sum_{g \in Q_T} \operatorname{sgn}(g)\varphi(e_g)$$
$$= \sum_{g \in Q_T} \operatorname{sgn}(g)^2 \varphi(e_{g^{-1}}) = \sum_{h \in P_{T^t}} \varphi(e_h) = a_{T^t} .$$

3. Let $c_T x \in \tilde{V}_T$. Then

$$\varphi(c_T x) = \varphi(a_T b_T x) = \varphi(x)\varphi(b_T)\varphi(a_T) = \varphi(x)a_{T^t}b_{T^t} = \varphi(x)c_{T^t} \in V_{T^t}$$

Thus $\varphi(\tilde{V}_T) \subset V_{T^t}$. For the other inclusion one can repeat the above computation to get $\varphi^{-1}(V_{T^t}) \subset \tilde{V}_T$.

The above computation also shows that the linear isomorphism $\varphi : \tilde{V}_T \to V_{T^t}$ satisfies $\varphi(ux) = \varphi(x)\varphi(u)$, i.e. after precomposing the left Γ -actin on V_{T^t} with φ and thinking of it as a right module, it is isomorphic to \tilde{V}_T .

4. Let us do the second part of Theorem 1.1.4 as an example, the other parts are similar. Let $S \subset \tilde{V}_T$ be an invariant subspace. Then $\varphi(S)$ is an invariant subspace of V_{T^t} : Let $s \in \varphi(S)$ and $x \in \Gamma$. Then

$$x\varphi(s) = \varphi(\varphi^{-1}(x))\varphi(s) = \varphi(s\varphi^{-1}(x)) \in \varphi(S)$$

where in the last step we used that S is invariant with respect to the right action by Γ . But V_{T^t} is irreducible by Theorem 1.1.4. Hence $\varphi(S) = \{0\}$ or $\varphi(S) = V_{T^t}$, giving $S = \{0\}$ or $S = \tilde{V}_T$.

Exercise 7

- 1. Let $a \in A$. We need to show that $a \in A''$. Let $y \in A'$ be arbitrary. Then ya = ay by definition of A' and so $a \in A''$.
- 2. Clear.

- 3. We have $A' \subset A'''$ by part 1. By part 2, $A \subset A''$ implies $A' \supset A'''$. Hence they are equal.
- 4. Clearly $1 \in A'$ and A' is a sub-vector space (its defining condition is linear). Finally, if $a, b \in A'$, then for all $x \in A$: xab = axb = abx, and so $ab \in A'$.

Exercise 8

Write $\Gamma_k = \mathbb{C}S_k$. The proof is similar to that of Lemma 1.2.6. Write

$$\psi: S_{\lambda}V \otimes S_{\mu}V \to \operatorname{Hom}_{\Gamma_{m+m}}(\tilde{V}_{\lambda} \bullet \tilde{V}_{\mu}, V^{\otimes (m+n)}) \quad , \quad \psi(u) = (x \mapsto u.x) \; .$$

 $\psi(u)$ is a Γ_{m+n} -intertwiner by the same argument as in Lemma 1.2.6. For surjectivity let $\varphi : \tilde{V}_{\lambda} \bullet \tilde{V}_{\mu} \to V^{\otimes (m+n)}$ be given. By definition $\hat{c}_{\lambda} \otimes \hat{c}_{\mu} \in \tilde{V}_{\lambda}$ $\tilde{V}_{\lambda} \bullet \tilde{V}_{\mu}$ and so we can set $u := \varphi(\hat{c}_{\lambda} \otimes \hat{c}_{\mu})$. The rest of the computation is the same as in Lemma 1.2.6.

For injectivity, suppose $\psi(u) = 0$. Then in particular $0 = \psi(u)(\hat{c}_{\lambda} \otimes \hat{c}_{\mu}) =$ $u.(\hat{c}_{\lambda}\otimes\hat{c}_{\mu})$. But u itself can be written as $v.(\hat{c}_{\lambda}\otimes\hat{c}_{\mu})$ for some $v\in V^{\otimes m}\otimes V^{\otimes n}$. Combining this, we conclude u = 0.

Regarding the aside: We have

$$\tilde{V}_{\lambda} \bullet \tilde{V}_{\mu} \cong (\tilde{V}_{\lambda} \otimes_{\mathbb{C}} \tilde{V}_{\mu}) \otimes_{\Gamma_m \otimes \Gamma_n} \Gamma_{m+n} ,$$

i.e. $\tilde{V}_{\lambda} \bullet \tilde{V}_{\mu}$ is the induced Γ_{m+n} -right module $\operatorname{Ind}_{\Gamma_m \otimes \Gamma_n}^{\Gamma_{m+m}}(\tilde{V}_{\lambda} \bullet \tilde{V}_{\mu})$. To see this we write module homomorphisms in both ways which are inverse to each other. Let L be the lhs and R be the rhs above, and define $f: L \to R$ and $g: R \to L$ as

$$f((\hat{c}_{\lambda} \otimes \hat{c}_{\mu})x) = (\hat{c}_{\lambda} \otimes \hat{c}_{\mu}) \otimes_{\Gamma_m \otimes \Gamma_n} x$$

and

$$g((\hat{c}_{\lambda}a\otimes\hat{c}_{\mu}b)\otimes_{\Gamma_m\otimes\Gamma_n}x)=(\hat{c}_{\lambda}\otimes\hat{c}_{\mu})abx$$

One now needs to check that these maps are indeed well-defined, land in the correct spaces and are intertwiners of Γ_{m+n} -right modules. It is then clear that they are inverse to each other.