
Solutions for exercise sheet #02
Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 5

1. (a) By definition, b = 1
n!

∑
g∈Sn

sgn(g)eg(1)⊗ · · · ⊗ eg(n). All the vectors in
this sum are linearly independent, and so in particular, b 6= 0.

Write u = ei1 ⊗ · · · ⊗ ein . If two indicies in (i1, . . . , in) are equal,
π(u) = 0 as we have t.u = u for a transposition exchanging these two
tensor factors. But π(t.u) = −π(u), and so π(u) = 0. If all indices are
distinct, there is a unique h ∈ Sn such that u = h.(e1 ⊗ · · · ⊗ en). We
get

π(u) = sgn(h)π(e1 ⊗ · · · ⊗ en) = sgn(h) b .

Thus, for every basis vector u of V ⊗n, π(u) ∈ Cb. Hence im(π) = Cb
is one-dimensional.

(b) Let F (ei) =
∑
j Fjiej be the matrix representation of F ∈ GL(V ).

Then

F.b
(1)
= F.π(e1 ⊗ · · · ⊗ en)

(2)
= π(F.(e1 ⊗ · · · ⊗ en)) = π(F (e1)⊗ · · · ⊗ F (en))

(3)
=

∑
i1,...,in

F1i1 · · ·Fninπ(ei1 ⊗ · · · ⊗ ein)

(4)
=

∑
h∈Sn

F1h(1) · · ·Fnh(n)π(eh(1) ⊗ · · · ⊗ eh(n))

(5)
=

∑
h∈Sn

F1h(1) · · ·Fnh(n)sgn(h)b = det(F )b .

Here, (1) is the definition of b; (2) uses that π is a GL(V )-intertwiner;
in (3) the expression of F in a basis is substituted; in (4) we use part
(a) which say that either π gives zero, or there is a unique permutation
h which gives the indices; (5) is again a result of part (a).

2. Let us choose a Young tableau T for λ where the boxes in each column are
labelled in increasing order.

Claim: The image of (−).bT is C b⊗ · · · ⊗ b (k factors).

Write π for the antisymmetriser on n factors as in part 1a. Let v = v1⊗· · ·⊗
vk, where each vi ∈ V ⊗n. Then one checks that v.bT = (const) b⊗ · · · ⊗ b.

Since the image of (−).bT is one-dimensional, that of (−).cT is either zero
or one-dimensional. But the vector b ⊗ · · · ⊗ b is invariant under aT (up to
a constant), and so the image of (−).cT is one-dimensional.
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Finally F.b⊗k = (F.b)⊗k = det(F )k b⊗k.

Exercise 6

1. Just write out the conditions, using that eg−1eh−1 = e(hg)−1 and sgn(g)egsgn(h)eh =
sgn(gh)egh.

2. We define T t to be a reflection along the top-right to bottom-left diagonal.
In particular, rows and columns are exchanged:

PT = QT t , QT t = PT .

Then e.g.

ϕ(bT ) = ϕ(
∑
g∈QT

sgn(g)eg) =
∑
g∈QT

sgn(g)ϕ(eg)

=
∑
g∈QT

sgn(g)2ϕ(eg−1) =
∑
h∈PTt

ϕ(eh) = aT t .

3. Let cTx ∈ ṼT . Then

ϕ(cTx) = ϕ(aT bTx) = ϕ(x)ϕ(bT )ϕ(aT ) = ϕ(x)aT tbT t = ϕ(x)cT t ∈ VT t .

Thus ϕ(ṼT ) ⊂ VT t . For the other inclusion one can repeat the above com-
putation to get ϕ−1(VT t) ⊂ ṼT .

The above computation also shows that the linear isomorphism ϕ : ṼT → VT t

satisfies ϕ(ux) = ϕ(x)ϕ(u), i.e. after precomposing the left Γ-actin on VT t

with ϕ and thinking of it as a right module, it is isomorphic to ṼT .

4. Let us do the second part of Theorem 1.1.4 as an example, the other parts
are similar. Let S ⊂ ṼT be an invariant subspace. Then ϕ(S) is an invariant
subspace of VT t : Let s ∈ ϕ(S) and x ∈ Γ. Then

xϕ(s) = ϕ(ϕ−1(x))ϕ(s) = ϕ(sϕ−1(x)) ∈ ϕ(S)

where in the last step we used that S is invariant with respect to the right
action by Γ. But VT t is irreducible by Theorem 1.1.4. Hence ϕ(S) = {0} or
ϕ(S) = VT t , giving S = {0} or S = ṼT .

Exercise 7

1. Let a ∈ A. We need to show that a ∈ A′′. Let y ∈ A′ be arbitrary. Then
ya = ay by definition of A′ and so a ∈ A′′.

2. Clear.
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3. We have A′ ⊂ A′′′ by part 1. By part 2, A ⊂ A′′ implies A′ ⊃ A′′′. Hence
they are equal.

4. Clearly 1 ∈ A′ and A′ is a sub-vector space (its defining condition is linear).
Finally, if a, b ∈ A′, then for all x ∈ A: xab = axb = abx, and so ab ∈ A′.

Exercise 8

Write Γk = CSk. The proof is similar to that of Lemma 1.2.6. Write

ψ : SλV ⊗ SµV → HomΓm+m
(Ṽλ • Ṽµ, V ⊗(m+n)) , ψ(u) = (x 7→ u.x) .

ψ(u) is a Γm+n-intertwiner by the same argument as in Lemma 1.2.6.
For surjectivity let ϕ : Ṽλ • Ṽµ → V ⊗(m+n) be given. By definition ĉλ ⊗ ĉµ ∈
Ṽλ • Ṽµ and so we can set u := ϕ(ĉλ ⊗ ĉµ). The rest of the computation is the
same as in Lemma 1.2.6.
For injectivity, suppose ψ(u) = 0. Then in particular 0 = ψ(u)(ĉλ ⊗ ĉµ) =
u.(ĉλ⊗ ĉµ). But u itself can be written as v.(ĉλ⊗ ĉµ) for some v ∈ V ⊗m⊗V ⊗n.
Combining this, we conclude u = 0.

Regarding the aside: We have

Ṽλ • Ṽµ ∼= (Ṽλ ⊗C Ṽµ)⊗Γm⊗Γn
Γm+n ,

i.e. Ṽλ • Ṽµ is the induced Γm+n-right module Ind
Γm+m

Γm⊗Γn
(Ṽλ • Ṽµ).

To see this we write module homomorphisms in both ways which are inverse to
each other. Let L be the lhs and R be the rhs above, and define f : L→ R and
g : R→ L as

f((ĉλ ⊗ ĉµ)x) = (ĉλ ⊗ ĉµ)⊗Γm⊗Γn x

and
g((ĉλa⊗ ĉµb)⊗Γm⊗Γn x) = (ĉλ ⊗ ĉµ)abx .

One now needs to check that these maps are indeed well-defined, land in the
correct spaces and are intertwiners of Γm+n-right modules. It is then clear that
they are inverse to each other.
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