Exercise sheet \# 11
 Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 45

Show that $\operatorname{Pin}_{1,1}$ is a trivial double cover of $O_{1,1}$.

Exercise 46

Let U, U^{\prime} be finite-dimensional \mathbb{C}-vector spaces and and set $S=\Lambda\left(U^{\prime}\right)$. Let $\beta: U \times U^{\prime} \rightarrow \mathbb{C}$ be bilinear and let $x \in U$. Show that there exists a unique \mathbb{C}-linear map $x\lrcorner(-): S \rightarrow S$ such that:

1. for all $y \in U^{\prime}$ we have $\left.x\right\lrcorner y=\beta(x, y)$,
2. for all $a \in \Lambda^{r}\left(U^{\prime}\right), b \in \Lambda^{s}$ we have $\left.\left.\left.x\right\lrcorner(a \wedge b)=(x\lrcorner a\right) \wedge b+(-1)^{r} a \wedge(x\lrcorner b\right)$.

Exercise 47

Show Lemma 3.5.9: There is a unique algebra homomorphism ρ such that

commutes.

Exercise 48

Show Lemma 3.6.4: Let A be an \mathbb{R}-algebra and let (W, ρ) be a finite-dimensional representation of A over \mathbb{C}. The following are equivalent:

1. W is real.
2. There is a \mathbb{C}-basis w_{1}, \ldots, w_{n} of W such that the matrix elements of $\rho(a)$ with respect to this basis are real for all $a \in A$.

Exercise 49

Show a part of Rem 3.6.3: Let A be a semisimple \mathbb{R}-algebra and let (V, ρ) be a finite-dimensional irreducible representation of A over \mathbb{R}. Pick your favourite of the following three statements and prove it:

1. If $\operatorname{End}_{A, \mathbb{R}}(V) \cong \mathbb{R}$, then $\mathbb{C} \otimes_{\mathbb{R}} V$ is an irreducible A-representation over \mathbb{C}.
2. If $\operatorname{End}_{A, \mathbb{R}}(V) \cong \mathbb{C}$, then V can be made into a \mathbb{C}-vector space such that V becomes a A-representation over \mathbb{C} in exactly two non-isomorphic ways.
3. If $\operatorname{End}_{A, \mathbb{R}}(V) \cong \mathbb{H}$, then V can be made into a \mathbb{C}-vector space such that V becomes a A-representation over \mathbb{C}, and any two ways of doing this lead to representations that are isomorphic (as representations over \mathbb{C}).

Hint:
For parts 2 and 3 , what do you know about the automorphisms of \mathbb{C} and \mathbb{H} ?

