Exercise sheet # 11Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 45

Show that $Pin_{1,1}$ is a trivial double cover of $O_{1,1}$.

Exercise 46

Let U, U' be finite-dimensional \mathbb{C} -vector spaces and and set $S = \Lambda(U')$. Let $\beta : U \times U' \to \mathbb{C}$ be bilinear and let $x \in U$. Show that there exists a unique \mathbb{C} -linear map $x \downarrow (-) : S \to S$ such that:

- 1. for all $y \in U'$ we have $x \lrcorner y = \beta(x, y)$,
- 2. for all $a \in \Lambda^r(U')$, $b \in \Lambda^s$ we have $x \lrcorner (a \land b) = (x \lrcorner a) \land b + (-1)^r a \land (x \lrcorner b)$.

Exercise 47

Show Lemma 3.5.9: There is a unique algebra homomorphism ρ such that

commutes.

Exercise 48

Show Lemma 3.6.4: Let A be an \mathbb{R} -algebra and let (W, ρ) be a finite-dimensional representation of A over \mathbb{C} . The following are equivalent:

- 1. W is real.
- 2. There is a \mathbb{C} -basis w_1, \ldots, w_n of W such that the matrix elements of $\rho(a)$ with respect to this basis are real for all $a \in A$.

Please turn over.

Exercise 49

Show a part of Rem 3.6.3: Let A be a semisimple \mathbb{R} -algebra and let (V, ρ) be a finite-dimensional irreducible representation of A over \mathbb{R} . Pick your favourite of the following three statements and prove it:

- 1. If $\operatorname{End}_{A,\mathbb{R}}(V) \cong \mathbb{R}$, then $\mathbb{C} \otimes_{\mathbb{R}} V$ is an irreducible A-representation over \mathbb{C} .
- 2. If $\operatorname{End}_{A,\mathbb{R}}(V) \cong \mathbb{C}$, then V can be made into a \mathbb{C} -vector space such that V becomes a A-representation over \mathbb{C} in exactly two non-isomorphic ways.
- 3. If $\operatorname{End}_{A,\mathbb{R}}(V) \cong \mathbb{H}$, then V can be made into a \mathbb{C} -vector space such that V becomes a A-representation over \mathbb{C} , and any two ways of doing this lead to representations that are isomorphic (as representations over \mathbb{C}).

Hint:

For parts 2 and 3, what do you know about the automorphisms of $\mathbb C$ and $\mathbb H$?