Exercise sheet \# 09
 Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 35

Let V be a K-vector space and let $T(V)=\bigoplus_{m=0}^{\infty} T^{m}$ with $T^{m}=V^{\otimes m}$ have the algebra structure as defined in the lecture. Let $i: V \rightarrow T(V)$ be the embedding into the summand T^{1}.

Show that $(T(V), i)$ satisfies the universal property of a tensor algebra.

Exercise 36

Let $(T(V), i)$ be the tensor algebra as in Exercise 35.

1. Show that there is a unique algebra homomorphism $\Delta: T(V) \rightarrow T(V) \otimes$ $T(V)$ which satisfies $\Delta(i(x))=i(x) \otimes 1+1 \otimes i(x) \in\left(T^{1} \otimes T^{0}\right) \oplus\left(T^{0} \otimes T^{1}\right)$.
2. Compute $\Delta(i(x) i(y))$ for $x, y \in V$.
3. Show that $(i d \otimes \Delta) \circ \Delta=(\Delta \otimes i d) \circ \Delta$.

Exercise 37

Let A be a K-algebra and let $I \subset A$ be a two-sided ideal.

1. Consider the quotient K-vector space A / I and the canonical projection $\pi: A \rightarrow A / I, a \mapsto a+I$. Show that there is a unique (associative unital) algebra structure on A / I such that π is an algebra homomorphism.
2. Look at the diagram below and formulate (and prove) the universal property of A / I :

Please turn over.

Exercise 38

Recall from the lecture the universal property of the alternating algebra $\Lambda(V)$ of a vector space V over some field K.

1. Show that an alternating algebra is unique up to unique isomorphism.
2. Show that $\Lambda(V):=T(V) /\langle v \otimes v \mid v \in V\rangle$ with $i_{\Lambda}=\left[V \xrightarrow{i_{T}} T(V) \xrightarrow{\pi} \Lambda(V)\right]$ is an alternating algebra.
3. Let $\Lambda^{m}:=\pi\left(T^{m}\right)$. Show that $\Lambda(V)=\bigoplus_{m=0}^{\infty} \Lambda^{m}$.
4. Let $K=\mathbb{C}$ and let $\lambda=(1,1, \ldots, 1)$ be the Young-diagram consisting of a single column with m boxes. Show that $S_{\lambda}(V) \cong \Lambda^{m}$ as k-vector spaces. (Note that $S_{\lambda}(V)$ is defined as a sub-vector space of $V^{\otimes m}$, while Λ^{m} is defined as a quotient of $V^{\otimes m}$.) Are they isomorphic as $G L(V)$-modules?
