Exercise sheet # 08Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 30

Prove Lemma 2.6.5: Recall the orbit \mathcal{O}_m^+ from the lecture, the diffeomorphism $\pi : \mathcal{O}_m^+ \to \mathbb{R}^3$, and the definition of $\widetilde{\Lambda}(\vec{p}) = \pi(\Lambda(\pi^{-1}(\vec{p})))$, where $\vec{p} \in \mathbb{R}^3$ and $\Lambda \in L_+^\uparrow$. For $\lambda > 0$, we defined

$$\mu(\vec{p}) = \frac{\lambda}{p_0} = \frac{\lambda}{\sqrt{m^2 + |\vec{p}|^2}}$$

We need to show that μ transforms under the action of L^{\uparrow}_{+} as a density, that is, for all $\Lambda \in L^{\uparrow}_{+}$,

$$\mu(\widetilde{\Lambda}(\vec{p})) = \frac{1}{|\det D\widetilde{\Lambda}(\vec{p})|} \,\mu(\vec{p}) \tag{(*)}$$

1. Suppose you did already prove (*). Let $f : \mathbb{R}^3 \to \mathbb{C}$ be continuous and have compact support. Abbreviate $I(f) = \int_{\mathbb{R}^3} f(x)\mu(x)d^3x$. Show that for all $\Lambda \in L_+^{\uparrow}$,

$$I(f \circ \widetilde{\Lambda}) = I(f) \; .$$

- 2. Show that (*) holds for rotations $R \in SO(3) \subset L_+^{\uparrow}$, for boosts, and finally for all $\Lambda \in L_+^{\uparrow}$.
- 3. Why is a function μ satsifying (*) unique up to a constant?

Exercise 31

For $q \in \mathcal{O}_m^+$ we defined the 2×2 matrix T_q as

$$T_q := \frac{1}{\sqrt{2m(m+q_0)}} \left(m \cdot id + \widehat{q} \right)$$

Show that $T_q \in SL(2, \mathbb{C})$ and that for a = (m, 0, 0, 0) we have $T_q \widehat{a} T_q^{\dagger} = \widehat{q}$.

Please turn over.

Exercise 32

For $(x,g) \in \widetilde{P}$ and $f \otimes v \in \mathcal{L} \otimes R$ we defined

$$((x,g).(f \otimes v))(\vec{p}) = e^{i\eta(x,\pi^{-1}(\vec{p}))} f(\widetilde{\phi(g^{-1})}\,\vec{p}) \otimes W(\phi(g^{-1})\pi^{-1}(\vec{p}),g).v ,$$

where $\vec{p} \in \mathbb{R}^3$

Show that this defines a unitary representation of \widetilde{P} . (You do not need to show continuity of the action.)

Hint: The formulas are somewhat simpler if one uses $L^2(\mathbb{R}^3, R)$, that is, L^2 -functions on \mathbb{R}^3 with values in R, the unitary representation of SU(2) we chose. The inner product on $L^2(\mathbb{R}^3, R)$ is

$$(f,g) = \int_{\mathbb{R}^3} (f(x),g(x))_R \,\mu(x) \, d^3x$$

where $(-,-)_R$ denotes the inner product on R. By construction we have a unitary equivalence $L^2(\mathbb{R}^3, R) \cong \mathcal{L} \otimes R$.

Exercise 33

Consider the orbit \mathcal{O}_0^+ and let $a = (\frac{1}{2}, 0, 0, \frac{1}{2}) \in \mathcal{O}_0^+$.

1. Show that

$$\operatorname{Stab}(a) = \left\{ \begin{pmatrix} e^{i\theta/2} & ze^{-i\theta/2} \\ 0 & e^{-i\theta/2} \end{pmatrix} \middle| \theta \in \mathbb{R}, z \in \mathbb{C} \right\}$$

2. Recall that $E(2)_0$ denotes the connected component of the identity of the group of euclidean motions in two dimensions. Show that the map $\tau : \operatorname{Stab}(a) \to E(2)_0$,

$$\begin{pmatrix} e^{i\theta/2} & ze^{-i\theta/2} \\ 0 & e^{-i\theta/2} \end{pmatrix} \quad \mapsto \quad (z,e^{i\theta}) \ ,$$

is a surjective group homomorphism. What is its kernel?

Exercise 34

Compute the little group for all 6 types of orbits of L^{\uparrow}_{+} on 4-dimensional Minkowski space. For which orbits does the little group possess finite-dimensional unitary representations?