Exercise sheet \# 07
 Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 26

1. Write the Poincaré group P as the semidirect product $\mathbb{R}^{4} \rtimes L$.
2. Recall the map $\phi: S L(2, \mathbb{C}) \rightarrow L_{+}^{\uparrow}$ defined in Section 2.5. Show that ϕ
(a) indeed has image in L_{+}^{\uparrow} (you do not need to show that it is surjective),
(b) is a group homomorphism,
(c) has kernel $\{ \pm i d\}$.

Exercise 27

Let \mathcal{H} be a Hilbert space of dimension ≥ 2 and let G be a connected Lie group satisfying $\left(^{*}\right)$ in Theorem 2.5.5. In Proposition 2.4.2 and Corollary 2.5.6 we had the commuting diagrams

and

Is there a commuting diagram you can build from the two upper exact rows? If so, what can you say about the injectivity/surjectivity properties of the group homomorphisms you found?

Exercise 28

1. Show the implications

$$
(\text { norm cont. }) \stackrel{(a)}{\Rightarrow}(\text { strongly cont. }) \stackrel{(b)}{\Rightarrow}(\text { weakly cont. })
$$

2. Consider a Hilbert space \mathcal{H} with ON-basis $\left\{e_{n}\right\}_{n \in \mathbb{N}}$. Let $X \subset \mathbb{R}$ be given by $X=\{0\} \cup\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}\right\}$. Then X is a metric space with metric inherited from \mathbb{R}. Consider the map $f: X \rightarrow B(\mathcal{H})$ given by $f(0)=0, f\left(\frac{1}{n}\right)=e_{k+n}$. Use this to build a counter-example to the converse implication to (b).
3. Let $\mathcal{H}=L^{2}(U(1))$. For $\varphi \in \mathbb{R}$ let $T_{\varphi}: \mathcal{H} \rightarrow \mathcal{H}$ be given by $\left(T_{\varphi}(f)\right)(\psi)=$ $f\left(e^{i(\psi+\varphi)}\right)$, i.e. T_{φ} shifts a function around $U(1)$ by some angle φ. Consider the function

$$
T: U(1) \longrightarrow U(\mathcal{H}) \quad, \quad e^{i \varphi} \mapsto T_{\varphi} .
$$

Check that T indeed takes values in $U(\mathcal{H})$. Use T to build a counterexample to the converse of implication (a).
Note: You may assume T is strongly continuous. (Or you can prove it, if you like, e.g. by using the ON-basis from Exercise 29.)

Exercise 29

Let $\mathcal{H}=L^{2}(U(1))$. For $n \in \mathbb{Z}$ let $e_{n} \in \mathcal{H}$ be the function $e_{n}(\varphi)=(2 \pi)^{-\frac{1}{2}} e^{i n \varphi}$. You may use without proof that $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ is an ON-basis of \mathcal{H}.

1. Define T_{φ} as in Exercise 28 (3). For $m \in \mathbb{Z}$ define $R_{m}\left(\sum_{n \in \mathbb{Z}} \lambda_{n} e_{n}\right):=$ $\sum_{n \in \mathbb{Z}} \lambda_{n} e_{n+m}$. Note that T_{φ} is the "shift in position space" and R_{m} the "shift in Fourier space".

Show that $R_{m} \in U(\mathcal{H})$.
2. Let $G \subset U(\mathcal{H})$ be the subgroup generated by $T_{\varphi}, \varphi \in \mathbb{R}$ and $R_{m}, m \in \mathbb{Z}$. Then \mathcal{H} is a representation of G.
Show that \mathcal{H} is algebraically reducible as a G-representation.
Hint: Convince yourself that R_{m} acts on a function f as $\left(R_{m} f\right)\left(e^{i \varphi}\right)=$ $e^{i m \varphi} f\left(e^{i \varphi}\right)$.
3. Show that \mathcal{H} is topologically irreducible as a G-representation.

Note: You could use the following result on Hilbert-space valued integrals: ${ }^{1}$ Let $I \subset \mathbb{R}$ be a compact interval and let $f: I \rightarrow \mathcal{H}$ be a continuous function. Then there exists a unique integral $\int_{I} f(t) d t \in \mathcal{H}$ with the property that, for all $v \in \mathcal{H}$,

$$
\left(v, \int_{I} f(t) d t\right)=\int_{I}(v, f(t)) d t
$$

Here, the second integral is just the Riemann integral of a complex-valued continuous function.
4. Consider now the subgroup of $S \subset G$ generated just by the $R_{m}, m \in \mathbb{Z}$. By part $2, \mathcal{H}$ is algebraically reducible as an S-representation. By Proposition 2.6.2, it must also be topologically reducible (all topologically irreducible S-representations being 1-dimensional).
Can you point at a closed invariant subspace? At a one-dimensional invariant subspace?

[^0]
[^0]: ${ }^{1}$ See for example Def. 3.26 and Thm. 3.27 in Rudin, Functional Analysis

