Exercise sheet #07Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 26

- 1. Write the Poincaré group P as the semidirect product $\mathbb{R}^4\rtimes L.$
- 2. Recall the map $\phi:SL(2,\mathbb{C})\to L_+^\uparrow$ defined in Section 2.5. Show that ϕ
 - (a) indeed has image in L^{\uparrow}_{+} (you do not need to show that it is surjective),
 - (b) is a group homomorphism,
 - (c) has kernel $\{\pm id\}$.

Exercise 27

Let \mathcal{H} be a Hilbert space of dimension ≥ 2 and let G be a connected Lie group satisfying (*) in Theorem 2.5.5. In Proposition 2.4.2 and Corollary 2.5.6 we had the commuting diagrams

Is there a commuting diagram you can build from the two upper exact rows? If so, what can you say about the injectivity/surjectivity properties of the group homomorphisms you found?

Exercise 28

1. Show the implications

 $(\text{norm cont.}) \stackrel{(a)}{\Rightarrow} (\text{strongly cont.}) \stackrel{(b)}{\Rightarrow} (\text{weakly cont.}) .$

2. Consider a Hilbert space \mathcal{H} with ON-basis $\{e_n\}_{n\in\mathbb{N}}$. Let $X \subset \mathbb{R}$ be given by $X = \{0\} \cup \{\frac{1}{n} | n \in \mathbb{N}\}$. Then X is a metric space with metric inherited from \mathbb{R} . Consider the map $f : X \to B(\mathcal{H})$ given by f(0) = 0, $f(\frac{1}{n}) = e_{k+n}$. Use this to build a counter-example to the converse implication to (b). 3. Let $\mathcal{H} = L^2(U(1))$. For $\varphi \in \mathbb{R}$ let $T_{\varphi} : \mathcal{H} \to \mathcal{H}$ be given by $(T_{\varphi}(f))(\psi) = f(e^{i(\psi+\varphi)})$, i.e. T_{φ} shifts a function around U(1) by some angle φ . Consider the function

$$T: U(1) \longrightarrow U(\mathcal{H}) \quad , \quad e^{i\varphi} \mapsto T_{\varphi} \; .$$

Check that T indeed takes values in $U(\mathcal{H})$. Use T to build a counterexample to the converse of implication (a).

Note: You may assume T is strongly continuous. (Or you can prove it, if you like, e.g. by using the ON-basis from Exercise 29.)

Exercise 29

Let $\mathcal{H} = L^2(U(1))$. For $n \in \mathbb{Z}$ let $e_n \in \mathcal{H}$ be the function $e_n(\varphi) = (2\pi)^{-\frac{1}{2}} e^{in\varphi}$. You may use without proof that $\{e_n\}_{n \in \mathbb{Z}}$ is an ON-basis of \mathcal{H} .

1. Define T_{φ} as in Exercise 28(3). For $m \in \mathbb{Z}$ define $R_m(\sum_{n \in \mathbb{Z}} \lambda_n e_n) := \sum_{n \in \mathbb{Z}} \lambda_n e_{n+m}$. Note that T_{φ} is the "shift in position space" and R_m the "shift in Fourier space".

Show that $R_m \in U(\mathcal{H})$.

2. Let $G \subset U(\mathcal{H})$ be the subgroup generated by $T_{\varphi}, \varphi \in \mathbb{R}$ and $R_m, m \in \mathbb{Z}$. Then \mathcal{H} is a representation of G.

Show that \mathcal{H} is algebraically reducible as a *G*-representation.

Hint: Convince yourself that R_m acts on a function f as $(R_m f)(e^{i\varphi}) = e^{im\varphi}f(e^{i\varphi})$.

3. Show that \mathcal{H} is topologically irreducible as a *G*-representation.

Note: You could use the following result on Hilbert-space valued integrals:¹ Let $I \subset \mathbb{R}$ be a compact interval and let $f: I \to \mathcal{H}$ be a continuous function. Then there exists a unique integral $\int_I f(t) dt \in \mathcal{H}$ with the property that, for all $v \in \mathcal{H}$,

$$\left(v, \int_{I} f(t)dt\right) = \int_{I} (v, f(t))dt$$
.

Here, the second integral is just the Riemann integral of a complex-valued continuous function.

4. Consider now the subgroup of $S \subset G$ generated just by the $R_m, m \in \mathbb{Z}$. By part 2, \mathcal{H} is algebraically reducible as an S-representation. By Proposition 2.6.2, it must also be topologically reducible (all topologically irreducible S-representations being 1-dimensional).

Can you point at a closed invariant subspace? At a one-dimensional invariant subspace?

¹See for example Def. 3.26 and Thm. 3.27 in Rudin, Functional Analysis.