Exercise sheet \# 06
 Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 22

Prove Lemma 2.3.2:

1. A projective representation ρ of G on W gives rise to a group homomorphism $\bar{\rho}$ from G to $P G L(W)$ via $\bar{\rho}=\pi \circ \rho$.
2. Two projective representations (W, ρ) and $\left(W^{\prime}, \rho^{\prime}\right)$ are isomorphic (as projective representations) if and only if there is a k-linear isomorphism $f: W \rightarrow W^{\prime}$ such that

commutes.
3. Let $\sigma: G \rightarrow P G L(W)$ be a group homomorphism. Then for any choice of map $\rho: G \rightarrow G L(W)$ such that

commutes, (W, ρ) is a projective representation of G. For two different choices ρ and ρ^{\prime} the projective representations (W, ρ) and (W, ρ^{\prime}) are isomorphic.

Please turn over.

Exercise 23

Show part 2 of Lemma 2.4.1: For all groups H and group homomorphisms a, b such that

commutes, there exists a unique group homomorphism $f: H \rightarrow \widehat{G}$ such that

commutes.

Exercise 24

1. Show the following properties of a 2-cocycle χ of G with values in A :
(a) For all $g \in G: \chi(g, e)=\chi(e, e)=\chi(e, g)$ and $\chi\left(g, g^{-1}\right)=\chi\left(g^{-1}, g\right)$.
(b) The cohomology class $[\chi]$ contains a normalised 2-cocycle.
2. Complete the proof of Lemma 2.4.4: Show that $A \times_{\chi} G$ with product as given in the lecture has a unit and an inverse, and that it is a central extension of G by A.

Exercise 25

If G is a subgroup of $G L(W)$ for some vector space W, we will write $P G=$ $G /\left(G \cap\left\{\lambda i d_{W} \mid \lambda \in k^{\times}\right\}\right.$. It then makes sense to talk about $P S U(2), P U(2)$, etc.

1. Let $A \xrightarrow{j} G \xrightarrow{p} H$ be a central extension. Suppose there is an element $g \in G$ such that $g \notin j(A)$ but $g^{2} \in j(A)$, and such that the (unique) element $a \in A$ with $j(a)=g^{2}$ cannot itself be written as a square (in A). Show that the central extension does not split.
2. The only matrices of the form $\lambda i d$ contained in $S U(2)$ are $\pm i d$. Show that the central extension $\{ \pm 1\} \rightarrow S U(2) \rightarrow P S U(2)$ does not split (note that here a potential splitting map is not required to be continuous).
3. Show that the central extension $U(1) \rightarrow U(2) \rightarrow P U(2)$ does not split.

Hint: $S U(2)$ is generated by commutators $x y x^{-1} y^{-1}, x, y \in S U(2)$ (you do not need to prove this).
4. (This problem is voluntary - no points will be given.) What about $U(1) \rightarrow U(N) \rightarrow P U(N)$? Does this tell you anything about $U(1) \rightarrow U A(\mathcal{H}) \rightarrow$ Aut $\mathbb{P}(\mathcal{H})$ for $\mathcal{H}=\mathbb{C}^{N}, N \geq 2$?

