Exercise sheet # 06Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 22

Prove Lemma 2.3.2:

- 1. A projective representation ρ of G on W gives rise to a group homomorphism $\bar{\rho}$ from G to PGL(W) via $\bar{\rho} = \pi \circ \rho$.
- 2. Two projective representations (W, ρ) and (W', ρ') are isomorphic (as projective representations) if and only if there is a k-linear isomorphism $f: W \to W'$ such that

commutes.

3. Let $\sigma: G \to PGL(W)$ be a group homomorphism. Then for any choice of map $\rho: G \to GL(W)$ such that

$$\begin{array}{c} GL(W) \\ & \swarrow^{\rho} \not \prec & \bigvee^{\pi} \\ G \xrightarrow{\sim} \sigma PGL(W) \end{array}$$

commutes, (W, ρ) is a projective representation of G. For two different choices ρ and ρ' the projective representations (W, ρ) and (W, ρ') are isomorphic.

Please turn over.

Exercise 23

Show part 2 of Lemma 2.4.1: For all groups H and group homomorphisms a, b such that

commutes, there exists a unique group homomorphism $f:H\to \widehat{G}$ such that

commutes.

Exercise 24

- 1. Show the following properties of a 2-cocycle χ of G with values in A:
 - (a) For all $g \in G$: $\chi(g, e) = \chi(e, e) = \chi(e, g)$ and $\chi(g, g^{-1}) = \chi(g^{-1}, g)$.
 - (b) The cohomology class $[\chi]$ contains a normalised 2-cocycle.
- 2. Complete the proof of Lemma 2.4.4: Show that $A \times_{\chi} G$ with product as given in the lecture has a unit and an inverse, and that it is a central extension of G by A.

Exercise 25

If G is a subgroup of GL(W) for some vector space W, we will write $PG = G/(G \cap \{\lambda id_W | \lambda \in k^{\times}\})$. It then makes sense to talk about PSU(2), PU(2), etc.

- 1. Let $A \xrightarrow{j} G \xrightarrow{p} H$ be a central extension. Suppose there is an element $g \in G$ such that $g \notin j(A)$ but $g^2 \in j(A)$, and such that the (unique) element $a \in A$ with $j(a) = g^2$ cannot itself be written as a square (in A). Show that the central extension does not split.
- 2. The only matrices of the form λid contained in SU(2) are $\pm id$. Show that the central extension $\{\pm 1\} \rightarrow SU(2) \rightarrow PSU(2)$ does not split (note that here a potential splitting map is not required to be continuous).
- 3. Show that the central extension $U(1) \rightarrow U(2) \rightarrow PU(2)$ does not split. Hint: SU(2) is generated by commutators $xyx^{-1}y^{-1}$, $x, y \in SU(2)$ (you do not need to prove this).
- 4. (This problem is voluntary no points will be given.) What about $U(1) \to U(N) \to PU(N)$? Does this tell you anything about $U(1) \to UA(\mathcal{H}) \to \operatorname{Aut} \mathbb{P}(\mathcal{H})$ for $\mathcal{H} = \mathbb{C}^N$, $N \geq 2$?