## Exercise sheet \# 04 <br> Topics in representation theory WS 2017

(Ingo Runkel)

## Exercise 13

Let $G$ be a connected matrix Lie group (or just a connected topological group), and let $V \subset G$ be any open neighbourhood of the unit $e \in G$. Show that

$$
G=\left\{g_{1} \cdots g_{n} \mid n>0, g_{i} \in V\right\}
$$

## Exercise 14

Let $G$ be a matrix Lie group and $\mathfrak{g}$ its Lie algebra. Let $W$ be a finite-dimensional $\mathbb{C}$-vector space and $(W, \rho)$ a smooth representation of $G$. Show that for all $X \in \mathfrak{g}$ we have

$$
\rho(\exp (X))=\exp (D \rho(X))
$$

Hint: For $t \in \mathbb{R}$ write $f(t)=\rho(\exp (t X))$ and $g(t)=\exp (t D \rho(X))$. Then $f, g$ are smooth functions $\mathbb{R} \rightarrow \operatorname{End}(W)$. Try to find a first order differential equation they both satisfy.

If you are bored: A special case of the above result is that for all $X \in \operatorname{Mat}(N, \mathbb{C})$ we have $\operatorname{det}(\exp (X))=\exp (\operatorname{tr}(X))$. Do you see how?

## Exercise 15

Let $\mathcal{H}$ be a Hilbert space. Remind yourself of the definition of a semidirect product of groups and see if you can write $U A(\mathcal{H})$ as a semidirect product of $U(\mathcal{H})$ with something.

## Exercise 16

In the lecture we defined $\gamma: U A(\mathcal{H}) \rightarrow \operatorname{Aut}(\mathbb{P}(\mathcal{H}))$ as follows. For $X \in U A(\mathcal{H})$ abbreviate $T=\gamma(X)$. Then for $[\varphi] \in \mathbb{P}(\mathcal{H})$ the class of $\varphi \in \mathcal{H}$ we declare $T([\varphi])=[X \varphi]$.
Show that $T$ is independent of the choice of representative and does indeed lie in $\operatorname{Aut}(\mathbb{P}(\mathcal{H}))$. Show that $\gamma$ is a group homomorphism.

## Please turn over.

## Exercise 17

Let $L$ be the Lorentz group of four-dimensional (or $n$-dimensional, if you like) Minkowski space. Set

$$
L_{+}^{\uparrow}:=\left\{M \in L \mid \operatorname{det}(M)>0 \text { and } M_{00}>0\right\} .
$$

1. Show that $L_{+}^{\uparrow}$ is connected.

Hint: You could show that every element can be written as (rotation) $\times$ (boost) $\times$ (rotation). (You may assume that $S O(3)$ is connected.)
2. How many connected components does $L$ have? Can you write it as a semidirect product of $L_{+}^{\uparrow}$ with something?

