Exercise sheet \# 03
 Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 9

1. Let k be a field (you can take $k=\mathbb{C}$, it makes no difference) and let A, Q be k-algebras. Suppose there exists a surjective algebra homomorphism $\pi: A \rightarrow Q$.
What is the relation between A - and Q-modules, and between their intertwiners? In case A has only finitely many simple modules, what can you say about the number of simple Q-modules?
2. Show that quotients of semisimple algebras are semisimple.

Exercise 10

Show the missing step in Lemma 1.2.14: Given $f_{1}, \ldots, f_{n} \in \operatorname{End}(V)$ and $\lambda_{1}, \ldots, \lambda_{n} \in$ \mathbb{C} consider

$$
F\left(\lambda_{1}, \ldots, \lambda_{n}\right)=i d+\sum_{i=1}^{n} \lambda_{i} f_{i}
$$

For λ_{i} small enough, $F\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in G L(V)$. By construction,

$$
F\left(\lambda_{1}, \ldots, \lambda_{n}\right)^{\otimes n} \in \operatorname{span}_{\mathbb{C}}\left\{H^{\otimes n} \mid H \in G L(V)\right\}
$$

Expanding out $F\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ gives a polynomial in $\lambda_{1}, \ldots, \lambda_{n}$ with coefficients in $\operatorname{End}\left(V^{\otimes n}\right)$.
Show that these coefficients are also contained in $\operatorname{span}_{\mathbb{C}}\left\{H^{\otimes n} \mid H \in G L(V)\right\}$.
Hint: A finite dimensional sub-vector space is always closed (as a topological space), and so contains limits of sequences for which all elements are in the sub-vector space.

Exercise 11

Show that $G L(N, \mathbb{C}), S L(N, \mathbb{C}), U(N)$ and $S U(N)$ are connected.
Hint: Look up the QR-decomposition of a matrix. For $S U(N)$ proceed by induction by "finding a path which rotates the last column vector to the basis vector e_{N}."

Please turn over.

Exercise 12

1. Let $D \subset G L(N, \mathbb{C})$ be the subgroup of invertible diagonal matrices. Can the action of D on $\left(\mathbb{C}^{N}\right)^{\otimes n}$ be diagonalised? I.e. is there a basis of $\left(\mathbb{C}^{N}\right)^{\otimes n}$ consisting of simultaneous eigenvectors for all $\rho(D)$? How about the $S_{\lambda}\left(\mathbb{C}^{N}\right)$?
2. Let $d \subset \operatorname{Mat}(N, \mathbb{C})$ be all diagonal matrices. These are in the Lie algebra of $G L(N, \mathbb{C})$. Compute their action on $\left(\mathbb{C}^{N}\right)^{n}$. What is the largest eigenvalue the elementary matrix E_{11} can attain on $\left(\mathbb{C}^{N}\right)^{\otimes n}$? Which of the $S_{\lambda}\left(\mathbb{C}^{N}\right)$, for λ a Young-diagram with n boxes, contain an eigenvector of this maximal eigenvalue?
