Exercise sheet \# 02
 Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 5

Let V be an n-dimensional vector space with basis $\left\{e_{1}, \ldots, e_{n}\right\}$.

1. Let $\lambda=(1,1, \ldots, 1)$ be the partition of n into a sum of 1 's. I.e. λ is the Young diagram consisting of a column with n boxes.
(a) Let $\pi:=(-) \cdot \hat{c}_{\lambda}$. Show that the image of π is one-dimensional. Set $b:=\pi\left(e_{1} \otimes \cdots \otimes e_{n}\right)$. What is $\pi\left(e_{i_{1}} \otimes \cdots \otimes e_{i_{n}}\right) ?$
(b) Show that $S_{\lambda} V$ is isomorphic to the one-dimensional representation where $F \in G L(V)$ acts by multiplication with $\operatorname{det}(F)$.
2. What can you say about $\lambda=(k, k, \ldots, k)$, a partition of $n k$, for $k>0$?

Exercise 6

Let $\Gamma:=\mathbb{C} S_{n}$ be the group algebra of S_{n}.

1. Show that $e_{g} \mapsto e_{g^{-1}}$ is an algebra anti-isomorphism of Γ and that $e_{g} \mapsto$ $\operatorname{sgn}(g) e_{g}$ is an algebra isomorphism.
2. Set $\varphi: \Gamma \rightarrow \Gamma, \varphi\left(e_{g}\right)=\operatorname{sgn}(g) e_{g^{-1}}$. Find a sensible notion of a transpose Young tableau T^{t} and show $\varphi\left(a_{T}\right)=b_{T^{t}}, \varphi\left(b_{T}\right)=a_{T^{t}}$.
3. Show that $\varphi\left(\tilde{V}_{T}\right)=V_{T^{t}}$ as subspaces of Γ. Find a relation between the right action on V_{T} and the left action on $V_{T^{t}}$.
4. Show corresponding statements of Theorem 1.1.4 for the Γ-right modules \tilde{V}_{λ}.

Exercise 7

Show Lemma 1.2.8 about commutants. In fact, show a version of this lemma where $\operatorname{End}(W)$ is replaced by an arbitrary algebra E (finite-dimensional or not), and A and B by any subsets (which need not be a sub-vector space). Add a fourth point to the lemma: A^{\prime} is a subalgebra.

Exercise 8

Let λ, μ be Young-diagrams with $|\lambda|=m$ and $|\mu|=n$. For \tilde{V}_{λ} and \tilde{V}_{μ} write $\tilde{V}_{\lambda} \bullet \tilde{V}_{\mu}:=c_{\lambda} \otimes c_{\mu} \cdot \mathbb{C} S_{m+m}$. Here, $c_{\lambda} \otimes c_{\mu}$ is understood as an element of $\mathbb{C} S_{m+m}$ via the embedding $S_{m} \times S_{n} \rightarrow S_{m+n}$. By construction, $\tilde{V}_{\lambda} \bullet \tilde{V}_{\mu}$ is a right S_{m+n}-module. (Aside: Can you define $\tilde{V}_{\lambda} \bullet \tilde{V}_{\mu}$ using induced modules?) Show: $S_{\lambda} V \otimes S_{\mu} V \cong \operatorname{Hom}_{\mathbb{C} S_{m+m}}\left(\tilde{V}_{\lambda} \bullet \tilde{V}_{\mu}, V^{\otimes(m+n)}\right)$ as $G L(V)$-modules.

