Exercise sheet # 02Topics in representation theory WS 2017

(Ingo Runkel)

Exercise 5

Let V be an n-dimensional vector space with basis $\{e_1, \ldots, e_n\}$.

- 1. Let $\lambda = (1, 1, ..., 1)$ be the partition of n into a sum of 1's. I.e. λ is the Young diagram consisting of a column with n boxes.
 - (a) Let $\pi := (-).\hat{c}_{\lambda}$. Show that the image of π is one-dimensional. Set $b := \pi(e_1 \otimes \cdots \otimes e_n)$. What is $\pi(e_{i_1} \otimes \cdots \otimes e_{i_n})$?
 - (b) Show that $S_{\lambda}V$ is isomorphic to the one-dimensional representation where $F \in GL(V)$ acts by multiplication with det(F).
- 2. What can you say about $\lambda = (k, k, \dots, k)$, a partition of nk, for k > 0?

Exercise 6

Let $\Gamma := \mathbb{C}S_n$ be the group algebra of S_n .

- 1. Show that $e_g \mapsto e_{g^{-1}}$ is an algebra anti-isomorphism of Γ and that $e_g \mapsto \operatorname{sgn}(g)e_q$ is an algebra isomorphism.
- 2. Set $\varphi : \Gamma \to \Gamma$, $\varphi(e_g) = \operatorname{sgn}(g)e_{g^{-1}}$. Find a sensible notion of a transpose Young tableau T^t and show $\varphi(a_T) = b_{T^t}$, $\varphi(b_T) = a_{T^t}$.
- 3. Show that $\varphi(\tilde{V}_T) = V_{T^t}$ as subspaces of Γ . Find a relation between the right action on \tilde{V}_T and the left action on V_{T^t} .
- 4. Show corresponding statements of Theorem 1.1.4 for the Γ -right modules \tilde{V}_{λ} .

Exercise 7

Show Lemma 1.2.8 about commutants. In fact, show a version of this lemma where $\operatorname{End}(W)$ is replaced by an arbitrary algebra E (finite-dimensional or not), and A and B by any subsets (which need not be a sub-vector space). Add a fourth point to the lemma: A' is a subalgebra.

Exercise 8

Let λ, μ be Young-diagrams with $|\lambda| = m$ and $|\mu| = n$. For \tilde{V}_{λ} and \tilde{V}_{μ} write $\tilde{V}_{\lambda} \bullet \tilde{V}_{\mu} := c_{\lambda} \otimes c_{\mu}.\mathbb{C}S_{m+m}$. Here, $c_{\lambda} \otimes c_{\mu}$ is understood as an element of $\mathbb{C}S_{m+m}$ via the embedding $S_m \times S_n \to S_{m+n}$. By construction, $\tilde{V}_{\lambda} \bullet \tilde{V}_{\mu}$ is a right S_{m+n} -module. (Aside: Can you define $\tilde{V}_{\lambda} \bullet \tilde{V}_{\mu}$ using induced modules?) Show: $S_{\lambda}V \otimes S_{\mu}V \cong \operatorname{Hom}_{\mathbb{C}S_{m+m}}(\tilde{V}_{\lambda} \bullet \tilde{V}_{\mu}, V^{\otimes (m+n)})$ as GL(V)-modules.