Hints and solutions for problem sheet # 11
Advanced Algebra — Winter term 2016/17
(Ingo Runkel)

Problem 45

1 = 3 By Theorem 2.3.2, it remains to show that f* is surjective. Let o : L — J
be given. Since f is injective, by definition of injective modules, there is
@ : M — J such that ¢ o f = ¢, that is, f*(@) = ¢.

3 =2 Let J - M — N be a short exact sequence. By 3, applied to this sequence,
we have that f* : Homg(M,J) — Hompg(J, J) is surjective. Hence there is
¢ : M — J such that f*(¢) = id;. But this means that p o f =idy, i.e. ¢
is a splitting map for the sequence J — M — N.

Problem 46

1. If it would split, then Z/p*Z = Z/pZ & 7Z/pZ, which is not true because the
first has an element of (additive) order p?, while the latter do not. Thus by
Theorem 5.1.2, Z/pZ is not projective. On the other hand, the submodule
(p) of Z/p*Z is isomorphic to Z/pZ.

2. See Cor 5.1.5 — since Z is a PID, projective implies free. We have already
shown Q to not be free over Z, so it cannot be projective over Z.

3. “Sometimes”: If the ring is semisimple (e.g. if it is a field), by problem 47,
every module, finitely-generated or not, is already injective.

For the ring Z, injective modules are divisible groups. A non-zero divisi-
ble abelian group A is never finitely generated. Indeed, a finitely generated
abelian group is isomorphic to Z" x H?Zl Z/m;Z for some m;, which is not
divisible.

Problem 47

3 implies 1,2,4 (and the condition in the extra problem):

By Thm. 4.4.1(3), every short exact sequence splits (why?). By Thm.5.1.2(2)
and Thm. 5.2.1(2), every module is both projective and injective. In particular
every simple one.

1 implies 3:
By Thm. 5.1.2 (2), every short exact sequence splits. Thus every submodule is a
direct summand, and by Thm. 4.4.1, every module is semisimple.

2 implies 3:
Same as above, using Thm. 5.2.1 (2).



4 implies 3:

It is enough to show that R is semisimple (Prop.4.4.8). Let {T;}ics be all
simple submodules of R. Let S := },;T;. If S = R, by Thm.4.4.1 M is
semisimple. Suppose not. Pick a maximal left ideal I of R containing S (exists
by Cor.2.4.8). Then R/I is simple, hence projective, and I — R — R/I splits.
Thus R = I & X with X simple. But the span of all simple modules is contained
in I. Contradiction.

Ezxtra problem: There are rings for which every simple module is injective, but
which are not semisimple. Here is an example:

Let X be an infinite set and let R = Fun(X,Fs), where Fs is the field with two
elements. Then R is a commutative ring, and for all zx € R, x - = x (such a
ring is called boolean). Furthermore, as R = [] Fa, we know from Sheet 9,
Problem 39 that it is not semisimple.

Let M be a maximal ideal in R (exists by Lem.2.4.7). Then S := R/M is
a simple R-module, and every simple R-module is isomorphic to one of these
(Lem. 4.2.1).

peX

Claim: S is injective.

Proof: By Lem.5.2.2 it suffices to show that for every ideal I C R, every R-
module homomorphism f : I — S extends to an R-module homomorphism
f:R—S.

Let thus I C R and f : I — S be given. Note that for every m € M and x € 1
we have 0 = m.f(x) = f(mx), that is, M T C ker(f).

Suppose I C M. Then I = II C M1 (the equality follows from idempotency of
all elements of R). Thus I C ker(f), i.e. f = 0. Hence in this case we can choose
f=0o.

Suppose I is not a subset of M. Since M is maximal, we must have M + 1 = R.
Note that M I = M N I, since certainly MI C M NI, and any x € M NI can
be written as x = x - x, so that also M NI C M.

Consider the map g : M & I — S, g(m,i) = f(i). The kernel of g is ker(g) =
M @ ker(f) D M @ MI. On the other hand, the kernel of 7 : M & I — M + I,
(m,i) = m+iis ker(m) = {(x,—z)]x e MNI}. Let . : M NI - M I,
x + (x, —x) such that ker(7) = im(¢). Since got(z) = g(x, —x) = f(—z) = 0 for
x € MNI=MI, we have ker m C ker g. Thus g factors through g: M +1 — S:

MN—>M®l—>M+1
o
g -
~ 3lg
g*
By construction, the restriction of g to I is equal to f.

Problem 48

Let Z be an R-Module with maps v: Z — A,6 : Z — B such that foy=god.
In particular, that means that im(y x 6) € M’. This inclusion is the map to M
factoring the maps v and §.



Uniqueness: remember that o : M’ — A, : M’ — B are just projection onto
the two coordinates. So, any map x : Z — M’ making things commute will have
to satisfy ax(z) = 0(2) and Bx(z) = 7(2), i.e., be of the form z — (§(z),v(2))
(i-e. is uniquely as we specified).

Problem 49
1. Let b3 € Bs.
= day € A, with t4(a4) = gg(b3)
= 9493(b3) = 0 = guta(as) = t5fa(as)
= f4(a4) =0
= das € A3 with fg(a3) = Qa4
= g3(bs —t3(az)) = gs(b3) — gats(az) =

=
=

Then

t4 surjective)

exactness and commutativity of diagram)
t5 injective)

exactness of top row)

P

= ta(as) — tafs(az) = ta(as) — ta(as) =0 (=’s from above)

dby, € By with gg(bg) = b3 — t3(a3)
30‘,2 S AQ with tg(az) = b2

(exactness of bottom row)
(to surjective)

t3(fa(az)+az) = t3fa(az)+ts(az) = gata(az)+ts(az) = ga2(ba)+ts(az) = bs—tz(az)+tz(as) = bs

2. Let az € Az with t3(a3) =0.

R 0 2 2R AR A

tyf3(az) = gats(az) =0

f3(az) =0

Jas € Ay with fg(ag) =as

gata(az) = t3fa(az) = t3(az) =0

3b; € By with g1(b1) = t2(a2)

day, € Ay with tl(al) =b

giti(a1) = g1(b1) = t2f1(a1) = ta(az)
fi(a1) = az

falaz) = fafi(a1) =0 =as

commutativity of diagram)
t4 injective)

exactness of top row)
commutativity of diagram)
exactness of bottom row)
tisurjective)
commutativity of diagram)
toinjective)

(
(
(
(
(
(
(
(



