
Hints and solutions for problem sheet #11
Advanced Algebra — Winter term 2016/17
(Ingo Runkel)

Problem 45

1⇒ 3 By Theorem 2.3.2, it remains to show that f∗ is surjective. Let ϕ : L → J
be given. Since f is injective, by definition of injective modules, there is
ϕ̃ : M → J such that ϕ̃ ◦ f = ϕ, that is, f∗(ϕ̃) = ϕ.

3⇒ 2 Let J →M → N be a short exact sequence. By 3, applied to this sequence,
we have that f∗ : HomR(M,J) → HomR(J, J) is surjective. Hence there is
ϕ : M → J such that f∗(ϕ) = idJ . But this means that ϕ ◦ f = idJ , i.e. ϕ
is a splitting map for the sequence J →M → N .

Problem 46

1. If it would split, then Z/p2Z = Z/pZ⊕Z/pZ, which is not true because the
first has an element of (additive) order p2, while the latter do not. Thus by
Theorem 5.1.2, Z/pZ is not projective. On the other hand, the submodule
〈p〉 of Z/p2Z is isomorphic to Z/pZ.

2. See Cor 5.1.5 – since Z is a PID, projective implies free. We have already
shown Q to not be free over Z, so it cannot be projective over Z.

3. “Sometimes”: If the ring is semisimple (e.g. if it is a field), by problem 47,
every module, finitely-generated or not, is already injective.

For the ring Z, injective modules are divisible groups. A non-zero divisi-
ble abelian group A is never finitely generated. Indeed, a finitely generated
abelian group is isomorphic to Zr ×

∏n
i=1 Z/miZ for some mi, which is not

divisible.

Problem 47

3 implies 1,2,4 (and the condition in the extra problem):
By Thm. 4.4.1 (3), every short exact sequence splits (why?). By Thm. 5.1.2 (2)
and Thm. 5.2.1 (2), every module is both projective and injective. In particular
every simple one.

1 implies 3:
By Thm. 5.1.2 (2), every short exact sequence splits. Thus every submodule is a
direct summand, and by Thm. 4.4.1, every module is semisimple.

2 implies 3:
Same as above, using Thm. 5.2.1 (2).
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4 implies 3:
It is enough to show that R is semisimple (Prop. 4.4.8). Let {Ti}i∈I be all
simple submodules of R. Let S :=

∑
i∈I Ti. If S = R, by Thm. 4.4.1 M is

semisimple. Suppose not. Pick a maximal left ideal I of R containing S (exists
by Cor. 2.4.8). Then R/I is simple, hence projective, and I → R→ R/I splits.
Thus R = I⊕X with X simple. But the span of all simple modules is contained
in I. Contradiction.

Extra problem: There are rings for which every simple module is injective, but
which are not semisimple. Here is an example:

Let X be an infinite set and let R = Fun(X,F2), where F2 is the field with two
elements. Then R is a commutative ring, and for all x ∈ R, x · x = x (such a
ring is called boolean). Furthermore, as R =

∏
p∈X F2, we know from Sheet 9,

Problem 39 that it is not semisimple.
Let M be a maximal ideal in R (exists by Lem. 2.4.7). Then S := R/M is
a simple R-module, and every simple R-module is isomorphic to one of these
(Lem. 4.2.1).

Claim: S is injective.
Proof: By Lem. 5.2.2 it suffices to show that for every ideal I ⊂ R, every R-
module homomorphism f : I → S extends to an R-module homomorphism
f̃ : R→ S.
Let thus I ⊂ R and f : I → S be given. Note that for every m ∈ M and x ∈ I
we have 0 = m.f(x) = f(mx), that is, MI ⊂ ker(f).
Suppose I ⊂M . Then I = II ⊂MI (the equality follows from idempotency of
all elements of R). Thus I ⊂ ker(f), i.e. f = 0. Hence in this case we can choose
f̃ = 0.
Suppose I is not a subset of M . Since M is maximal, we must have M + I = R.
Note that MI = M ∩ I, since certainly MI ⊂ M ∩ I, and any x ∈ M ∩ I can
be written as x = x · x, so that also M ∩ I ⊂MI.
Consider the map g : M ⊕ I → S, g(m, i) = f(i). The kernel of g is ker(g) =
M ⊕ ker(f) ⊃M ⊕MI. On the other hand, the kernel of π : M ⊕ I →M + I,
(m, i) 7→ m + i is ker(π) = {(x,−x)|x ∈ M ∩ I}. Let ι : M ∩ I → M ⊕ I,
x 7→ (x,−x) such that ker(π) = im(ι). Since g◦ι(x) = g(x,−x) = f(−x) = 0 for
x ∈M ∩ I = MI, we have kerπ ⊂ ker g. Thus g factors through ḡ : M + I → S:

M ∩ I ι // M ⊕ I π //

g

��

M + I

∃!g̃
yy

S

By construction, the restriction of g̃ to I is equal to f .

Problem 48

Let Z be an R-Module with maps γ : Z → A, δ : Z → B such that f ◦ γ = g ◦ δ.
In particular, that means that im(γ × δ) ⊆M ′. This inclusion is the map to M
factoring the maps γ and δ.
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Uniqueness: remember that α : M ′ → A, β : M ′ → B are just projection onto
the two coordinates. So, any map χ : Z →M ′ making things commute will have
to satisfy αχ(z) = δ(z) and βχ(z) = γ(z), i.e., be of the form z 7→ (δ(z), γ(z))
(i.e. is uniquely as we specified).

Problem 49

1. Let b3 ∈ B3.

⇒ ∃a4 ∈ A4 with t4(a4) = g3(b3) (t4 surjective)
⇒ g4g3(b3) = 0 = g4t4(a4) = t5f4(a4) (exactness and commutativity of diagram)
⇒ f4(a4) = 0 (t5 injective)
⇒ ∃a3 ∈ A3 with f3(a3) = a4 (exactness of top row)
⇒ g3(b3 − t3(a3)) = g3(b3)− g3t3(a3) =

= t4(a4)− t4f3(a3) = t4(a4)− t4(a4) = 0 (= ’s from above)
⇒ ∃b2 ∈ B2 with g2(b2) = b3 − t3(a3) (exactness of bottom row)
⇒ ∃a2 ∈ A2 with t2(a2) = b2 (t2 surjective)

Then

t3(f2(a2)+a3) = t3f2(a2)+t3(a3) = g2t2(a2)+t3(a3) = g2(b2)+t3(a3) = b3−t3(a3)+t3(a3) = b3

2. Let a3 ∈ A3 with t3(a3) = 0.

⇒ t4f3(a3) = g3t3(a3) = 0 (commutativity of diagram)
⇒ f3(a3) = 0 (t4 injective)
⇒ ∃a2 ∈ A2 with f2(a2) = a3 (exactness of top row)
⇒ g2t2(a2) = t3f2(a2) = t3(a3) = 0 (commutativity of diagram)
⇒ ∃b1 ∈ B1 with g1(b1) = t2(a2) (exactness of bottom row)
⇒ ∃a1 ∈ A1 with t1(a1) = b1 (t1surjective)
⇒ g1t1(a1) = g1(b1) = t2f1(a1) = t2(a2) (commutativity of diagram)
⇒ f1(a1) = a2 (t2injective)
⇒ f2(a2) = f2f1(a1) = 0 = a3
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