Hints and solutions for problem sheet # 08
Advanced Algebra — Winter term 2016/17
(Ingo Runkel)

Problem 30

1. Consider the following candidate for a composition series of M:

_J gt (Vi) 0<i<s
M; '—{ F(Lis) s<i<(s+r)

Since g is surjective, My = g~ *(Ng = N) = M and since L, = 0, My, =
f(L,) =0. For i = s we have g~ !}(Ny) = kerg = imf = f(Lo).

Simpleness of quotients for the half which is g—*(N;): if M;_1/M; not simple
for some 7, then there’s some M; with M;_1 2 M; 2 M,. Modding all out by
f(L) preserves the inclusion order, so that would mean that NV;_1 2 g(M;) 2
N;. But N;_1/N; is simple so this cannot happen.

Simpleness of quotients for the half which is f(L;): That f(L;—1)/f(L;) is
simple is clear as f is injective.

We have [(M) = I(L)+1(N) by uniqueness of composition series length and
the above construction of the composition series.

. Start with 0 — M f—°> M, f—1> Moy Q) M3 — 0. Then can break up with an
exact triangle

fo f1 fa

0 My My M,y Ms 0
~
M, /im( fo)
0/ \0

and using part 1 applied to the two SESes, have

(M) = U(Mo) + (M /im(fo))
I(Mz) = U(My/im(fo))+ 1(M3)

Thus 1(Mo) — {(My) + [(Ms) — I(Ms) = 0.
Turning this into an induction on n gives Y,(—1)"1(M;) = 0 (Details?).



Problem 31

1. Counter example 1: Let p be a prime number and take M = Z as a Z-
module. Set M,, = p"Z, n = 0,1,2,.... Then My = M, M,, D M, +; and
No—o M, = {0}. Furthermore, M,, /M, +1 = Z/pZ, which is simple. Different
choices of p now give inequivalent “half-infinite composition series”.

Counter example 2: Consider M = C[X] as a C[X]-module and pick A € C.
Set M, = (X —A)"), n=0,1,2,.... Then My = M, M,, D M, and
Moo M, = {0}. Have M,, /M, ;1 = Cy (notation as in Problem 7).

2. Actually, this generalisation is true. Here is a sketch of the proof.

Let {O} =My C M, C My C... and {0} =Ng C Ny C Ny C... satisfy
the conditions in generalisation 2.

Claim: For each i = 0,1,... there is a j(i) such that M; C Njiy-

Proof: By induction. Pick « € M;,  # 0 (by assumption M; is simple,
hence non-zero). There is j(1) such that 2 € Nj). Then My N Nj() is
a non-zero submodule of M;. But M; is simple, hence My N Njqy = M.
For the induction step, repeat the above argument for the chains My /M; C
MQ/M1 C Mg/M1 C ... and Nj(l)/Ml C Nj(l)-i-l/Ml C Nj(1)+2/M1 C ...
This gives j(2) > j(1) such that My/M; C Nj2y/Mi, i.e. My C Nj(z). Etc.

Fix some K > 0. By the common refinement lemma, each simple successive
quotient of the chain {0} = My C My C My C --- C Mg C Nj(x) (where
only the last quotient is potentially non-simple) has to occur — with the same
or greater multiplicity —in {0} = Ng C N1 C N3 C --- C Nj(k) (where every
quotient is simple).

Fix a simple R-module S. From the above observation one concludes that
the number of quotients M;11/M; that are isomorphic to S (which may be
finite or infinite) is smaller or equal to the number of quotients N;i/N;
isomorphic to S. Exchanging the roles of M and N gives the equality.

Problem 32

1. Consider the sequence I NJ — I & .J — R, where the first map sends x to
(z,—x) and the second sends (y, z) to y + z. This is a short exact sequence
(why?). It splits since R is a free R-Module (using Proposition 2.4.9). Hence
INnJ)eR=1®J.

2a. We will show that [ is not principal, the argument for J is the same.
Note that |r|? = a? + 5b® for r = a + b\/—5. This is a non-negative integer.
The two generators of I have norm-squared |3|2 =9, |2 + /=52 = 9.
Let x := r-3+s-(2++/—5) be an arbitrary element of I (where r, s € R). Then
2| = [3r+(2++/=5)s| > ||3r|—|(2+v/=5)s|| = 3||r|—|s||. But r, s € R and



2b.

the points in R form a regular lattice where the smallest distance between
any two distinct lattice points is 1. Thus |z|? is either zero or > 9.

Suppose there is a ¢t such that (¢) = I. Then there are r, s with rt = 3 and
st =2+ 1/=5. Since t € I, it must have [t|> = 9 for this to be possible. But
then |r| =1 =|s|, and so r, s = 1, which cannot be.

I+ J = R: I+ J contains 3 and 4, and therefore also 1. Non-isomorphic: R
is principal, I, J are not.

Problem 33

1.

Assume f(x) # 0. Recall the definition of a function f : A — R being
continuous at a point x: Ve > 0,35 > 0 such that |z — ¢| < ¢ implies
|f(z) — f(c)| < e Let e < 1| f(z)|. Suppose that for all other ¢ € Q, we had
f(c) = 0. Since for each § > 0 there is a ¢ # x with |z —c| < § we would then
find |f(x)— f(c)| = |f(x)| > e. This is a contradiction to f being continuous.

Q is considered here with the subspace topology; we know what open sets
in R look like ((z,y) and unions and finite intersections), then O is open in
@Q iff 3U open in R such that O = U N Q.

Given a € R — Q, (—o00,a) is an open subset of R and thus (—oo0,a) N Q is
open in Q.

Now, to show its complement is also open in @ (i.e. that it’s closed in Q):
The complement in R is [a, +00), and, being a subspace, the complement in
Q will be its complement in R then intersect with Q. Since a, ¢ Q, we have
that [a, +00) NQ = (a,+00) N Q, which is clearly of the form (open set in
R)NQ.

Consider a nonzero ideal M of gR. Let f € R be nonzero. By (a), it has
at least two points (say z,y) at which it is nonzero. Let a be an irrational
number between these two (z < a < y).

Using xv., and xy.,, we will construct two submodules of M such that
M is their direct sum. (Since this can be done for any M, there are no
irreducibles).

Let M; = {xu., -m/m € M} and M, := {xv., - m|m € M}. These are
non-zero submodules of M (why?).

Since xv_, +Xxv., = 1 we have M; + M, = M. To show this is a direct sum,
need to show that My N My =0

Consider m € My N M. There are then elements m; € M; such that m =

XUcq "1 = XUs, " M2. Thus m = XUca "1 = XUcaXUcq ™M1 = XUco XUsq *
mo = 0.



Problem 34

1. In a composition series, the dimension (over C) of successive quotients is 1,
hence the length of the composition series of M coincides with the dimension
over C of M.

A C[X]-module is the same thing as a C-vector space V together with a
choice of endomorphism f € End(V). Two C[X]-modules (V, f) and (W, g)
are isomorphic if and only if there is a linear isomorphism ¢ : V. — W such
that f =¢ logog.

Thus we need to classify pairs (C", f) up to conjugacy and find a condition
such that the corresponding module is indecomposable. The classification up
to conjugacy is achieved by the Jordan normal form. If there is more than
one Jordan cell, there is a non-trivial direct sum decomposition. Since the
Jordan normal form is unique up to permutation of cells, if there is only one
cell, there cannot be a non-trivial direct sum decomposition.

We conclude that finite length indecomposable C[X]-modules are classified
up to isomorphism by pairs (n, A), where n > 0 gives the dimension over C
and \ € C gives the generalised eigenvalue of the Jordan cell.

2. The indecomposable module (C™, J()\)), with J(\) a rank-n Jordan cell for
generalised eigenvalue A has an obvious filtration C* > C*~t > C"2 >
... by invariant subspaces. The successive quotients are isomorphic to Cj
(Problem 29).



