
Hints and solutions for problem sheet #06
Advanced Algebra — Winter term 2016/17
(Ingo Runkel)

Problem 21

Given z ∈ Z(R) define the family αrM : M → M , αrM (m) = r.m. We need to
verify that for all R-modules M,N and all f ∈ HomR(M,N),

M
f //

αr
M

��

N

αr
N

��
M

f // N

commutes. Indeed, αrN (f(m)) = r.f(m) = f(r.m) = f(αrM (m)). Thus αr is a
natural transformation and we obtain a map

α : Z(A)→ End(Id) , r 7→ αr .

We will show that this map is injective and surjective.
Injective: Suppose αr = αs. Then also αrR(1) = αsR(1). But αrR(1) = r.1 = r,
etc., and so r = s.
Surjective: Let η ∈ End(Id) be given. Set r = ηR(1). We will show that r ∈
Z(R). Indeed, for s ∈ R arbitrary, consider the R-module homomorphism g :
R→ R, g(x) = xs. Since η is natural, the square

R
g //

ηR

��

R

ηR

��
R

g // R

commutes. Evaluating on 1 ∈ R shows ηR(g(1)) = g(ηR(1)), i.e. rs = sr.
We now claim that η = αr. Let M be an R-module. We need to check that for
all m ∈M , ηM (m) = r.m. Consider the map gm : R→M , r 7→ r.m. This is an
R-module homomorphism (why?). As η is natural, the square

R
gm //

ηR

��

M

ηM

��
R

gm // M

commutes. Evaluating on 1 gives ηM (gm(1)) = gm(ηR(1)), i.e. ηM (m) = r.m.

1



Problem 22

Consider finite-dimensional vector spaces only and let αU : U → U∗ be a col-
lection of isomorphisms. Let f : V →W be a linear map. The only commuting
diagram we can write down is

V
f //

αV

��

W

αW

��
V ∗ W ∗

f∗oo

Clearly, there is no collection of isomorphism αU which makes this commute for
all f , just take f = 0.

Problem 23

We first define functors F : N → k-Modfin and G : k-Modfin → N .
F is easy, just take F (m) = Km and for a matrix M let F (M) be the linear
map it represents. (Why is this a functor?)
G is more awkward. For each finite-dimensional vector space V choose a basis.
We do this by fixing a linear isomorphism αV : Kdim(V ) → V for each V (why
is this the same as choosing a basis?). The choice of αV is arbitrary, except for
that we insist that Km gets its standard basis, i.e. αKm = idKm (where is this
used below?). On objects, G(V ) = dim(V ). For a morphism f : V → W let
G(f) = α−1

W ◦ f ◦αV : Kdim(V ) → Kdim(W ), or rather the matrix representation
of this map. Now one should write a few lines to check this is indeed a functor.
(Details?)
Next we need to check that FG and GF are equivalent to the identity functor.
Since for m ∈ Z≥0, GF (m) = m, and also for each matrix M , GF (M) = M
(why?), we have GF = IdN and there is nothing more to do.
For the other composition, note that FG(V ) = Kdim(V ). Now we claim that the
family αV : Kdim(V ) → V from above defines a natural isomorphism α : FG→
Id. The relevant diagram is, for f : V →W ,

Kdim(V )

αV

��

FG(f)// Kdim(W )

αW

��
V

f // W

But by definition FG(f) = α−1
W ◦f◦αV (why?), so the diagram indeed commutes.

Problem 24

1. (injective:) Consider γ, γ′ with the same image under ψM,A. That means
that γ(m)(1) = γ′(m)(1) (for all m ∈ M). Since γ is an R-module homo-
morphis, we know that γ(r.m)(s) = γ(m)(sr) for all m ∈M , r, s ∈ R. Thus,
for all m, r,

γ′(m)(r) = γ′(r.m)(1) = γ(r.m)(1) = γ(m)(r) .
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(surjective:) Consider f ∈ HomZ(M,A). We will send this to m 7→ (r 7→
f(r ·m) (why is this an RMod homomorphism?). Under ψM,A, this is sent
to m 7→ f(1 ·m) = f(m), so we recover f .

2. For α : A→ A′, µ : M →M ′

HomR(M ′,HomZ(R,A))

ψM′,A

��

γ 7→(m7→(r 7→α◦γ(µ(m))(r)) // HomR(M,HomZ(R,A′))

ψM,A′

��
HomZ(M ′, A)

f 7→ α◦f◦µ // HomZ(M,A)

Element-wise, things are sent

γ 7→ (m 7→ (r 7→ α ◦ γ(µ(m))(r))

7→ 7→

m′ 7→ γ(m′)(1) 7→ m 7→ α ◦ γ(µ(m))(1)

and it commutes.

Problem 25

We will guess the inverse and verify that it does the job. Try

F ′ ◦ Id F ′η−−→ F ′GF
ε′F−−→ Id ◦ F .

It is enough to check on order of composition, the other follows by exchanging
primed and unprimed quantities.[
F ◦ Id Fη′−−→ FGF ′

εF ′−−→ Id ◦ F ′ =−→ F ′ ◦ Id F ′η−−→ F ′GF
ε′F−−→ Id ◦ F

]
=

[
F ◦ Id Fη−−→ FGF

=−→ F ◦ Id ◦GF Fη′GF−−−−→ FGF ′GF
FGε′F−−−−→ FG ◦ Id ◦ F

=−→ FGF
εF−−→ Id ◦ F

]
=

[
F ◦ Id Fη−−→ FGF

εF−−→ Id ◦ F
]

= IdF .

For the first equality, we repeatedly use identities like[
FGF ′

εF ′−−→ Id ◦ F ′ =−→ F ′ ◦ Id F ′η−−→ F ′GF
]

=
[
FGF ′

=−→ FGF ′ ◦ Id FGF ′η−−−−→ FGF ′GF
εF ′GF−−−−→ Id ◦ F ′GF =−→ F ′GF

]
.

(Why does that hold?)
For the second and third equality one uses the defining properties of unit and
counit.
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