Hints and solutions for problem sheet #05Advanced Algebra — Winter term 2016/17 (Ingo Runkel)

Problem 17

1. *R*-Mod has kernels and co-kernels, so purely as maps of *k*-vector spaces, we know that every $g: A \to B$ will have a kernel and cokernel. Now to produce filtrations of these.

For the kernel: As a k-linear map, g has a kernel the sub-vector space of A given by $a \in A$ which are sent to 0 under g; $(\ker(g), K : \ker(g) \hookrightarrow A)$. As a result, the induced associated filtration of the kernel is defined as $\ker(g)_i := \ker(g) \cap A_i$.

Proof that this is the kernel: Let $\alpha : U \to A$ be a \mathbb{Z} -filtered linear map such that $g \circ \alpha = 0$. We need to show that there is a unique \mathbb{Z} -filtered linear map $\tilde{\alpha} : U \to \ker(g)$ such that $K \circ \tilde{\alpha} = \alpha$. But this is clear from the definitions as in this case $\tilde{\alpha} = \alpha$, understood as a filtered linear map $U \to \ker(g)$.

For the cokernel: Recall that as an k-vector space, the cokernel is of the form $(B/(\operatorname{im}(g), c : B \to B/(\operatorname{im}(g)))$. Then the filtration on B_i induces one on the cokernel of g, via c; $(coker(g))_i := c(B_i)$.

Proof that this is the cokernel: (is similar to kernel).

2. As on the underlying k-vector space k, f is the identity map, and mono and epi are immediate.

All filtered linear maps $W \to V$ are zero, since to preserve filtration, they have to map $W_0 = k$ into $V_0 = 0$. The category of \mathbb{Z} -filtered vector spaces does not contain an inverse to f.

Problem 18

- 1. Write $R := \mathcal{C}(A, A)$. Since \mathcal{C} is an Ab-category, R is an abelian group. The composition of \mathcal{C} defines an associative composition $\circ : R \times R \to R$. By additivity of \mathcal{C} , the composition is bilinear, i.e. the distributive law holds. The identity $1_A \in \mathcal{C}(A, A)$ is the unit of R. (A one-object category can be additive only if its unique object is the zero object, so that $R = \{0\}$.)
- 2. Let $F : \mathcal{C} \to \mathbf{Ab}$ be an additive functor. Thus $F(\bullet) =: M$ is an abelian group, and $F : \mathcal{C}(\bullet, \bullet) \to \operatorname{End}(M)$ is a homomorphism of abelian groups. Since Fpreserves unit and composition, we have $F(1_R) = id_M$ and $F(f \circ g) =$ $F(f) \circ F(g)$. Thus $F : R \to \operatorname{End}(M)$ is a ring homomorphism. By Problem 3, this amounts to turning M into an R-module.

Conversely, given an *R*-module *M* we can set $F(\bullet) = M$ and use the group homomorphism $R \to \text{End}(M)$ from Problem 3 to define *F* on morphisms.

3. Let $F, G : \mathcal{C} \to \mathbf{Ab}$ be the two additive functors. Write $M = F(\bullet)$ and $N = G(\bullet)$ for the corresponding *R*-modules. The natural transformation consists of a single map $\eta_{\bullet} =: f : M \to N$ (a group homomorphism, as it is a morphism in **Ab**). The naturality square reads, for $r \in R = \mathcal{C}(\bullet, \bullet)$,

$$\begin{array}{c|c} M \xrightarrow{F(r)} M \\ f & & & \\ f & & & \\ N \xrightarrow{G(r)} N \end{array}$$

This commutes for all r if and only if f is an R-module homomorphism.

Problem 19

1. The morphism sets are

$$(\mathcal{C} \times \mathcal{D})((C_1, D_1), (C_2, D_2)) := \{(f, g) \in \mathcal{C}(C_1, C_2) \times \mathcal{D}(D_1, D_2)\}$$

Composition is coordinate-wise. Associativity and identity properties follow from those of C and D.

2. Let F be a functor from the product-category $\mathcal{C} \times \mathcal{D}$ to \mathcal{E} . Then $F_C : \mathcal{C} \to \mathcal{E}$ is given by, for $D, D' \in \mathcal{D}$ and $f : D \to D'$:

$$F_C(D) = F((C, D))$$
, $F_C(f) = F((1_C, f))$.

The functor $F_D : \mathcal{D} \to \mathcal{E}$ is defined analogously. From functoriality of F one immediatly obtains that F_C, F_D are functors. For the commuting square note

$$F_{C'}(g) \circ F_D(f) = F((1_{C'},g)) \circ F((f,1_D)) = F((1_{C'},g) \circ (f,1_D))$$

= $F((f,g)) = F((f,1_{D'})) \circ F((1_C,g)) = F_{D'}(f) \circ F_C(g)$.

3. We define F on objects $(C, D) \in \mathcal{C} \times \mathcal{D}$ as

$$F((C,D)) := F_D(C) = F_C(D)$$
.

On morphisms $(f,g): (C,D) \to (C',D')$ we define

$$F((f,g)) := F_{D'}(f) \circ F_C(g) = F_{C'}(g) \circ F_D(f) ,$$

where the equality is the commuting diagram we assume.

Now we need to show that F is a functor. We have $F((1_C, 1_D)) = F_D(1_C) \circ F_C(1_D) = 1_{(C,D)} \circ 1_{(C,D)} = 1_{(C,D)}$. For morphisms $(f,g) : (C,D) \to (C',D')$

and $(h,k): (C',D') \to (C'',D'')$ we have

$$F((h,k) \circ (f,g)) = F((h \circ f, k \circ g))$$

= $F_{D''}(h \circ f) \circ F_C(k \circ g)$
= $F_{D''}(h) \circ F_{D''}(f) \circ F_C(k) \circ F_C(g)$
 $\stackrel{(*)}{=} F_{D''}(h) \circ F_{C'}(k) \circ F_{D'}(f) \circ F_C(g)$
= $F((h,k)) \circ F((f,g))$,

where in (*) the commuting square was used.

Problem 20

- 1. Simpler than 2, so let's just look at 2:
- 2. For $f: A \to A', x \in \mathcal{C}(A', B)$ the definition of $f^*: \mathcal{C}(A', B) \to \mathcal{C}(A, B)$ was $f^*(x) = x \circ f$. $\mathcal{C}(-, B)$ being a contravariant functor amounts to checking $id^*(x) = x$ and, for $g: A'' \to A$, $(f \circ g)^*(x) = g^*(f^*(x))$. The first identity is immediate, and for the second note that both sides are equal to $x \circ f \circ g$.
- 3. Given $f : A \to A'$ and $h : B \to B'$, and any $g \in \mathcal{C}(A, B)$, then $\mathcal{C}(id_A, h) : \mathcal{C}(A, B) \to \mathcal{C}(A, B')$ via $g \mapsto h \circ g$. $\mathcal{C}(f, id_B) : \mathcal{C}(A', B) \to \mathcal{C}(A, B)$ via $g \mapsto g \circ f$. And so on, so that we map $g \in \mathcal{C}(A, B)$ to $\mathcal{C}(A', B')$ via $g \mapsto h \circ g \mapsto (h \circ g) \circ f$ in one direction and $g \mapsto g \circ f \mapsto h \circ (g \circ f)$ in the other. Associativity of composition of morphisms means these two are equivalent, and we have the square as desired.