Hints and solutions for problem sheet # 05
Advanced Algebra — Winter term 2016/17
(Ingo Runkel)

Problem 17

1. R-Mod has kernels and co-kernels, so purely as maps of k-vector spaces, we
know that every g : A — B will have a kernel and cokernel. Now to produce
filtrations of these.

For the kernel: As a k-linear map, g has a kernel the sub-vector space of A
given by a € A which are sent to 0 under g; (ker(g), K : ker(g) < A). As a
result, the induced associated filtration of the kernel is defined as ker(g); :=
ker(g) N A;.

Proof that this is the kernel: Let a : U — A be a Z-filtered linear map
such that g oo = 0. We need to show that there is a unique Z-filtered linear
map & : U — ker(g) such that Ko& = «. But this is clear from the definitions
as in this case & = «, understood as a filtered linear map U — ker(g).

For the cokernel: Recall that as an k-vector space, the cokernel is of the
form (B/(im(g),c : B — B/(im(g)). Then the filtration on B; induces one
on the cokernel of g, via ¢; (coker(g)); := ¢(B;).

Proof that this is the cokernel: (is similar to kernel).

2. As on the underlying k-vector space k, f is the identity map, and mono and
epi are immediate.

All filtered linear maps W — V are zero, since to preserve filtration, they
have to map Wy = k into Vo = 0. The category of Z-filtered vector spaces
does not contain an inverse to f.

Problem 18

1. Write R := C(A, A). Since C is an Ab-category, R is an abelian group. The
composition of C defines an associative composition o : R x R — R. By
additivity of C, the composition is bilinear, i.e. the distributive law holds.
The identity 14 € C(A, A) is the unit of R. (A one-object category can be
additive only if its unique object is the zero object, so that R = {0}.)

2. Let F: C — Ab be an additive functor. Thus F'(e) =: M is an abelian group,
and F' : C(e,e) — End(M) is a homomorphism of abelian groups. Since F
preserves unit and composition, we have F(lg) = idy and F(f o g) =
F(f)o F(g). Thus F : R — End(M) is a ring homomorphism. By Problem
3, this amounts to turning M into an R-module.

Conversely, given an R-module M we can set F'(e) = M and use the group
homomorphism R — End(M) from Problem 3 to define F' on morphisms.



3. Let F,G : C — Ab be the two additive functors. Write M = F(e) and
N = G(e) for the corresponding R-modules. The natural transformation
consists of a single map 7, =: f : M — N (a group homomorphism, as it is
a morphism in Ab). The naturality square reads, for r € R = C(e, o),

F(r)
M——-M

1
G(r)

N—N

This commutes for all r if and only if f is an R-module homomorphism.

Problem 19

1. The morphism sets are
(C x D)((C1,D1),(C2,D2)) = {(f,9) € C(C1,C2) x D(D1, D2)}
Composition is coordinate-wise. Associativity and identity properties follow
from those of C and D.
2. Let F be a functor from the product-category C x D to £. Then F : C — &
is given by, for D, D' € Dand f: D — D’:
Fe(D)=F((C,D)) , Fe(f)=F(lc. f)) .

The functor Fp : D — & is defined analogously. From functoriality of F' one
immediatly obtains that Fg, Fp are functors. For the commuting square
note

For(g) o Fo(f) = F((ler,g)) o F((f,1p)) = F((1cr,9) © (f, 1p))
= F((f,9) = F((f,1p/)) o F((1c,9)) = Fp(f) © Felg) -

3. We define F' on objects (C, D) € C x D as
F((C,D)):=Fp(C) = Fo(D) .
On morphisms (f,g) : (C,D) — (C’,D’) we define

F((f,9)) :== Fp/(f) o Fc(g) = Fer(g) o Fp(f) ,

where the equality is the commuting diagram we assume.

Now we need to show that F' is a functor. We have F'((1¢,1p)) = Fp(lc)o
Fe(1p) = 1(¢,pyol(c,p)y = 1(¢,p)- For morphisms (f, g) : (C,D) — (C’, D’)



and (h, k) : (C',D’) — (C”,D") we have

F((h,k)o(f,9)) = F((ho f,kog))
= Fpi(ho f)oFc(koyg)

= Fpr(h) o Fpr(f)o Fc(k)o Fco(g)
)

© Fpo(h) o For(k) o For (f) o Fol(g)

F((h, k) o F((f,9)) ,

where in (*) the commuting square was used.

Problem 20

1. Simpler than 2, so let’s just look at 2:

2. For f: A— A, x € C(A, B) the definition of f* : C(A’, B) — C(A, B) was
f*(x) = x o f. C(—, B) being a contravariant functor amounts to checking
id*(x) = x and, for g : A” — A, (f o g)*(x) = ¢*(f*(x)). The first identity
is immediate, and for the second note that both sides are equal to z o fog.

3. Given f: A — A" and h: B — B’, and any g € C(A, B), then C(ida,h) :
C(A,B) — C(A,B') via g — hog. C(f,idg) : C(A",B) — C(A,B) via
g — go f. And so on, so that we map g € C(A,B) to C(A’,B’) via
g+ hogw+ (hog)o f in one direction and g — go f — ho(go f) in
the other. Associativity of composition of morphisms means these two are
equivalent, and we have the square as desired.



