
Hints and solutions for problem sheet #05
Advanced Algebra — Winter term 2016/17
(Ingo Runkel)

Problem 17

1. R-Mod has kernels and co-kernels, so purely as maps of k-vector spaces, we
know that every g : A→ B will have a kernel and cokernel. Now to produce
filtrations of these.

For the kernel: As a k-linear map, g has a kernel the sub-vector space of A
given by a ∈ A which are sent to 0 under g; (ker(g),K : ker(g) ↪→ A). As a
result, the induced associated filtration of the kernel is defined as ker(g)i :=
ker(g) ∩Ai.

Proof that this is the kernel: Let α : U → A be a Z-filtered linear map
such that g ◦α = 0. We need to show that there is a unique Z-filtered linear
map α̃ : U → ker(g) such that K◦α̃ = α. But this is clear from the definitions
as in this case α̃ = α, understood as a filtered linear map U → ker(g).

For the cokernel: Recall that as an k-vector space, the cokernel is of the
form (B/(im(g), c : B → B/(im(g)). Then the filtration on Bi induces one
on the cokernel of g, via c; (coker(g))i := c(Bi).

Proof that this is the cokernel: (is similar to kernel).

2. As on the underlying k-vector space k, f is the identity map, and mono and
epi are immediate.

All filtered linear maps W → V are zero, since to preserve filtration, they
have to map W0 = k into V0 = 0. The category of Z-filtered vector spaces
does not contain an inverse to f .

Problem 18

1. Write R := C(A,A). Since C is an Ab-category, R is an abelian group. The
composition of C defines an associative composition ◦ : R × R → R. By
additivity of C, the composition is bilinear, i.e. the distributive law holds.
The identity 1A ∈ C(A,A) is the unit of R. (A one-object category can be
additive only if its unique object is the zero object, so that R = {0}.)

2. Let F : C → Ab be an additive functor. Thus F (•) =: M is an abelian group,
and F : C(•, •) → End(M) is a homomorphism of abelian groups. Since F
preserves unit and composition, we have F (1R) = idM and F (f ◦ g) =
F (f) ◦ F (g). Thus F : R → End(M) is a ring homomorphism. By Problem
3, this amounts to turning M into an R-module.

Conversely, given an R-module M we can set F (•) = M and use the group
homomorphism R→ End(M) from Problem 3 to define F on morphisms.
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3. Let F,G : C → Ab be the two additive functors. Write M = F (•) and
N = G(•) for the corresponding R-modules. The natural transformation
consists of a single map η• =: f : M → N (a group homomorphism, as it is
a morphism in Ab). The naturality square reads, for r ∈ R = C(•, •),

M
F (r) //

f

��

M

f

��
N

G(r) // N

This commutes for all r if and only if f is an R-module homomorphism.

Problem 19

1. The morphism sets are

(C × D)((C1, D1), (C2, D2)) := {(f, g) ∈ C(C1, C2)×D(D1, D2)}

Composition is coordinate-wise. Associativity and identity properties follow
from those of C and D.

2. Let F be a functor from the product-category C ×D to E . Then FC : C → E
is given by, for D,D′ ∈ D and f : D → D′:

FC(D) = F ((C,D)) , FC(f) = F ((1C , f)) .

The functor FD : D → E is defined analogously. From functoriality of F one
immediatly obtains that FC , FD are functors. For the commuting square
note

FC′(g) ◦ FD(f) = F ((1C′ , g)) ◦ F ((f, 1D)) = F ((1C′ , g) ◦ (f, 1D))

= F ((f, g)) = F ((f, 1D′)) ◦ F ((1C , g)) = FD′(f) ◦ FC(g) .

3. We define F on objects (C,D) ∈ C × D as

F ((C,D)) := FD(C) = FC(D) .

On morphisms (f, g) : (C,D)→ (C ′, D′) we define

F ((f, g)) := FD′(f) ◦ FC(g) = FC′(g) ◦ FD(f) ,

where the equality is the commuting diagram we assume.

Now we need to show that F is a functor. We have F ((1C , 1D)) = FD(1C) ◦
FC(1D) = 1(C,D) ◦1(C,D) = 1(C,D). For morphisms (f, g) : (C,D)→ (C ′, D′)
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and (h, k) : (C ′, D′)→ (C ′′, D′′) we have

F ((h, k) ◦ (f, g)) = F ((h ◦ f, k ◦ g))

= FD′′(h ◦ f) ◦ FC(k ◦ g)

= FD′′(h) ◦ FD′′(f) ◦ FC(k) ◦ FC(g)

(∗)
= FD′′(h) ◦ FC′(k) ◦ FD′(f) ◦ FC(g)

= F ((h, k)) ◦ F ((f, g)) ,

where in (*) the commuting square was used.

Problem 20

1. Simpler than 2, so let’s just look at 2:

2. For f : A → A′, x ∈ C(A′, B) the definition of f∗ : C(A′, B) → C(A,B) was
f∗(x) = x ◦ f . C(−, B) being a contravariant functor amounts to checking
id∗(x) = x and, for g : A′′ → A, (f ◦ g)∗(x) = g∗(f∗(x)). The first identity
is immediate, and for the second note that both sides are equal to x ◦ f ◦ g.

3. Given f : A → A′ and h : B → B′, and any g ∈ C(A,B), then C(idA, h) :
C(A,B) → C(A,B′) via g 7→ h ◦ g. C(f, idB) : C(A′, B) → C(A,B) via
g 7→ g ◦ f . And so on, so that we map g ∈ C(A,B) to C(A′, B′) via
g 7→ h ◦ g 7→ (h ◦ g) ◦ f in one direction and g 7→ g ◦ f 7→ h ◦ (g ◦ f) in
the other. Associativity of composition of morphisms means these two are
equivalent, and we have the square as desired.
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