Hints and solutions for problem sheet #04 Advanced Algebra — Winter term 2016/17 (Ingo Runkel)

Problem 12

1. Let $f: A \to B$ be a morphism in \mathcal{C} .

f is epi in \mathcal{C}^{op} : For all $g, g' : A \to X$ in \mathcal{C}^{op} : $g \circ^{\text{op}} f = g' \circ^{\text{op}} f$ implies g = g'. Inserting the definition of \mathcal{C}^{op} to rewrite this in \mathcal{C} gives: For all $g, g' : X \to A$ in \mathcal{C} : $f \circ g = f \circ g'$ implies g = g'.

But this is the definition of f being mono in C.

2. (cokernel) Let $f: A \to B$ be a morphism in \mathcal{C} , or, equivalently, $f: B \to A$ a morphism in \mathcal{C}^{op} .

That $(K, k : K \to B)$ is a kernel of f in \mathcal{C}^{op} means: for all $x : X \to B$ such that $f \circ^{\text{op}} x = 0$ there exists a unique $\tilde{x} : X \to K$ in \mathcal{C} such that $x = k \circ^{\text{op}} \tilde{x}$. Rewrite in \mathcal{C} : for all $x : B \to X$ such that $x \circ f = 0$ there exists a unique $\tilde{x} : K \to X$ in \mathcal{C} such that $x = \tilde{x} \circ k$.

But this is the defining property turning $(K, k : B \to K)$ into a cokernel of f in \mathcal{C} .

(coproduct) Let X and $(x_i: X \to X_i)$ be a product of the $(X_i)_{i \in I}$ in $\mathcal{C}^{\mathrm{op}}$.

Defining property in \mathcal{C}^{op} : For all $M, f_i : M \to X_i$ there exists a unique $f: M \to X$ such that $f_i = x_i \circ^{\text{op}} f$ for all $i \in I$.

Rewrite in \mathcal{C} : For all $M, f_i : X_i \to M$ there exists a unique $f : X \to M$ such that $f_i = f \circ x_i$ for all $i \in I$.

This is the universal property turning $(X, x_i : X_i \to X)$ into a coproduct of the X_i in \mathcal{C} .

Problem 13

- 1. All properties follow from two observations: i) there is at most one morphism between any two objects, and ii) for $A \neq B$, if there is a morphism $A \rightarrow B$ there is no morphism $B \rightarrow A$.
- 2. *R* be a ring and $\varphi : \mathbb{Q} \to R$ a ring homomorphism. Consider $\frac{p}{q} \in \mathbb{Q}$. Since $q \cdot \frac{1}{q} = 1$, $\varphi(\frac{1}{q})$ is inverse to $\varphi(q)$. Thus $\varphi(\frac{p}{q}) = \varphi(p)\varphi(q)^{-1}$, which shows that φ is uniquely determined by its value on $\mathbb{Z} \subset \mathbb{Q}$.
- 3. Kernel: We have $K \xrightarrow{k} M \xrightarrow{f} N$ with the factorization property that for any $h: U \to M$ with $f \circ h = 0$, there's a unique map \tilde{h} forcing h to factor over K.

Now assume we have maps $g, g' : U \to K$ such that $k \circ g = k \circ g'$. In particular, $f \circ k \circ g = f \circ k \circ g' = 0$. So, we can draw our diagram as

$$K \xrightarrow{k} M \xrightarrow{f} N$$

$$\downarrow \\ k \circ g \\ k \circ g'$$

$$U$$

Now we're done by uniqueness. (why?)

Cokernel is dual.

Problem 14

- 1. We clearly get maps $e_i : S_i \to \coprod_{i \in I} S_i$ just as inclusions into the *i*th coordinate. The disjoint union is such that any element of it must live in one of the factors; $s \in \coprod_I S_i$ can be also viewed as $(s, j) \in S_j$. Given a set V and maps $v_i : S_i \to V$ for all $i \in I$, we need a unique map out of the coproduct factoring over the embeddings. Define $v : \coprod_{i \in I} S_i \to V$ to take (s, j) to $v_j(s)$. This clearly factors as needed, and is unique.
- 2. Let $A = \mathbb{Z}/2\mathbb{Z}$ and $B = \mathbb{Z}/3\mathbb{Z}$ and denote by S_3 the permutation group of three elements. There are injective group homomorphisms $f_1 : A \to S_3$ and $f_2 : B \to S_3$.

But the cartesian direct product $A \times B$ is again abelian, and there is no group homomorphism $A \times B \to S_3$ which is injective when restricted to A or B (why?).

Aside: For a finite collection $(G_i)_{i \in I}$ of groups, abelian or not, and containing more than one non-trivial group, the cartesian product $\prod_i G_i$ is never a coproduct in **Grp**. One can verify this by replacing S_3 in the above argument by the so-called free product of the G_i (which, incidentally, is the coproduct in **Grp**).

Problem 15

The map cannot be an isomorphism because there is a nonzero kernel.

(mono)Assume that we have maps $f, g: A \to \mathbb{Q}$ (keeping in mind that A is a divisible group), such that $\pi \circ f = \pi \circ g$. Since we're in abelian groups, we can add and subtract maps and our equality is equivalent to saying that $\pi(f - g) = 0$. To consider the kernel, we need to work in the larger category Ab for a bit, as \mathbb{Z} is clearly the kernel of π , but not divisible.

 \mathbb{Z} being the kernel (via $i : \mathbb{Z} \hookrightarrow \mathbb{Q}$) means that $\pi(f - g) = 0$ implies that we have a map $h : A \to \mathbb{Z}$ such that $f - g = h \circ i$. But there are no non-trivial

group homs from a divisible group to \mathbb{Z} (why?); h must be 0, so f - g = 0, done.

(epi) Assume that we have maps $f, g: \mathbb{Q}/\mathbb{Z} \to B$ for B some divisible group, with $f \circ \pi = g \circ \pi$. If $f \neq g$, then there must be at least one element $q \in \mathbb{Q}/\mathbb{Z}$ such that $f(q) \neq g(q)$. For every $q \in \mathbb{Q}/\mathbb{Z}$, since π is surjective, there is (at least one) pre-image $\hat{q} \in \mathbb{Q}$ with $\pi(\hat{q}) = q$. Then $f \circ \pi(\hat{q}) = g \circ \pi(\hat{q})$ i.e. f(q) = g(q). So, there are no elements where the two maps can differ; f = g.

Problem 16

The missing diagram is not a commuting diagram, as it forms a look (so there is no starting point and no endpoint for which to compare two different composition paths).

In the second case we may take X to be the zero-object $X = \{0\}$ and $x_i = 0$ for all *i*. Clearly, this satisfies the second property, and so in particular (X, x_i) is unique up to unique isomorphism (by the general argument of uniqueness of solutions to universal properties – repeat the argument to see why).

The first case is not actually a universal property, because (X, x_i) cannot take the role of (M, f_i) (the arrows go the wrong way). In particular, the argument of uniqueness of the solution to a universal property does not apply (why?). And indeed, there is more than one solution: One can set $X = \{0\}$ and $x_i = 0$ for all *i*. Or one can take X arbitrary and just set x_i to zero (Why does that work?). If I has only one element, say $I = \{1\}$, we can also take $X = X_1$ and $x_1 = id$.