Problem sheet #07 Advanced Algebra Winter term 2016/17

(Ingo Runkel)

Problem 26 (not artinian, not noetherian)

- 1. Show that \mathbb{Q} is neither noetherian nor artinian as a \mathbb{Z} -module.
- 2. For a prime p let $Q_p = \{m/p^n \in \mathbb{Q}/\mathbb{Z} \mid m \in \mathbb{Z}, n \ge 0\}$. Show that Q_p is artinian as a \mathbb{Z} -module. What about \mathbb{Q}/\mathbb{Z} itself?

Problem 27 (left and right noetherian / artinian are different) Let S be a ring and $T \subset S$ be a subring. Define

$$R = \left\{ \begin{pmatrix} s & s' \\ 0 & t \end{pmatrix} \middle| s, s' \in S , t \in T \right\}.$$

R is a ring via matrix addition and multiplication. Suppose that the left modules $_{SS}$ and $_{T}T$ are noetherian (resp. artinian), but that the right T-module S_{T} is not noetherian (resp. artinian).

- 1. Give examples of rings S, T satisfying the above condition (one example for each case).
- 2. Show that R is left noetherian (resp. artinian) but not right noetherian (resp. artinian).

Problem 28 (injective and surjective maps for noetherian modules)

Let R be a ring and let N be a noetherian R-module. Let M be an R-module such that there is an injective R-module homomorphism $N \to M$.

1. Show that a surjective R-module homomorphism $N \to M$ is automatically an isomorphism.

Hint: Think of N as a submodule of M. Let $X_n := \{x \in N \mid f^k(x) \in N \text{ for } k = 1, ..., n-1 \text{ and } f^n(x) = 0\}$. This is an ascending chain of submodules. Why can one write $y \in \ker(f)$ as $y = f^n(z_n)$ for any n and appropriate $z_n \in N$?

2. Does the statement of part 1 still hold if N is artinian?

Please turn over.

Problem 29 (Simple modules over polynomial rings)

1. In Section 4.2 we discussed simple K[X] modules for an algebraically closed field K. We defined $K_{\lambda} := K[X]/(X - \lambda)$ for $\lambda \in K$.

Show that $\dim_K K_{\lambda} = 1$, and that K_{λ} and K_{μ} are isomorphic iff $\lambda = \mu$.

2. Let K be a field. Consider $K[X_1, X_2, \ldots, X_n]$ and let $\lambda_1, \ldots, \lambda_n \in K$. Show that $\langle X_1 - \lambda_1, \ldots, X_n - \lambda_n \rangle$ is a maximal ideal.