Problem sheet # 01 Advanced Algebra Winter term 2016/17

(Ingo Runkel)

In-class problems

- 1. Find an example of a ring R and an element $r \in R$ such that r has a right-inverse but not a left-inverse.
- 2. Show that a non-zero ring is a division ring iff every non-zero element has a right-inverse.
- 3. Find a left ideal in $Mat_2(\mathbb{Q})$ which is not a right ideal.
- 4. Give an example of a ring homomorphism $f : R \to S$ such that im(f) is not an ideal in S and ker(f) is not a subring in R.
- 5. We defined a ring homomorphism $f : R \to S$ to be a map such that for all $a, b \in R$: f(a + b) = f(a) + f(b), f(ab) = f(a)f(b) and f(1) = 1. Show that this implies f(0) = 0.
- 6. Define a non-unital ring homomorphism $f : R \to S$ to be a map such that for all $a, b \in R$: f(a+b) = f(a) + f(b), f(ab) = f(a)f(b). Give an example of rings R, S (with unit) and a non-unital ring homomorphism such that $f(1) \neq 1$.
- 7. Show that if K is a field and R is any ring with $1 \neq 0$, then every ring homomorphism $K \rightarrow R$ is injective.
- 8. The opposite ring R^{op} of a ring R is equal to R as abelian group, but has product $r *_{\text{op}} r' = r' * r$. Show that a right R-module M is the same as a left R^{op} -module (advice: use different symbols for the R and R^{op} actions, e.g. $m \cdot r$ and r : m).
- 9. Let R be a commutative ring. Show that $Mat_n(R)^{op} \cong Mat_n(R)$ as rings.
- 10. Let $(R, +, \cdot, 0, 1)$ be a structure which obeys all properties of a (unital, associative) ring except for possibly that a + b = b + a for all $a, b \in R$. Show that then already a + b = b + a for all $a, b \in R$.

Please turn over.

Homework problems

Problem 1 (Monoid-rings)

Let M be a monoid (i.e. a set with an operation $\cdot : M \times M \to M$ which is associative and has a unit $1 \in M$, but not necessarily inverses). Let R be a ring. Then the monoid ring R[M] is set of functions $M \to R$, such that $f(m) \neq 0$ for only finitely many $m \in M$, and with abelian group structure given by addition of functions and the convolution product as multiplication. In more detail, let χ_m be the characteristic function for $m \in M$, i.e. $\chi_m(n) = 0$ for $m \neq n$, and $\chi_m(m) = 1$. Then the elements of R[M] are of the form $\sum_{m \in M} r_m \chi_m$ for some $r_m \in R$. The convolution product is the R-bilinear extension of $\chi_m * \chi_n = \chi_{m \cdot n}$. That is, for $f = \sum_{m \in M} r_m \chi_m$ and $g = \sum_{n \in M} s_n \chi_n$ with $r_m, s_n \in R$, one sets $f * g = \sum_{a,b \in M} r_a s_b \chi_{a \cdot b}$.

If M happens to be a group, R[M] is also called group ring.

- 1. Show that for $f, g \in R[M]$ we have $(f * g)(m) = \sum_{a,b \in M, a \cdot b = m} f(a)g(b)$.
- 2. Show that R[M] is indeed a ring. What is the (multiplicative) unit?
- 3. Consider $\mathbb{Z}_{\geq 0}$ as a semigroup wrt. +, 0. Show that $R[\mathbb{Z}_{\geq 0}]$ is isomorphic to the polynomial ring R[X].
- 4. The Quaternion group Q_8 consists of 8 elements, $\{\pm 1, \pm i, \pm j, \pm k\}$. The product is uniquely determined by declaring 1 to be the unit, -1 to commute with all elements, $(-1)^2 = 1$, and $i^2 = j^2 = k^2 = ijk = -1$. The group ring $\mathbb{R}[Q_8]$ is an eight-dimensional algebra over \mathbb{R} . The elements $\{\pm 1, \pm i, \pm j, \pm k\}$ all have multiplicative inverses. Why is it not a division algebra over \mathbb{R} ? (Show this explicitly, do not just use Frobenius' Theorem.)

Problem 2 (Representations of polynomial rings)

Show that giving a module M over the polynomial ring $R[X_1, \ldots, X_n]$ is equivalent to giving endomorphisms $\alpha_1, \ldots, \alpha_n \in \operatorname{End}_R(M)$ such that $\alpha_i \alpha_j = \alpha_j \alpha_i$ for all i, j.

Problem 3 (Representations vs. modules)

A representation of a ring R is an abelian group M together with a ring homomorphism $\rho: R \to \text{End}(M)$.

Let R be a ring and let M be an abelian group. Consider the two sets

 $A = \{ \sigma : R \times M \to M \,|\, (M, \sigma) \text{ is a left } R \text{-module } \},\$

 $B = \{ \rho : R \to \operatorname{End}(M) \, | \, (M, \rho) \text{ is a representation of } R \} \ .$

- 1. Find a bijection between these two sets. ("Modules and representations are the same thing.")
- 2. How can the notion of module homomorphisms be transported to representations, i.e. what is a homomorphism of representations? How does your bijection behave with respect to homomorphisms of modules / representations?