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1 Twistings

This section deals with a method of ”twisting” the coproduct of Hopf Algebras to obtain new
ones.
Let (A,µ, 1,∆, ε) be a bialgebra over a field k.

Notation 1.1. Recall, that for an element K =
∑

i si ⊗ ti ∈ A⊗A we set

K12 =
∑
i

si ⊗ ti ⊗ 1, K23 =
∑
i

1⊗ si ⊗ ti, K13

∑
i

si ⊗ 1⊗ ti

and
K21 =

∑
i

ti ⊗ si

Let F ∈ A⊗A be invertible, such that

F12(∆⊗ id)(F) = F23(id⊗∆)(F)

(ε⊗ id)(F) =1 = (id⊗ ε)(F).

Lemma 1.2. Let S ∈ A be an antipode, then v := µ(id⊗ S)(F) is invertible with

v−1 = µ(S ⊗ id)(F−1).

Proposition 1.3. (A,µ, 1,∆F , ε) is a bialgebra, where

∆F (a) := F∆(a)F−1

for a ∈ A. (A,µ, 1,∆F , ε, SF ) is a Hopf algebra, where

SF (a) := vS(a)v−1.

Both are denoted by AF and called the twist of A by F .

Notice that it is actually a twist of the coproduct of A.

Corollary 1.4. If A is cocommutative, then AF is a triangular bialgebra with universal R-matrix

R = F21F−1.

Corollary 1.5. Assume that A is quasitriangular with R-matrix R and that F21 = F−1 and
F12F13F23 = F23F13F12. Then AF is also quasitriangular with R-matrix RF = F−1RF−1.

Proposition 1.6. Mod(A) and Mod(AF ) are equivalent as monoidal categories. The equiva-
lence is given by the identity functor with a monoidal structure φ, defined as follows:

φU,V = (ρU ⊗ ρV )(F−1),

where ρU (a) = (u 7→ a.u ∀u ∈ U).

This shows that usually several different bialgebras exist, that have the same representation
category up to equivalence.
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2 Reconstruction of a bialgebra

As it is already implied by the titel, all of the given constructions can be ”reversed”. We already
have an interim result from reconstruction, pt.1:

Proposition 2.1. Given an algebra A and the forgetful functor FA : Mod(A)→ Veck, End(FA)
is an algebra with multiplication being the composition and is isomorphic to A via the canonical
isomorphism

ρ : A→ End(FA).

Now assume that A is a bialgebra, giving Mod(A) a monoidal structure. Furthermore, it can
easily be seen that FA is a monoidal functor with the structural isomorphisms being the identity
morphisms for every object.
We can recover the bialgebra structure from this data but some technical problems arise: There
is a natural candidate for the coproduct ∆ and the counit ε given by

∆(h)X,Y = hX⊗Y , ε(h) = hI , for h ∈ End(FA).

It is ∆(h) ∈ End(FA
2), where FA

2 : Mod(A)×Mod(A)→ Veck is given by

F 2
A(X,Y ) := FA(X)⊗ FA(Y )

and similarly on morphisms. For ∆ being a coproduct, we need ∆(h) ∈ End(FA) ⊗ End(FA).
Therefore, a more formal treatment is necessary. We do this by taking a little indirect route:

Proposition 2.2. End(FA) is a representation of the functor Nat(− ⊗ FA, FA) : Veck → Set,
i.e. that there is a natural family of isomorphisms

ΘV : Lin(V,End(FA)) := HomVeck(V,End(FA))→ Nat(V ⊗ FA, FA).

Here, V ⊗FA is the functor given by (V ⊗FA)(X) = V ⊗FA(X) on objects an by (V ⊗FA)(f) =
id⊗FA(f) on morphisms. We say that Nat(−⊗ FA, FA) is representable.

Θ is given by sending a linear map φ : V → End(FA) to

Θ(φ)X(v ⊗ x) = φ(v)(x) for x ∈ FA(X).

Remark 2.3. Since c and A are isomorphic as vector spaces, we can also choose A as a repre-
sentation. Correspondingly, Θ then sends a map φ : V → A to

Θ(φ)X(v ⊗ x) = φ(v).x

Θ especially gives us a natural isomorphism

(ΘEnd(FA)(id)X =: αX : End(FA)⊗ FA(X)→ FA(X))X∈Ob(Mod(A)).

Furthermore:
Nat(−⊗ Fn

A, F
n
A) can be represented similarly via maps

Θn
V : Lin(V,End(FA)⊗n)→ Nat(V ⊗ Fn

A, F
n
A).

We can finally define a coproduct on End(FA), or A respectively.

Theorem 2.4. End(FA) with the map given as the inverse image under Θ2
End(FA) of the natural

transformation αX⊗Y : End(FA) ⊗ X ⊗ Y → X ⊗ Y is a bialgebra which is isomorphic to A
(with the original coproduct) via ρ.
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3 Abstract reconstruction

In this section we state a reconstruction theorem that does not use the fact that we already have
a given representation theory. The general concept of reconstruction is that given an abstract
monoidal category C which satisfies certain conditions together with a ”fiber functor”, one can
think of C as the representation category of a bialgebra. This can be a powerful tool for studying
monoidal categories. Lets begin with clearifying what a fiber functor is.

In an abelian category, there is the notion of an exact sequence:

Definition 3.1. A sequence

A0 → A1 → A2 → A3 → ...An

of objects and morphisms in an abelian category is called exact if the image of each morphism
is equal to the kernel of the next. A functor F : P → Q between to abelian categories is called
exact if for any (short) exact sequence

0→ A→ B → C → 0

the sequence
0→ F (A)→ F (B)→ F (C)→ 0

is also exact.

Definition 3.2. Let F : P → Q be a functor between two categories. F induces maps

FX,Y : Hom(X,Y )→ Hom(F (X), F (Y ))

for every pair of objects X and Y in P. F is said to be faithful if FX,Y is injective.

Definition 3.3. Let C be an essentially small, k-linear, abelian monoidal category. A monoidal
functor F : C → Veck is called a fiber functor if it is k-linear, exact and faithful.

Example 3.4. It is easy to see that the forgetful functor FA : Mod(A)→ Veck for a bialgebra
A is a fiber functor.

We can give a first statement:

Theorem 3.5. Let C be an essentially small, k-linear, abelian, finite monoidal category and let
F be a fiber functor F : C → Veck. Then, it exists a finite dimensional bialgebra A, such that
Mod(A) is equivalent to C as a monoidal category.

Section 2 provides the strategy for the infinite case:
Let cX,Y : F (X)⊗F (Y )→ F (X ⊗Y ) be the structural isomorphisms of the monoidal structure
associated to the fiber functor F . Then, there is again a canonical candidate for the comultipli-
cation ∆ and the counit ε:

∆(h)X,Y = c−1X,Y ◦ hX⊗Y ◦ cX,Y , ε(h) = hI , for h ∈ End(F ).

If we assume the existence of a natural family of isomorphisms

Θn
V = Θn

V : Lin(V,A⊗n)→ Nat(V ⊗ Fn, Fn),

A can again be endowed with the structure of a bialgebra.
A more concrete statement is for technical reasons formulated in the dual setting:

Theorem 3.6. Let C be an essentially small, k-linear, abelian, monoidal category and let F be
a fiber functor F : C → Veck. Then, it exists a bialgebra A, such that Comod(A) is equivalent
to C as a monoidal category.

In this setting it is necessary to show the existence of a natural family of isomorphisms

Θn
V = Θn

V : Lin(A⊗n, V )→ Nat(Fn, Fn ⊗ V ).

3



4 Outlook

Theorem 4.1. Let C be an essentially small k-linear, abelian, rigid monoidal category with a
fiber functor F that maps into the subcategory of finite vector spaces. Then the bialgebra A has
an antipode, i.e. it is a Hopf algebra.

Definition 4.2. A braided monoidal category is a monoidal category C together with a braiding,
which is a choice of a natural isomorphism of the form ψA,B : A⊗ B → B ⊗ A for each pair of
objects A and B, such that it satisfies the following to axioms:

A⊗ (B ⊗ C) (B ⊗ C)⊗A

(A⊗B)⊗ C B ⊗ (C ⊗A)

(B ⊗A)⊗ C B ⊗ (A⊗ C)

α

ψ ⊗ I

α

I ⊗ ψ

α

ψ

(A⊗B)⊗ C C ⊗ (A⊗B)

A⊗ (B ⊗ C) (C ⊗A)⊗B

A⊗ (C ⊗B) (A⊗ C)⊗B)

α−1

I ⊗ ψ

α−1

ψ ⊗ I

α−1

ψ

Here α is the associativity isomorphism coming from the monoidal structure on C.

Theorem 4.3. Let C be a k-linear, abelian, braided monoidal category and F a fiber functor.
Then, A is a quasitriangular bialgebra.

Remark 4.4. Many examples of braided monoidal categories arise from two-dimensional con-
formal quantum field theories. These categories can often be obtained from quantum groups as
well. This is called Kazhdan-Lusztig correspondence and if I am lucky it will make my master
thesis much easier.
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