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1 Twistings

This section deals with a method of ”twisting” the coproduct of Hopf Algebras to obtain new

ones.
Let (A, pu,1,A €) be a bialgebra over a field k.

Notation 1.1. Recall, that for an element K =) . s; ®t; € A® A we set

K12=Z£¢®ti®1, K23221®3i®tia K1325i®1®ti

and
Ko = Zti ® S
i

Let F € A® A be invertible, such that

Fi2(A ®id)(F) = Fos(id @ A)(F)
(e®id)(F) =1 = (id @ €)(F).

Lemma 1.2. Let S € A be an antipode, then v := p(id ® S)(F) is invertible with
v = p(S®@id)(F ).
Proposition 1.3. (A,p,1, A% €) is a bialgebra, where
A7 (a) == FA(a)F~?
forac A. (A u,1,A% €, S) is a Hopf algebra, where
5% (a) == vS(a)v™t.
Both are denoted by AT and called the twist of A by F.
Notice that it is actually a twist of the coproduct of A.
Corollary 1.4. If A is cocommutative, then A% is a triangular bialgebra with universal R-matriz

R=FnF '

—1

Corollary 1.5. Assume that A is quasitriangular with R-matriz R and that Fo1 = F and

FroFi3Fas = FozFisFia. Then AT is also quasitriangular with R-matriz RF = FIRF-L.

Proposition 1.6. Mod(A) and Mod(A”) are equivalent as monoidal categories. The equiva-
lence is given by the identity functor with a monoidal structure ¢, defined as follows:

duv = (pu ® pv)(F ),
where py(a) = (u+— au Yu € U).

This shows that usually several different bialgebras exist, that have the same representation
category up to equivalence.



2 Reconstruction of a bialgebra

As it is already implied by the titel, all of the given constructions can be "reversed”. We already
have an interim result from reconstruction, pt.1:

Proposition 2.1. Given an algebra A and the forgetful functor F4 : Mod(A) — Vecy, End(F4)
18 an algebra with multiplication being the composition and is isomorphic to A via the canonical
isomorphism

p:A— End(Fa).

Now assume that A is a bialgebra, giving Mod(A) a monoidal structure. Furthermore, it can
easily be seen that F'4 is a monoidal functor with the structural isomorphisms being the identity
morphisms for every object.

We can recover the bialgebra structure from this data but some technical problems arise: There
is a natural candidate for the coproduct A and the counit € given by

A(h)X,y = hxgy, e(h) =hy, for he End(FA).
It is A(h) € End(F4?), where Fa? : Mod(A) x Mod(A) — Vecy, is given by
FA(X,Y) := Fu(X) @ F5(Y)

and similarly on morphisms. For A being a coproduct, we need A(h) € End(F4) ® End(Fjy).
Therefore, a more formal treatment is necessary. We do this by taking a little indirect route:

Proposition 2.2. End(F}y) is a representation of the functor Nat(— ® Fa, Fy4) : Vecy — Set,
i.e. that there is a natural family of isomorphisms

Oy : Lin(V,End(Fj)) := Homvyec, (V,End(F4)) — Nat(V ® Fa, Fy).

Here, V. ® F4 is the functor given by (V@ F4)(X) =V @ Fa(X) on objects an by (V& Fa)(f) =
id®@FA(f) on morphisms. We say that Nat(— ® Fa, F4) is representable.

O is given by sending a linear map ¢ : V — End(F}y) to
O(P)x(v@x) = d(v)(z) for x € Fu(X).

Remark 2.3. Since ¢ and A are isomorphic as vector spaces, we can also choose A as a repre-
sentation. Correspondingly, © then sends a map ¢ : V — A to

O(¢)x(v®z) = P(v).®
© especially gives us a natural isomorphism
(OEnd(ry) (id)x =t ax : End(Fa) ® Fa(X) — Fa(X))xcobMod(A))-

Furthermore:
Nat(— ® Ft, F'}) can be represented similarly via maps

T Lin(V,End(F4)®") — Nat(V ® F}, F}).
We can finally define a coproduct on End(F}y), or A respectively.

Theorem 2.4. End(F4) with the map given as the inverse image under @%nd(FA) of the natural

transformation axgy : End(Fa) @ X Y — X ® Y is a bialgebra which is isomorphic to A
(with the original coproduct) via p.



3 Abstract reconstruction

In this section we state a reconstruction theorem that does not use the fact that we already have
a given representation theory. The general concept of reconstruction is that given an abstract
monoidal category C which satisfies certain conditions together with a ”fiber functor”, one can
think of C as the representation category of a bialgebra. This can be a powerful tool for studying
monoidal categories. Lets begin with clearifying what a fiber functor is.

In an abelian category, there is the notion of an exact sequence:
Definition 3.1. A sequence
A() — A1 — AQ — Ag — An

of objects and morphisms in an abelian category is called exact if the image of each morphism
is equal to the kernel of the next. A functor F': P — Q between to abelian categories is called
exact if for any (short) exact sequence

0—-A—-B—-C—=0

the sequence
0— F(A) - F(B)— F(C)—0

is also exact.

Definition 3.2. Let F': P — Q be a functor between two categories. F' induces maps
Fxy :Hom(X,Y) — Hom(F(X), F(Y))

for every pair of objects X and Y in P. F is said to be faithful if F'xy is injective.

Definition 3.3. Let C be an essentially small, k-linear, abelian monoidal category. A monoidal
functor F' : C — Vecy, is called a fiber functor if it is k-linear, exact and faithful.

Example 3.4. It is easy to see that the forgetful functor Fy : Mod(A) — Vecy, for a bialgebra
A is a fiber functor.

We can give a first statement:

Theorem 3.5. Let C be an essentially small, k-linear, abelian, finite monoidal category and let
F be a fiber functor F : C — Veck. Then, it exists a finite dimensional bialgebra A, such that
Mod(A) is equivalent to C as a monoidal category.

Section 2 provides the strategy for the infinite case:
Let cxy : F(X)® F(Y) - F(X ®Y) be the structural isomorphisms of the monoidal structure
associated to the fiber functor F. Then, there is again a canonical candidate for the comultipli-
cation A and the counit e:

A(h)xy = C;(ly o hX®y ocxy, E(h) =hy, for he End(F).
If we assume the existence of a natural family of isomorphisms
T =0} : Lin(V, A%") — Nat(V ® F", F"),

A can again be endowed with the structure of a bialgebra.
A more concrete statement is for technical reasons formulated in the dual setting:

Theorem 3.6. Let C be an essentially small, k-linear, abelian, monoidal category and let F' be
a fiber functor F : C — Vecg. Then, it exists a bialgebra A, such that Comod(A) is equivalent
to C as a monoidal category.

In this setting it is necessary to show the existence of a natural family of isomorphisms

T =0y : Lin(4A%", V) — Nat(F™", F" @ V).



4 Outlook

Theorem 4.1. Let C be an essentially small k-linear, abelian, rigid monoidal category with a
fiber functor F' that maps into the subcategory of finite vector spaces. Then the bialgebra A has
an antipode, i.e. it is a Hopf algebra.

Definition 4.2. A braided monoidal category is a monoidal category C together with a braiding,
which is a choice of a natural isomorphism of the form 14 p: A® B — B ® A for each pair of
objects A and B, such that it satisfies the following to axioms:

A® (B () v (BoC)® A
(A B)®C B®(C® A)
g e
(BoA)@C B®(A®C)
¥
(A9 B)®C C®(A® B)
A®(B®C) (C®A)® B
%\ %
A®(C®B) ——— (A2 C)® B)

Here « is the associativity isomorphism coming from the monoidal structure on C.

Theorem 4.3. Let C be a k-linear, abelian, braided monoidal category and F a fiber functor.
Then, A is a quasitriangular bialgebra.

Remark 4.4. Many examples of braided monoidal categories arise from two-dimensional con-
formal quantum field theories. These categories can often be obtained from quantum groups as
well. This is called Kazhdan-Lusztig correspondence and if I am lucky it will make my master
thesis much easier.
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