LIE ALGEBRAS AND THEIR UNIVERSAL ENVELOPING ALGEBRAS SEMINAR TALK BY MANASA MANJUNATHA

Let \mathbb{K} be an arbitrary field unless specified.

Lie Algebras

Definition 1. A Lie algebra \mathcal{L} is a vector space over a field \mathbb{K} with a bilinear map

$$[\cdot, \cdot] : \mathcal{L} \times \mathcal{L} \to \mathcal{L},$$

called the **Lie bracket**, satisfying the following conditions for all $x, y, z \in \mathcal{L}$:

(1) (Antisymmetry)

$$[x, x] = 0$$

(2) (Jacobi Identity)

$$[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0$$

- **Example 1.** (1) If A is an associative algebra, we can endow it with the following Lie bracket $[x, y] := xy yx \ \forall x, y \in A$. We denote the resulting Lie algebra by $\mathfrak{L}(A)$.
 - (2) $\mathfrak{gl}(n,\mathbb{K}) := M_n(\mathbb{K})$, the algebra of all $n \times n$ matrices with entries in \mathbb{K} , with the above defined bracket, forms a Lie algebra. Any subalgebra of this with the restriction of the same bracket will be a Lie algebra and is called *linear Lie algebra*.
 - (3) $\mathfrak{sl}(n,\mathbb{K}) := \{X \in \mathfrak{gl}(n,\mathbb{K}) | \operatorname{Tr}(X) = 0\}$ is an important linear Lie algebra. This vector space is generated by the following elements:

$$E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \qquad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \qquad F = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

They constitute the standard basis. The Lie bracket with respect to the standard basis is given by:

$$[H, E] = 2E$$
 $[E, F] = H$ $[H, F] = -2F.$

(4) If \mathcal{L} and \mathcal{L}' are Lie algebras, we can equip the direct sum $\mathcal{L} \oplus \mathcal{L}'$ with a Lie bracket given by

$$[(x, x'), (y, y')] = ([x, y], [x', y'])$$

for all $x, y \in \mathcal{L}$ and $x', y' \in \mathcal{L}'$.

(5) Given a Lie algebra \mathcal{L} , we define the opposite Lie algebra \mathcal{L}^{op} as the vector space \mathcal{L} with the Lie bracket $[-,-]^{\text{op}}$ given by

$$[x, y]^{\mathrm{op}} = [y, x] = -[x, y].$$

Definition 2. A Lie algebra homomorphism is a linear map $\varphi : \mathfrak{g} \to \mathfrak{h}$, where \mathfrak{g} and \mathfrak{h} are Lie algebras, such that

$$\varphi([X,Y]_{\mathfrak{g}}) = [\varphi(X),\varphi(Y)]_{\mathfrak{h}} \qquad \forall \, X,Y \in \mathfrak{g}.$$

It is called an isomorphism if it is bijective.

- **Example 2.** (1) The canonical injections of Lie algebras into their direct sum and canonical projections of the direct sum onto the components are Lie algebra homomorphisms.
 - (2) op : $\mathcal{L} \to \mathcal{L}^{\text{op}}$ with op(x) := -x is a Lie algebra isomorphism.

Universal Enveloping Algebra

To any Lie algebra \mathcal{L} , we assign an associative algebra $U(\mathcal{L})$ called the Universal Enveloping Algebra of \mathcal{L} and a homomorphism of Lie algebras $\iota_{\mathcal{L}} : \mathcal{L} \to \mathfrak{L}(U(\mathcal{L}))$.

Definition 3. Let \mathcal{L} be a Lie algebra. Define $I(\mathcal{L})$ to be the two-sided ideal of the tensor algebra $T(\mathcal{L})$ generated by all elements of the form xy - yx - [x, y], where x, y are elements of \mathcal{L} . We define the following quotient of $T(\mathcal{L})$ as the **universal enveloping algebra**;

$$U(\mathcal{L}) := T(\mathcal{L})/I(\mathcal{L}).$$

Remark 1. $U(\mathcal{L})$ is an associative algebra with unit.

Remark 2. We have a canonical linear map $\iota_{\mathcal{L}} : \mathcal{L} \to \mathfrak{L}(U(\mathcal{L}))$, given by the canonical injection of \mathcal{L} into $T(\mathcal{L})$ and then projecting onto $U(\mathcal{L})$, which satisfies

$$\iota_{\mathcal{L}}[X,Y] = \iota_{\mathcal{L}}(X)\iota_{\mathcal{L}}(Y) - \iota_{\mathcal{L}}(Y)\iota_{\mathcal{L}}(X) \qquad \forall X,Y \in \mathcal{L}.$$

Hence, this is a Lie algebra homomorphism.

Theorem 1. (Universal Property) Let \mathcal{L} be a Lie algebra. Given any associative algebra A and any Lie algebra homomorphism $f : \mathcal{L} \to \mathfrak{L}(A)$, there exists a unique morphism of algebras $\varphi : U(\mathcal{L}) \to A$ such that $\varphi \circ \iota_{\mathcal{L}} = f$, i.e., such that the following diagram commutes:

We can also express the above statement by the following natural bijection:

 $Hom_{Lie}(\mathcal{L}, \mathcal{L}(A)) \cong Hom_{Alg}(U(\mathcal{L}), A).$

- Corollary 1. (1) For any morphism of Lie algebras $f : \mathcal{L} \to \mathcal{L}'$, there exists a unique morphism of algebras $U(f) : U(\mathcal{L}) \to U(\mathcal{L}')$ such that $U(f) \circ \iota_{\mathcal{L}} = \iota_{\mathcal{L}'} \circ f$. We then have $U(\mathrm{id}_{\mathcal{L}}) = \mathrm{id}_{U(\mathcal{L})}$.
 - (2) If $f': \mathcal{L}' \to \mathcal{L}''$ is another morphism of Lie algebras, then

$$U(f' \circ f) = U(f') \circ U(f).$$

(3) Let \mathcal{L} and \mathcal{L}' be Lie algebras and $\mathcal{L} \oplus \mathcal{L}'$ their direct sum. Then

$$U(\mathcal{L} \oplus \mathcal{L}') \cong U(\mathcal{L}) \otimes U(\mathcal{L}').$$

The main theorem about $U(\mathcal{L})$ gives a basis for $U(\mathcal{L})$ as a vector space. Let $\{X_i\}_{i\in I}$ be a basis of \mathcal{L} . A set such as I always admits a simple ordering, i.e., a partial ordering in which every pair of elements is comparable.

Theorem 2. (*Poincaré-Birkhoff-Witt Theorem*) Let $\{X_i\}_{i \in I}$ be a basis of \mathcal{L} and suppose a simple ordering has been imposed on the index set I. Then the set of all monomials

$$(\iota_{\mathcal{L}}(X_{i_1}))^{j_1} \dots (\iota_{\mathcal{L}}(X_{i_n}))^{j_n}$$

with $i_1 < \cdots < i_n$ and with all $j_k \ge 0$, is a basis of $U(\mathcal{L})$. In particular the canonical map $\iota_{\mathcal{L}} : \mathcal{L} \to U(\mathcal{L})$ is injective.

Remark 3. All universal enveloping algebras except $U(\{0\})$ are infinite dimensional.

$U(\mathcal{L})$ as a Hopf algebra

We are now in a position to put a Hopf algebra structure on $U(\mathcal{L})$.

- We define a co-multiplication Δ on $U(\mathcal{L})$ by $\Delta := \varphi \circ U(\delta)$, where δ is the diagonal map $x \mapsto (x, x)$ from \mathcal{L} into $\mathcal{L} \oplus \mathcal{L}$ and φ is the isomorphism $U(\mathcal{L} \oplus \mathcal{L}') \to U(\mathcal{L}) \otimes U(\mathcal{L}')$.
- The **co-unit** is given by $\epsilon = U(0)$, where 0 is the zero morphism from \mathcal{L} into the zero Lie algebra $\{0\}$.
- The **antipode** is given by S = U(op), where op is the isomorphism from \mathcal{L} to \mathcal{L}^{op} .

Proposition 1. The universal enveloping algebra $U(\mathcal{L})$ is a cocommutative Hopf algebra for the map Δ as defined above.

Sketch of proof. The coassociativity axiom is satisfied as a consequence of the commutativity of the square

$$\mathcal{L} \xrightarrow{\delta} \mathcal{L} \oplus \mathcal{L} \ \downarrow^{\delta} \qquad \qquad \downarrow^{\mathrm{id} \oplus \delta} \mathcal{L} \oplus \mathcal{L} \oplus \mathcal{L} \oplus \mathcal{L} \oplus \mathcal{L}$$

The counit axiom is satisfied because of the commutativity of the diagram

$$0 \oplus \mathcal{L} \xleftarrow{0 \oplus \mathrm{id}} \mathcal{L} \oplus \mathcal{L} \xrightarrow{\mathrm{id} \oplus 0} \mathcal{L} \oplus 0$$

$$\stackrel{\delta}{\cong} \xrightarrow{\delta} \stackrel{\simeq}{\mathcal{L}} \xrightarrow{\mathcal{L}} \cdots \xrightarrow{\mathcal{L}} .$$

The cocommutativity is ensured by the commutativity of the following triangle

where $\tau : \mathcal{L} \oplus \mathcal{L} \to \mathcal{L} \oplus \mathcal{L}, (x, y) \mapsto (y, x)$ is the flip map.

The definition of S and Lemma 1 from seminar 5 imply that S is an antipode for $U(\mathcal{L})$. \Box

Remark 4. All elements of \mathcal{L} are primitive elements in $U(\mathcal{L})$.