8 The quantum double

From now on, all algebras \mathcal{A} are finite-dimensional.

Definition 8.1. A dual pairing of two bialgebras \mathcal{U} and \mathcal{A} is a bilinear mapping $\langle ., . \rangle : \mathcal{U} \times \mathcal{A} \to \mathbb{K}$, such that

$$\langle f, a_1 a_2 \rangle = \langle \Delta_{\mathcal{U}}(f), a_1 \otimes a_2 \rangle, \ \langle f_1 f_2, a \rangle = \langle f_1 \otimes f_2, \Delta_{\mathcal{A}}(a) \rangle \langle f, 1_{\mathcal{A}} \rangle = \epsilon_{\mathcal{U}}(f), \ \langle 1_{\mathcal{U}}, a \rangle = \epsilon_{\mathcal{A}}(a)$$

for all $f, f_1, f_2 \in \mathcal{U}, a, a_1, a_2 \in \mathcal{A}$. Note that the pairing of \mathcal{U} and \mathcal{A} must be extended to one of $\mathcal{U} \otimes \mathcal{U}$ and $\mathcal{A} \otimes \mathcal{A}$ by setting $\langle f_1 \otimes f_2, a \otimes b \rangle := \langle f_1, a \rangle \langle f_2, b \rangle$.

Definition 8.2. A bilinear map $\sigma : \mathcal{A} \times \mathcal{B} \to \mathbb{C}$ is called a **skew-pairing** of the bialgebras \mathcal{A} and \mathcal{B} if $\sigma(\cdot, \cdot)$ is a dual pairing of the bialgebras \mathcal{A} and \mathcal{B}^{op} , that is, for all $a, a' \in \mathcal{A}$ and $b, b' \in \mathcal{B}$ we have

$$\sigma(a, 1) = \epsilon(a), \ \sigma(1, b) = \epsilon(b)$$

$$\sigma(a_1 a_2, b) = \sum_{(b)} \sigma(a_1, b^{(1)}) \sigma(a_2, b^{(2)})$$

$$\sigma(a, b_1 b_2) = \sum_{(a)} \sigma(a^{(2)}, b_1) \sigma(a^{(1)}, b_2)$$

The mapping σ is said to be convolution invertible (or briefly, invertible), if there exists another bilinear map $\overline{\sigma} : \mathcal{A} \times \mathcal{B} \to \mathbb{C}$ such that $\sigma \overline{\sigma} = \overline{\sigma} \sigma = \epsilon_{\mathcal{A}} \otimes \epsilon_{\mathcal{B}}$. In Sweedler Notation we get:

$$\sum_{(a),(b)} \sigma(a^{(1)}, b^{(1)}) \overline{\sigma}(a^{(2)}, b^{(2)}) = \sum_{(a),(b)} \overline{\sigma}(a^{(1)}, b^{(1)}) \sigma(a^{(2)}, b^{(2)}) = \epsilon_{\mathcal{A}}(a) \epsilon_{\mathcal{B}}(b)$$

The inverse of σ is denoted by $\overline{\sigma}$. Define $\sigma_{21}(b, a) = \sigma(a, b)$. It is easily seen, that σ is a skew-pairing of \mathcal{A} and \mathcal{B} iff $\overline{\sigma}_{21}$ is a skew-pairing of \mathcal{B} and \mathcal{A} , where $\overline{\sigma}_{21}(b, a) = \overline{\sigma}(a, b)$

If either \mathcal{A} or \mathcal{B} is a Hopf algebra with invertible antipode then the skew-pairing of \mathcal{A} and \mathcal{B} is invertible. The inverse is then given by

$$\overline{\sigma} = \sigma(S(a), b)$$
 resp. $\overline{\sigma}(a, b) = \sigma(a, S^{-1}(b)), a \in \mathcal{A}, b \in \mathcal{B}$ (1)

Proposition 8.3. i) Let \mathcal{A} and \mathcal{B} be bialgebras equipped with an invertible scew-pairing $\sigma : \mathcal{A} \times \mathcal{B} \to \mathbb{C}$. Then the vector space $\mathcal{B} \otimes \mathcal{A}$ becomes an algebra with product defined by

$$(b_1 \otimes a_1)(b_2 \otimes a_2) = \sum_{(a_1),(b_2)} b_1 b_2^{(2)} \otimes a_1^{(2)} a_2 \overline{\sigma}(a_1^{(1)}, b_2^{(1)}) \sigma(a_1^{(3)}, b_2^{(3)})$$
(2)

for $a_1, a_2 \in \mathcal{A}$ and $b_1, b_2 \in \mathcal{B}$. With the tensor product coalgebra structure of $\mathcal{B} \otimes \mathcal{A}$ (with the coproduct $\Delta_{\mathcal{B} \otimes \mathcal{A}}(b \otimes a) = \sum_{(a),(b)} b^{(1)} \otimes a^{(1)} \otimes b_{(2)} \otimes a^{(2)}$ and counit $\epsilon_{\mathcal{B} \otimes \mathcal{A}}(b \otimes a) = \epsilon_{\mathcal{B}}(b)\epsilon_{\mathcal{A}}(a)$). This algebra is a bialgebra. ii) If \mathcal{A} and \mathcal{B} are Hopf algebras, this bialgebra is a Hopf algebra with antipode S given by $S(b \otimes a) = (1 \otimes S_{\mathcal{A}}(a))(S_{\mathcal{B}}(b) \otimes 1)$.

Proof.

$$\begin{split} &((b_1 \otimes a_1)(b_2 \otimes a_2))(b_3 \otimes a_3) \\ &= (\sum_{(a_1),(b_2)} b_1 b_2^{(2)} \otimes a_1^{(2)} a_2 \overline{\sigma}(a_1^{(1)}, b_2^{(1)}) \sigma(a_1^{(3)}, b_2^{(3)}))(b_3 \otimes a_3) \\ &= \sum_{(a_1),(a_2),(b_2),(b_3)} b_1 b_2^{(2)} b_3^{(2)} \otimes (a_1^{(2)} a_2)^{(2)} a_3 \overline{\sigma}(a_1^{(1)}), b_2^{(1)}) \sigma(a_1^{(3)}, b_2^{(3)}) \\ &= \sum_{(a_1),(a_2),(b_2),(b_3)} b_1 b_2^{(2)} b_3^{(2)} \otimes a_1^{(3)} a_2^{(2)} a_3 \overline{\sigma}(a_1^{(1)}), b_2^{(1)}) \sigma(a_1^{(5)}, b_2^{(3)}) \overline{\sigma}(a_1^{(2)} a_2^{(1)}, b_3^{(1)}) \sigma(a_1^{(4)} a_2^{(3)}, b_3^{(3)}) \\ &= \sum_{(a_1),(a_2),(b_2),(b_3)} b_1 b_2^{(2)} b_3^{(2)} \otimes a_1^{(3)} a_2^{(2)} a_3 \overline{\sigma}(a_1^{(1)}), b_2^{(1)}) \sigma(a_1^{(5)}, b_2^{(3)}) \overline{\sigma}(a_1^{(2)}, (b_3^{(1)})^{(2)}) \overline{\sigma}(a_2^{(1)}, (b_3^{(1)})^{(1)}) \\ &= \sum_{(a_1),(a_2),(b_2),(b_3)} b_1 b_2^{(2)} b_3^{(3)} \otimes a_1^{(3)} a_2^{(2)} a_3 \overline{\sigma}(a_1^{(1)}), b_2^{(1)}) \overline{\sigma}(a_1^{(2)}, b_3^{(2)}) \\ &= \sum_{(a_1),(a_2),(b_2),(b_3)} b_1 b_2^{(2)} b_3^{(3)} \otimes a_1^{(3)} a_2^{(2)} a_3 \overline{\sigma}(a_1^{(1)}, b_2^{(1)}) \overline{\sigma}(a_1^{(2)}, b_3^{(2)}) \\ &= \sum_{(a_1),(a_2),(b_2),(b_3)} b_1 b_2^{(2)} b_3^{(3)} \otimes a_1^{(3)} a_2^{(2)} a_3 \overline{\sigma}(a_1^{(1)}, b_2^{(1)}) \overline{\sigma}(a_1^{(2)}, b_3^{(2)}) \\ &= \sum_{(a_1),(a_2),(b_2),(b_3)} b_1 b_2^{(2)} b_3^{(3)} \otimes a_1^{(3)} a_2^{(2)} a_3 \overline{\sigma}(a_1^{(1)}, b_2^{(1)}) \overline{\sigma}(a_1^{(2)}, b_3^{(2)}) \\ &= \sum_{(a_1),(a_2),(b_2),(b_3)} b_1 b_2^{(2)} b_3^{(3)} \otimes a_1^{(3)} a_2^{(2)} a_3 \overline{\sigma}(a_1^{(1)}, b_2^{(1)}) \overline{\sigma}(a_1^{(2)}, b_3^{(2)}) \\ &= \sum_{(a_1),(a_2),(b_2),(b_3)} b_1 b_2^{(2)} b_3^{(3)} \otimes a_1^{(3)} a_2^{(2)} a_3 \overline{\sigma}(a_1^{(1)}, b_2^{(1)}) \overline{\sigma}(a_1^{(2)}, b_3^{(2)}) \\ &= \sum_{(a_1),(a_2),(b_2),(b_3)} b_1 b_2^{(2)} b_3^{(3)} \otimes a_1^{(3)} a_2^{(2)} a_3 \overline{\sigma}(a_1^{(1)}, b_2^{(1)}) \overline{\sigma}(a_1^{(2)}, b_3^{(2)}) \\ &= \sum_{(a_1),(a_2),(b_2),(b_3)} b_1 b_2^{(2)} b_3^{(3)} \otimes a_1^{(3)} a_2^{(2)} a_3 \overline{\sigma}(a_1^{(1)}, b_2^{(1)}) \overline{\sigma}(a_1^{(2)}, b_3^{(2)}) \\ &= \sum_{(a_1),(a_2),(b_2),(b_3)} b_1 b_2^{(2)} b_3^{(3)} \otimes a_1^{(3)} a_2^{(2)} a_3 \overline{\sigma}(a_1^{(1)}, b_2^{(1)}) \overline{\sigma}(a_1^{(2)}, b_3^{(2)}) \\ &= \sum_{(a_1),(a_2),(b_2),(b_3)} b_1 b_2^{(2)} b_3^{(3)} \otimes a_1^{(3)} a_2^{(2)} a_3 \overline{\sigma}(a_1^{(1)}, b_2^{(2)}$$

The other one calculates similar. This proves associativity.

Definition 8.4. The bialgebra from the Prop. 8.3 is called the **generalized quantum double** of the bialgebras \mathcal{A} und \mathcal{B} with repsect to the skew-pairing σ or, briefly, the **quantum double** of \mathcal{A} and \mathcal{B} . It is denoted by $\mathcal{D}(\mathcal{A}, \mathcal{B}, \sigma)$ or simply by $\mathcal{D}(\mathcal{A}, \mathcal{B})$ if no confusion can arise.

We give another isomorphic variant of the quantum double. $\mathcal{D}(\mathcal{B}, \mathcal{A}; \overline{\sigma}_{21})$ and $\mathcal{D}(\mathcal{A}, \mathcal{B}; \sigma)$ occur as generalized quantum doubles of the bialgebras \mathcal{A} and \mathcal{B} . The bialgebras $\mathcal{D}(\mathcal{B}, \mathcal{A}; \overline{\sigma}_{21})$ and $\mathcal{D}(\mathcal{A}, \mathcal{B}; \sigma)$ are indeed isomorphic with isomorphism θ defined by

$$\theta(b \otimes a) = \sum_{(a),(b)} a^{(2)} \otimes b^{(2)} \sigma(a^{(1)}, b^{(1)}) \overline{\sigma}(a^{(3)}, b^{(3)}), \ a \in \mathcal{A}, b \in \mathcal{B}.$$
(3)

Remark 8.5 (Dual algebra). Let $f, f_1, f_2 \in \mathcal{A}^*$ and $a, a_1, a_2 \in \mathcal{A}^*$. Recall that the dual vector space \mathcal{A}^* to a finite dimensional algebra \mathcal{A} is an algebra with respect to the multiplication $f_1f_2(a) := (f_1 \otimes f_2)\Delta(a) =$ $\sum_{(a)} f_1(a^{(1)})f_2(a^{(2)})$. For $f \in \mathcal{A}^*$ define a functional $\Delta(f) \in (\mathcal{A} \otimes \mathcal{A})^*$ by $\Delta(f)(a_1 \otimes a_2) := (f \otimes M)(a_1 \otimes a_2) = f(a_1a_2)$. \mathcal{A}^* equipped with comultiplication Δ becomes a Hopf algebra. The antipode, the counit and the unit element of this Hopf algebra \mathcal{A}^* are given by (Sf)(a) = $(f(S(a))), \epsilon_{\mathcal{A}^*}(f) = f(1)$ and $1_{\mathcal{A}^*}(a) = \epsilon(a)$, respectively.

Now let \mathcal{A} is a Hopf algebra with invertible antipode and let $\mu(f, a)$ denote the evaluation f(a) of the functional $f \in \mathcal{A}^*$ at $a \in \mathcal{A}$. In the remark we already noted, that μ fulfills the property of a dual pairing. Since the antipode of \mathcal{A} is invertible, \mathcal{A}^{op} and \mathcal{A}^{cop} are Hopf algebras and so are

$$(\mathcal{A}^{op})^* \equiv (\mathcal{A}^*)^{cop}$$
 and $(\mathcal{A}^{cop})^* \equiv (\mathcal{A}^*)^{op}$.

Hence μ is a skew-pairing of $(\mathcal{A}^*)^{cop}$ and A and by (1) its convolution inverse $\overline{\mu}$ is given by $\overline{\mu}(f, a) = \mu(f, S^{-1}(a)9)$. Therefore by 8.3 the quantum doubles $\mathcal{D}((\mathcal{A}^*)^{cop}, \mathcal{A}; \mu)$ and $\mathcal{D}(\mathcal{A}, (\mathcal{A}^*)^{cop}; \overline{\mu}_{21})$ are well defined Hopf algebras. Further, since μ is a dual pairing of \mathcal{A}^* and \mathcal{A} , $\nu := \mu_{21}$ is a skew -pairing of \mathcal{A} and $(\mathcal{A}^*)^{op}$ with convolution inverse, such that $\overline{\nu}(a, f) = \langle f, S(a) \rangle$. Thus the corresponding quantum doubles $\mathcal{D}(\mathcal{A}, (\mathcal{A}^*)^{op}; \nu)$ and $\mathcal{D}((\mathcal{A}^*)^{op}, \mathcal{A}; \overline{\nu}_{21})$ are well-defined. Each of the four Hopf algebras

$$\mathcal{D}((\mathcal{A}^*)^{cop}, \mathcal{A}; \mu), \mathcal{D}(\mathcal{A}, (\mathcal{A}^*)^{cop}; \overline{\mu}_{21}),$$

$$\mathcal{D}(\mathcal{A}, (\mathcal{A}^*)^{op}; \nu) \text{ and } \mathcal{D}((\mathcal{A}^*)^{op}, \mathcal{A}; \overline{\nu}_{21})$$

is called a **quantum double of the Hopf algebra** \mathcal{A} . All four Hopf algebras are in fact isomorphic with θ given in (3) and $S_{\mathcal{A}^{\circ}} \otimes id$. Suppose that \mathcal{A} is a finite-dimensional Hopf algebra. Let $\{e_i \mid i = 1, 2, ..., n\}$ and $\{f_i \mid i = 1, 2, ..., n\}$ be bases of the vector spaces \mathcal{A} and $\mathcal{A}^* \equiv \mathcal{A}^*$ respectively, such that $\langle f_j, e_i \rangle = \delta_{ij}$.

Theorem 8.6. The quantum double $\mathcal{D}(\mathcal{A}) := \mathcal{D}(\mathcal{A}, (\mathcal{A}^*)^{cop}; \overline{\mu}_{21})$ is a quasitriangular Hopf algebra with the universal *R*-matrix

$$\mathcal{R} = \sum_{i} (\epsilon \otimes e_i) \otimes (f_i \otimes 1) \in \mathcal{D}(\mathcal{A}) \otimes \mathcal{D}(\mathcal{A})$$
(4)

Corollary 8.7. Any finite-dimensional Hopf algebra \mathcal{A} is isomorphic to a Hopf subalgebra of a quasitriangular Hopf algebra.

Proof. \mathcal{A} is isomorphic to the Hopf subalgebra $1 \otimes \mathcal{A}$ of $\mathcal{D}(\mathcal{A})$.

Example 8.8. We want to apply the quantum double construction to the finite dimensional cocommutative Hopf algebra k[G], where G is a finite group.

Let $\{e_g\}_{g\in G}$ be the dual basis of the basis $\{g\}_{g\in G}$ of k[G]. It is easy to check, that the dual algebra is the algebra k^G with multiplication given by

$$e_g e_h = \delta_{gh} e_g$$

for all $g, h \in G$ and with unit $\sum_{g \in G} e_g = 1$. The comultiplication Δ , the counit ϵ , and the antipode S of $(k [G]^{op})^*$ are defined by

$$\Delta(e_g) = \sum_{uv=g} e_v \otimes e_u, \ \epsilon(e_g) = \delta_{g1} \ S(e_g) = e_{g^{-1}}$$

for each element g of the group.

The definition of the quantum double shows that the set $\{e_gh\}_{(g,h)\in G\times G}$ is a basis of $\mathcal{D}(k[G], (k[G]^{op})^*)$. The product of the quantum double is determined by

$$he_q = e_{hqh^{-1}}h.$$

Its universal R-matrix is given by

$$\mathcal{R} = \sum_{g \in G} (\epsilon \otimes g) \otimes (e_g \otimes 1).$$

Despite the fact that the quantum double is not cocommutative when G is not abelian, its antipode is involutive.