
8 The quantum double

From now on, all algebras A are finite-dimensional.

Definition 8.1. A dual pairing of two bialgebras U and A is a bilinear
mapping 〈., .〉 : U ×A → K, such that

〈f, a1a2〉 = 〈∆U(f), a1 ⊗ a2〉, 〈f1f2, a〉 = 〈f1 ⊗ f2,∆A(a)〉
〈f, 1A〉 = εU(f), 〈1U , a〉 = εA(a)

for all f, f1, f2 ∈ U , a, a1, a2 ∈ A. Note that the pairing of U and A must
be extended to one of U ⊗ U and A ⊗ A by setting 〈f1 ⊗ f2, a ⊗ b〉 :=
〈f1, a〉〈f2, b〉.

Definition 8.2. A bilinear map σ : A×B → C is called a skew-pairing
of the bialgebras A and B if σ(·, ·) is a dual pairing of the bialgebras A
and Bop, that is, for all a, a′ ∈ A and b, b′ ∈ B we have

σ(a, 1) = ε(a), σ(1, b) = ε(b)

σ(a1a2, b) =
∑
(b)

σ(a1, b
(1))σ(a2, b

(2))

σ(a, b1b2) =
∑
(a)

σ(a(2), b1)σ(a(1), b2)

The mapping σ is said to be convolution invertible (or briefly, invertible),
if there exists another bilinear map σ : A×B → C such that σσ = σσ =
εA ⊗ εB. In Sweedler Notation we get:∑
(a),(b)

σ(a(1), b(1))σ(a(2), b(2)) =
∑
(a),(b)

σ(a(1), b(1))σ(a(2), b(2)) = εA(a)εB(b)

The inverse of σ is denoted by σ. Define σ21(b, a) = σ(a, b). It is easily
seen, that σ is a skew-pairing of A and B iff σ21 is a skew-pairing of B
and A, where σ21(b, a) = σ(a, b)

If either A or B is a Hopf algebra with invertible antipode then the
skew-pairing of A and B is invertible. The inverse is then given by

σ = σ(S(a), b) resp. σ(a, b) = σ(a, S−1(b)), a ∈ A, b ∈ B (1)

Proposition 8.3. i) Let A and B be bialgebras equipped with an invert-
ible scew-pairing σ : A× B → C. Then the vector space B ⊗ A becomes



an algebra with product defined by

(b1 ⊗ a1)(b2 ⊗ a2) =
∑

(a1),(b2)

b1b
(2)
2 ⊗ a

(2)
1 a2σ(a

(1)
1 , b

(1)
2 )σ(a

(3)
1 , b

(3)
2 ) (2)

for a1, a2 ∈ A and b1, b2 ∈ B. With the tensor product coalgebra structure
of B⊗A (with the coproduct ∆B⊗A(b⊗a) =

∑
(a),(b) b

(1)⊗a(1)⊗ b(2)⊗a(2)
and counit εB⊗A(b⊗ a) = εB(b)εA(a)). This algebra is a bialgebra.
ii) If A and B are Hopf algebras, this bialgebra is a Hopf algebra with
antipode S given by S(b⊗ a) = (1⊗ SA(a))(SB(b)⊗ 1).

Proof.

((b1 ⊗ a1)(b2 ⊗ a2))(b3 ⊗ a3)
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=
∑

(a1),(a2),(b2),(b3)

b1b
(2)
2 b
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1 a2)
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(3)
3 )
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The other one calculates similar. This proves associativity.

Definition 8.4. The bialgebra from the Prop. 8.3 is called the gen-
eralized quantum double of the bialgebras A und B with repsect to
the skew-pairing σ or, briefly, the quantum double of A and B. It is
denoted by D(A,B, σ) or simply by D(A,B) if no confusion can arise.

We give another isomorphic variant of the quantum double. D(B,A;σ21)
and D(A,B;σ) occur as generalized quantum doubles of the bialgebras
A and B. The bialgebras D(B,A;σ21) and D(A,B;σ) are indeed isomor-
phic with isomorphism θ defined by

θ(b⊗ a) =
∑
(a),(b)

a(2) ⊗ b(2)σ(a(1), b(1))σ(a(3), b(3)), a ∈ A, b ∈ B. (3)



Remark 8.5 (Dual algebra). Let f, f1, f2 ∈ A∗ and a, a1, a2 ∈ A∗.
Recall that the dual vector space A∗ to a finite dimensional algebra A is
an algebra with respect to the multiplication f1f2(a) := (f1⊗ f2)∆(a) =∑

(a) f1(a
(1))f2(a

(2)). For f ∈ A∗ define a functional ∆(f) ∈ (A ⊗ A)∗

by ∆(f)(a1 ⊗ a2) := (f ⊗ M)(a1 ⊗ a2) = f(a1a2). A∗ equipped with
comultiplication ∆ becomes a Hopf algebra. The antipode, the counit
and the unit element of this Hopf algebra A∗ are given by (Sf)(a) =
(f(S(a))), εA∗(f) = f(1) and 1A∗(a) = ε(a), respectively.

Now let A is a Hopf algebra with invertible antipode and let µ(f, a)
denote the evaluation f(a) of the functional f ∈ A∗ at a ∈ A. In the
remark we already noted, that µ fulfills the property of a dual pairing.
Since the antipode of A is invertible, Aop and Acop are Hopf algebras and
so are

(Aop)∗ ≡ (A∗)cop and (Acop)∗ ≡ (A∗)op.

Hence µ is a skew-pairing of (A∗)cop and A and by (1) its convolu-
tion inverse µ is given by µ(f, a) = µ(f, S−1(a)9. Therefore by 8.3
the quantum doubles D((A∗)cop,A;µ) and D(A, (A∗)cop;µ21) are well de-
fined Hopf algebras. Further, since µ is a dual pairing of A∗ and A,
ν := µ21 is a skew -pairing of A and (A∗)op with convolution inverse,
such that ν(a, f) = 〈f, S(a)〉. Thus the corresponding quantum doubles
D(A, (A∗)op; ν) and D((A∗)op,A; ν21) are well-defined. Each of the four
Hopf algebras

D((A∗)cop,A;µ),D(A, (A∗)cop;µ21),

D(A, (A∗)op; ν) and D((A∗)op,A; ν21)

is called a quantum double of the Hopf algebra A. All four Hopf
algebras are in fact isomorphic with θ given in (3) and SA◦ ⊗ id.

Suppose that A is a finite-dimensional Hopf algebra. Let
{ei | i = 1, 2, ..., n} and {fi | i = 1, 2, ..., n} be bases of the vector spaces
A and A∗ ≡ A∗ respectively, such that 〈fj, ei〉 = δij.

Theorem 8.6. The quantum double D(A) := D(A, (A∗)cop;µ21) is a qu-
asitriangular Hopf algebra with the universal R-matrix

R =
∑
i

(ε⊗ ei)⊗ (fi ⊗ 1) ∈ D(A)⊗D(A) (4)

Corollary 8.7. Any finite-dimensional Hopf algebra A is isomorphic to
a Hopf subalgebra of a quasitriangular Hopf algebra.

Proof. A is isomorphic to the Hopf subalgebra 1⊗A of D(A).



Example 8.8. We want to apply the quantum double construction to
the finite dimensional cocommutative Hopf algebra k[G], where G is a
finite group.

Let {eg}g∈G be the dual basis of the basis {g}g∈G of k [G]. It is easy to
check, that the dual algebra is the algebra kG with multiplication given
by

egeh = δgheg

for all g, h ∈ G and with unit
∑

g∈G eg = 1. The comultiplication ∆, the
counit ε, and the antipode S of (k [G]op)∗ are defined by

∆(eg) =
∑
uv=g

ev ⊗ eu, ε(eg) = δg1 S(eg) = eg−1

for each element g of the group.
The definition of the quantum double shows that the set {egh}(g,h)∈G×G
is a basis of D(k [G] , (k [G]op)∗). The product of the quantum double is
determined by

heg = ehgh−1h.

Its universal R-matrix is given by

R =
∑
g∈G

(ε⊗ g)⊗ (eg ⊗ 1).

Despite the fact that the quantum double is not cocommutative when G
is not abelian, its antipode is involutive.


