6 Seminar on Hopf algebras: Modules, tensor products and duals

DEFINITION 6.1. Let R be a ring. A left R-module is an abelian group M together with a bilinear map

$$\cdot: R \times M \to M, (r, m) \mapsto r.m$$

such that for all $r, s \in R, m, n \in M$

$$(rs).m = r.(s.m)$$
 and $1.m = m$

A R-module homomorphism between left R-modules M and N is a group homomorphism $f: M \to N$ such that for all $r \in R$, $m \in M: f(r.m) = r.f(m)$

DEFINITION 6.2. Let k be a field and A a k-algebra. A representation of A on a k-vectorspace V is an algebra homomorphism

$$\rho: A \to \operatorname{End}_k(V)$$
.

An intertwiner between two representations ρ , σ of A over k-vectorspaces V and W, respectively, is a k-linear map $\alpha: V \to W$, such that

$$\alpha \circ \rho(a) = \sigma(a) \circ \alpha$$

for all $a \in A$.

DEFINITION 6.3. Let A be a k-algebra and V an abelian group. We say V is a left A-module, if it possesses the induced vectorspace structure $\lambda.v := \eta_A(\lambda).v$ and a k-linear map $\cdot : A \otimes M \to M$, that yields the previous defined A-module structure, with A seen as a ring.

Remark 6.4. Let k be a field and A a k-algebra. We have a bijection between $\{(V,\rho)\mid \rho \text{ representation of A on }k\text{-vectorspace }V\}$ and $\{(V,\cdot)\mid V \text{ left }A\text{-module}\}$ by $a.v:=\rho(a)(v)$ and $\rho(a)(v):=a.v$.

Remark 6.5. Let A be an algebra. If U,V are A-modules, the vector space $U\otimes V$ obtains an $A\otimes A$ -module structure by

$$(a \otimes a').(u \otimes v) := a.u \otimes a'.v.$$

If A is a bialgebra, the $A \otimes A$ -module $U \otimes V$ is also an A-module by

$$a.(u\otimes v):=\Delta(a).(u\otimes v)=\sum_{(a)}(a'.u\otimes a''.v).$$

EXAMPLE 6.6. Let (G,\cdot) be a group. Let $h \in G$. We can make k into a kG-module k_h by defining on bases

$$\delta_g.1 = \begin{cases} 1 & \text{if } g = h \\ 0 & \text{if } g \neq h. \end{cases}$$

For $g, h \in G$, we have a kG-module isomomorphism

$$\varphi: k_g \otimes k_h \to k_{gh}$$
$$\lambda \otimes \mu \mapsto \lambda \mu$$

where the tensor product on the left is given the induced kG-module structure previously defined.

PROPOSITION 6.7. If A is a bialgebra, U, V and W are A-modules and k is given the trivial A-module structure, we have canonical A-module isomorphisms

$$(U \otimes V) \otimes W \cong U \otimes (V \otimes W)$$

and

$$k \otimes V \cong V \cong V \otimes k$$
.

If furthermore A is cocommutative, then $V \otimes W \stackrel{\tau_{V,W}}{\cong} W \otimes V$ is also an A-module isomorphism.

REMARK 6.8. Let A be a Hopf algebra with antipode $S \in \text{End}(A)$ and let V, W be A-modules. We can give $\text{Hom}_k(V, W)$ an A-module structure: first, it obtains an $A \otimes A^{\text{op}}$ -module structure by

$$((a \otimes a').f)(v) := a.f(a'.v).$$

Then $(id_A \times S) \circ \Delta : A \to A \otimes A^{op}$ is an algebra morphism. Define the action of A on $\operatorname{Hom}_k(V, W)$ by

$$(a.f)(v) := ((((id_{\mathcal{A}} \times S) \circ \Delta)(a)).f)(v) = \sum_{(a)} a'.f(S(a'').v).$$

PROPOSITION 6.9. Let A be a Hopf algebra and U, U', V, V' be A-modules. Then the linear map

$$\lambda: \operatorname{Hom}_k(U,U') \otimes \operatorname{Hom}_k(V,V') \to \operatorname{Hom}_k(V \otimes U,U' \otimes V')$$

defined by

$$(\lambda(f \otimes g))(v \otimes u) = f(u) \otimes g(v)$$

is A-linear if, in addition, the flip $\tau_{U^*,V'}: U^* \otimes V' \to V' \otimes U^*$ is A-linear.

COROLLARY 6.10. In particular, the map $\lambda: U^* \otimes V^* \to (V \otimes U)^*$ and $\lambda_{U,V}: V \otimes U^* \to \operatorname{Hom}_k(U,V)$ with $(\lambda_{U,V}(v \otimes u'))(u) = u'(u).v$ are A-linear.

REMARK 6.11. If either U or U', and, either V or V', are finite-dimensional vector spaces, λ is invertible. In particular, the map $\lambda_{U,V}$ is invertible, if U or V are finite-dimensional.

PROPOSITION 6.12. Let V be an A-module. Then the evaluation map $ev_V: V^* \otimes V \to k, f \otimes v \mapsto f(v)$ is A-linear. If, moreover, the vector space V is finite-dimensional, then the k-linear coevaluation map $\delta_V: k \to V \otimes V^*$, $1 \mapsto (\lambda_{V,V}^{-1} \circ \eta_{\operatorname{End}_k(V)})(1)$ and the composition

$$\operatorname{Hom}(V, W) \otimes \operatorname{Hom}(U, V) \xrightarrow{\circ} \operatorname{Hom}(U, W)$$

are A-linear too.