4 Hopf Algebras

4.1 Hopf Algebras

Let (C, A, €) a coalgebra and (A, M, u) an algebra. We define on the set Hom(C, A) an algebra
structure in which the multiplication

* : Hom(C, A) ® Hom(C, A) — Hom(C, A), f®g— Mo(f®g)oA

is given as follows: for f,g € Hom(C, A)
Y e
(c)

for any ¢ € C. This multiplication is associative, since for f,g,h € Hom(C, A) and ¢ € C' we
have

((fxg)=h)(c) = (f*g)(c" Zf )h(c®)
(c)

= F(eD)(g*h)(c?)) = (f (g xh))(c)
(c)

The identity element of the algebra Hom(C, A) is ue € Hom(C, A), since
(f * (we)(e) = D fleD)(ue)(®) = f(eV)e(c? Z F(e)e(d®)1 = f(o)
(©) (c)
hence f * (ue) = f and similarly (ue) * f = f.

If we consider the dual algebra C* of a coalgebra C', we have the multiplication M : C* @ C* —
C* on C* given by M = A* o p. If we denote M (f ® g) by f * g we obtain

(f*g)(c) = (A*p)(f @ g)(c) = p(f ® g)(A Zf (cMg

for f,g € C* and ¢ € C'. We call this multiplication convolution product.

If A =k, then the product * on the algebra Hom(C| k) is the same as the convolution product
defined on the dual algebra C* of the coalgebra C. This is why in the case A is an arbitrary
algebra we will also call * the convolution product.

In the following is H an bialgebra. We denote by H¢ the underlying coalgebra, and by H® the
underlying algebra of H. Define as above an algebra structure on Hom(H¢, H*), in which the
multiplication is defined as the convolution product. Remark that the identity I : H — H is
an element of Hom(H¢, H*).

Definition 4.1 Let H be a bialgebra. A linear map S : H — H is called an antipode of the

bialgebra H if S is the inverse of the identity map I with respect to the convolution product in
Hom(H¢, H®).

Definition 4.2 A bialgebra H having an antipode is called a Hopf algebra.



Remark 4.3. In a Hopf algebra the antipode is unique, being the inverse of the element I
in the algebra Hom(H€¢, H*). The fact that S : H — H 1is the antipode can be written as
S« = IxS = ue and using the sigma notation

D SR =3 " hWS(h?) = e(h)u(1)
(h) (h)

for any h € H.

Since H is a bialgebra, we keep the convention to say that a Hopf algebra has a property P if
the underlying algebra or coalgebra has the property P.

Definition 4.4 Let H and B be two Hopf algebras. A map f : H — B is called a
morphism of Hopf algebras if it is a morphism of bialgebras.

Proposition 4.5. Let H and B be two Hopf algebras with antipodes Sy and Sg. If f : H — B
s a bialgebra map, then Spf = fSy.

Proposition 4.6. Let H be a Hopf algebra with antipode S. Then:
1. S(hg) = S(g)s(h) for any g,h € H.

5. A(S(0) = S S() & S(hD).
4 €5(h) = elh)

Which means that the antipode of a Hopf algebra H is an antimorphism of algebras and coal-
gebras.

Proposition 4.7. Let H be a Hopf algebra with antipode S. Then the following assertions are
equivalent:

132 S(hYRY = €e(h)1 for any h € H.
2. 3y WS (W) = €(h)1 for any h € H.
3. 8*=1(5*:=505).
Corollary 4.8. let H be a commutative or cocommutative Hopf algebra. Then S* = I.

We have already seen that if H is a finite dimensional bialgebra, then its dual is a bialgebra.
The following result shows that if H is even a Hopf algebra, then its dual also has a Hopf
algebra structure.

Proposition 4.9. Let H be a finite dimensional Hopf algebra, with antipode S. Then the
bialgebra H* is a Hopf algebra, with antipode S*.



4.2 Examples

Example 4.10. If H and L are two bialgebras, then it is easy to check that we have a bialgebra
structure on H ® L if we consider the tensor product of algebras and the tensor product of
coalgebras structures. Moreover, if H and L are Hopf algebras with antipodes Sy and S, then
H ® L is a Hopf algebra with antipode Sy & Sp. This bialgebra (Hopf algebra) is called the
tensor product of the two bialgebras (Hopf algebras).

Example 4.11 (The group algebra). Let G' be a multiplicative group, and k[G] := D s kg
group algebra. This is a k-vector space with basis {b,|b, == g € G}, so its elements are of
the form 3, cq gy with (ag)gec C k with only a finite number of non-zero elements. The
multiplication is defined on the basis by

by - by, = by,
for g,h € G. On the group algebra k|G] we also have a coalgebra structure, by A(by) = by ® by,
and e(by) = 1 for any g € G. We already know that the group algebra becomes in this way a
bialgebra. We note that until now we only used the fact that G is a monoid. The existence
of the antipode is directly related to the fact that the elements of G are invertible. Indeed, the

map S : k|G| = k[G] defined by S(by) = b,-1, and then extended linearly, is an antipode for the
bialgebra k|G|, since

D SO = S(by)by = by-1b, = 1 = €(by)1
(b)

and similarly, Zbg bgl)S(b§2)) = €(by)1 for any g € G. 1t is clear that if G is a monoid, which
is not a group, then the bialgebra k[G] is not a Hopf algebra.

If G is a finite group, then we know by Proposition that on (k[G])* we also have a Hopf
algebra structure, which is dual to the one on k[G]. We recall that the algebra (k[G])* has
a basis, that is the dual basis to the basis on k|G|, (pg)gec, where p, € (k[G])* is defined by
pg(h) = 6v,p, for any g,h € G. Therefore,

Py = Dgs Depn =0 for any g # h, Y pg = Lic)--
geG

The coalgebra structure of (k[G])* is given by
A(pg) = Zp:r: @ Pr-1g, E(pg) = 5179.

zeG
The antipode of (k[G])* is defined by S*(py) = p,—1 for any g € G.
Example 4.12 (Sweedler’s 4-dimensional Hopf algebra). Assume that char(k) # 2. Let H be
the algebra given by the generators and relations as follows: H is created as a k-algebra by c

and x satisfying the relations

=1 2*=0, zc=—cz.

Then H has dimension 4 as a k-vector space, with basis {1,c,x,cx}. The coalgebra structure
15 tnduced by

Alc)=c®e, Alx)=cRz+z®1, €lc)=1, €x)=0.

In this way H becomes a bialgebra, which also has an antipode S given by S(c) = ¢! and
S(z) = —cx.

This was the first example of a non-commutative and non-cocommutative Hopf algebra.
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