
1 Algebras

Definition 1.1. Let A be a ring. A left module over A is an abelian group M
with an operation of A on M with the following properties for all a, b ∈ A and
x, y ∈M :

i) (a+ b)x = ax+ bx

ii) a(x+ y) = ax+ ay

iii) (ab)x = a(bx)

Definition 1.2. Let A be a commutative ring and M an A-module equipped
with an additional binary operation from M ×M to M denoted by ◦. Then M
is an algebra over A if ◦ satisfies the following conditions for all x, y, z ∈M
and for all a, b ∈ A:

i) (x+ y) ◦ z = x ◦ z + y ◦ z

ii) x ◦ (y + z) = x ◦ y + x ◦ z

iii) (ax) ◦ (by) = (ab)(x ◦ y)

i.e. if ◦ is bilinear. If we furthermore have (x ◦ y) ◦ z = x ◦ (y ◦ z) we call M
associative and if there is an element U ∈M such that U ◦ x = x = x ◦ U we
call U unit and M unital. If we have a field K instead of the ring A, we call
M an algebra over the field K.

From now on we shall only consider unital associative Algebras over fields.

Example 1.3. i) The n × n matrices over a field K form a unital asso-
ciative K-algebra because matrixmultiplication is distributive, associative
and compatible with scalar multiplication. The unit is given by the identity
matrix.

ii) The group algebra of a group G over a field K is the K-vector space
with basis G i.e. it is composed of all finite sums of the type

∑
g∈G αgg, g ∈

G,αg ∈ K. The operations are defined as follows:∑
g∈G

αgg +
∑
g∈G

βgg =
∑
g∈G

(αg + βg)g

(
∑
g∈G

αgg)(
∑
g∈G

βgg) =
∑
h∈G

 ∑
xy=h
x,y∈G

(αxβy)h

 .

The sum on the right side of the second formula is also finite. It remains
to check that this is associative, distributive, compatible with scalar multi-
plication and that there is a unit.

iii) Let S be a set then the set Fun(S,K) of functions from S to K form a
unital associative K-algebra by pointwise addition and multiplication. The
unit is given by the function mapping all of S to 1 ∈ K.
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iv) Sweedler’s 4-dimensional Hopf algebra:
Consider a field K with char(K) 6= 2. Let H be the algebra given by
generators and relations as follows. H is generated as a K-algebra by c and
x satisfying the relations

c2 = 1 , x2 = 0 , xc = −cx.

Then H has dimension 4 as a K-vector space, with basis {1, c, x, cx}.
Additional Properties of this algebra will be discussed in later talks.

Definition 1.4. A map f : A→ B between two unital associative Algebras A,B
over the same field K is called algebra homomorphism, if the following holds
for all k ∈ K and x, y ∈ A

f(kx) = kf(x)

f(x+ y) = f(x) + f(y)

f(xy) = f(x)f(y)

f(1A) = 1B ,

where 1A and 1B are the units of A and B respectively.

Definition 1.5. For K-vector spaces V and W the tensorproduct V ⊗W is
a vector space with a bilinear map φ : V ×W → V ⊗W defined by the following
universal property

V ×W
φ //

f
##

V ⊗W

∃!f̃{{
A

i.e. for every bilinear f from V ×W to a K-vector space A there is exactly one
linear f̃ such that f = f̃ ◦ φ.

Remark 1.6. i) The tensorproduct exists and is unique up to isomorphism.

ii) If {vj}1≤i≤n is a basis of the K-vector space V and {wi}1≤i≤k is a basis
of the K-vector space W then {vj ⊗ wi}1≤i≤k,1≤i≤n is a basis of V ⊗W .

Definition 1.7. Let K be a field and let E be a K-module. For each integer
r ≥ 0 we define:

T r(E) =

r⊗
i=1

E and T 0(E) = K.

From the associativity of the tensor product, we obtain a bilinear map:

T r(E)× T s(E)→ T r+s(E),

which is associative. By means of this bilinear map, we can define an algebra
structure on the direct sum

T (E) =

∞⊕
r=0

T r(E).

We define T (E) as the tensor algebra of E over K.
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Theorem 1.8. Let A be a unital associative K-algebra and f : E → A be
a linear map, then the tensor algebra has the universal property that there is
exactly one algebra homomorpism f̃ : T (E)→ A such that the following diagram
commutes:

E
i //

f ��

T (E)

f̃}}
A

Remark 1.9. Let V be a vector space of dimension n over K and {v1, ..., vn}
be a basis of V over K. Then the elements

Mi(v) = vi1 ⊗ ...⊗ vir︸ ︷︷ ︸
r−times

, 1 ≤ iv ≤ n

form a basis of T r(V ) and every element of T (V ) has a unique expression as a
finite sum ∑

(i)

a(i)M(i)(v), a(i) ∈ K

with almost all a(i) equal to 0.

Definition 1.10. Given two algebras A and B we define an algebra structure
on the tensor product A⊗B by

(a⊗ b) ◦ (a′ ⊗ b′) = aa′ ⊗ bb′

this is called ordinary tensor product of A and B.

Lemma 1.11. The ordinary tensor product actually satisfies the conditions of
an algebra.

Definition 1.12. A left-ideal of a K-algebra is a linear subspace L with the
following properties for all x, y ∈ L, z ∈ A and c ∈ K

x+ y ∈ L
cx ∈ L

z ◦ x ∈ L.

With x ◦ z ∈ L we get a right-ideal. With both properties L is a two-sided
ideal.

Theorem 1.13. Suppose that A and B are K-algebras and that f : A→ B is an
algebra homomorphism. Let I be an ideal such that I ⊂ ker(f) then there exists
a unique algebra homomorphism f̃ such that the following diagramm commutes

A
π //

f ��

A/I

f̃}}
B
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