1 Algebras

Definition 1.1. Let A be a ring. A left module over A is an abelian group M
with an operation of A on M with the following properties for all a,b € A and
T,y € M:

i) (a+b)x =ax + bz
it) a(z +y) = ax + ay
iii) (ab)x = a(bx)

Definition 1.2. Let A be a commutative Ting and M an A-module equipped
with an additional binary operation from M x M to M denoted by o. Then M
s an algebra over A if o satisfies the following conditions for all x,y,z € M
and for all a,b € A:

i) (t+y)oz=x0z+yoz
it) xo(y+z)=zoy+axoz
iii) (az) o (by) = (ab)(x o)

i.e. if o is bilinear. If we furthermore have (xoy)oz =z o (yo z) we call M
associative and if there is an element U € M such that Uox =z =xz0U we
call U unit and M wunital. If we have a field K instead of the ring A, we call
M an algebra over the field K.

From now on we shall only consider unital associative Algebras over fields.

Example 1.3. i) The n x n matrices over a field K form a unital asso-
ciative K-algebra because matrixmultiplication is distributive, associative
and compatible with scalar multiplication. The unit is given by the identity
matriz.

it) The group algebra of a group G over a field K is the K-vector space
with basis G i.e. it is composed of all finite sums of the type deG 0g9,9 €
G,a4 € K. The operations are defined as follows:

Z agg + Z Be9 = Z(ag +B4)9

geG geG geG
(Z agg)(z Bgg) = Z Z (azBy)h
geG geG heG 5,72?2;

The sum on the right side of the second formula is also finite. It remains
to check that this is associative, distributive, compatible with scalar multi-
plication and that there is a unit.

iti) Let S be a set then the set Fun(S, K) of functions from S to K form a
unital associative K-algebra by pointwise addition and multiplication. The
unit is given by the function mapping all of S to 1 € K.



iv) Sweedler’s 4-dimensional Hopf algebra:
Consider a field K with char(K) # 2. Let H be the algebra given by
generators and relations as follows. H is generated as a K-algebra by ¢ and

T satisfying the relations
A=1,2°2=0, zc= —cz.

)

Then H has dimension 4 as a K-vector space, with basis {1,¢,x,cx}.
Additional Properties of this algebra will be discussed in later talks.

Definition 1.4. A map f: A — B between two unital associative Algebras A, B
over the same field K is called algebra homomorphism, if the following holds
forallk € K and x,y € A

f(kz) = kf(z)

fx+y)=f@)+ fy)

fzy) = f(2)f(y)
f(la) =1p

where 14 and 1g are the units of A and B respectively.

Definition 1.5. For K-vector spaces V and W the tensorproduct V@ W is
a vector space with a bilinear map ¢ : V x W =V @ W defined by the following
universal property

VXW%V@W

N

i.e. for every bilinear f from V- x W to a K-vector space A there is exactly one
linear f such that f = f o ¢.

Remark 1.6. i) The tensorproduct exists and is unique up to isormorphism.

i) If {vj1<i<n 15 a basis of the K-vector space V' and {w; }1<i<k is a basis
of the K -vector space W then {v; @ w; 1i<i<k,1<i<n 1S a basis of V@ W.

Definition 1.7. Let K be a field and let E be a K-module. For each integer
r > 0 we define:

= Q) E and T°(E) =
i=1
From the associativity of the tensor product, we obtain a bilinear map:
T (E) x T5(E) — T"%(E),

which is associative. By means of this bilinear map, we can define an algebra
structure on the direct sum

E) =1 (E)
r=0

We define T(F) as the tensor algebra of E over K.



Theorem 1.8. Let A be a unital associative K-algebra and f : E — A be
a linear map, then the tensor algebra has the universal property that there is
exactly one algebra homomorpism f : T(E) — A such that the following diagram
commutes:

Remark 1.9. Let V be a vector space of dimension n over K and {vy, ..., v}
be a basis of V' over K. Then the elements

form a basis of T" (V) and every element of T(V') has a unique expression as a
finite sum

Za(i)M(i)(U)a a(;) e K
(2)

with almost all a(;y equal to 0.

Definition 1.10. Given two algebras A and B we define an algebra structure
on the tensor product A® B by

(a®b)o(a ®@b) =ad @ bb
this is called ordinary tensor product of A and B.

Lemma 1.11. The ordinary tensor product actually satisfies the conditions of
an algebra.

Definition 1.12. A left-ideal of a K-algebra is a linear subspace L with the
following properties for all x,y € L, z € A and c € K

r+yel
cxr €L
zox € L.

With © o z € L we get a right-ideal. With both properties L is a two-sided
ideal.

Theorem 1.13. Suppose that A and B are K-algebras and that f : A — B is an
algebra homomorphism. Let I be an ideal such that I C ker(f) then there exists
a unique algebra homomorphism f such that the following diagramm commutes



