1 Algebras

Definition 1.1. Let A be a ring. A left module over A is an abelian group M with an operation of A on M with the following properties for all $a, b \in A$ and $x, y \in M$:

- $i) \ (a+b)x = ax + bx$
- *ii)* a(x+y) = ax + ay
- (ab)x = a(bx)

Definition 1.2. Let A be a commutative ring and M an A-module equipped with an additional binary operation from $M \times M$ to M denoted by \circ . Then M is an **algebra over A** if \circ satisfies the following conditions for all $x, y, z \in M$ and for all $a, b \in A$:

- i) $(x+y) \circ z = x \circ z + y \circ z$
- *ii)* $x \circ (y+z) = x \circ y + x \circ z$
- *iii)* $(ax) \circ (by) = (ab)(x \circ y)$

i.e. if \circ is bilinear. If we furthermore have $(x \circ y) \circ z = x \circ (y \circ z)$ we call M associative and if there is an element $U \in M$ such that $U \circ x = x = x \circ U$ we call U unit and M unital. If we have a field K instead of the ring A, we call M an algebra over the field K.

From now on we shall only consider unital associative Algebras over fields.

- **Example 1.3.** *i)* The $n \times n$ matrices over a field K form a unital associative K-algebra because matrixmultiplication is distributive, associative and compatible with scalar multiplication. The unit is given by the identity matrix.
 - ii) The group algebra of a group G over a field K is the K-vector space with basis G i.e. it is composed of all finite sums of the type $\sum_{g \in G} \alpha_g g, g \in G, \alpha_g \in K$. The operations are defined as follows:

$$\sum_{g \in G} \alpha_g g + \sum_{g \in G} \beta_g g = \sum_{g \in G} (\alpha_g + \beta_g) g$$
$$(\sum_{g \in G} \alpha_g g) (\sum_{g \in G} \beta_g g) = \sum_{h \in G} \left(\sum_{\substack{xy = h \\ x, y \in G}} (\alpha_x \beta_y) h \right).$$

The sum on the right side of the second formula is also finite. It remains to check that this is associative, distributive, compatible with scalar multiplication and that there is a unit.

iii) Let S be a set then the set Fun(S, K) of functions from S to K form a unital associative K-algebra by pointwise addition and multiplication. The unit is given by the function mapping all of S to $1 \in K$.

iv) Sweedler's 4-dimensional Hopf algebra:

Consider a field K with $char(K) \neq 2$. Let H be the algebra given by generators and relations as follows. H is generated as a K-algebra by c and x satisfying the relations

$$c^2 = 1$$
, $x^2 = 0$, $xc = -cx$.

Then H has dimension 4 as a K-vector space, with basis $\{1, c, x, cx\}$. Additional Properties of this algebra will be discussed in later talks.

Definition 1.4. A map $f : A \to B$ between two unital associative Algebras A, B over the same field K is called **algebra homomorphism**, if the following holds for all $k \in K$ and $x, y \in A$

$$f(kx) = kf(x)$$

$$f(x+y) = f(x) + f(y)$$

$$f(xy) = f(x)f(y)$$

$$f(1_A) = 1_B,$$

where 1_A and 1_B are the units of A and B respectively.

Definition 1.5. For K-vector spaces V and W the **tensorproduct** $V \otimes W$ is a vector space with a bilinear map $\phi : V \times W \to V \otimes W$ defined by the following universal property

i.e. for every bilinear f from $V \times W$ to a K-vector space A there is exactly one linear \tilde{f} such that $f = \tilde{f} \circ \phi$.

Remark 1.6. *i)* The tensorproduct exists and is unique up to isomorphism.

ii) If $\{v_j\}_{1 \le i \le n}$ is a basis of the K-vector space V and $\{w_i\}_{1 \le i \le k}$ is a basis of the K-vector space W then $\{v_j \otimes w_i\}_{1 \le i \le k, 1 \le i \le n}$ is a basis of $V \otimes W$.

Definition 1.7. Let K be a field and let E be a K-module. For each integer $r \ge 0$ we define:

$$T^{r}(E) = \bigotimes_{i=1}^{r} E \text{ and } T^{0}(E) = K.$$

From the associativity of the tensor product, we obtain a bilinear map:

$$T^r(E) \times T^s(E) \to T^{r+s}(E),$$

which is associative. By means of this bilinear map, we can define an algebra structure on the direct sum

$$T(E) = \bigoplus_{r=0}^{\infty} T^{r}(E).$$

We define T(E) as the **tensor algebra** of E over K.

Theorem 1.8. Let A be a unital associative K-algebra and $f : E \to A$ be a linear map, then the tensor algebra has the universal property that there is exactly one algebra homomorpism $\tilde{f} : T(E) \to A$ such that the following diagram commutes:

Remark 1.9. Let V be a vector space of dimension n over K and $\{v_1, ..., v_n\}$ be a basis of V over K. Then the elements

$$M_i(v) = \underbrace{v_{i_1} \otimes \dots \otimes v_{i_r}}_{r-times}, \quad 1 \le i_v \le n$$

form a basis of $T^r(V)$ and every element of T(V) has a unique expression as a finite sum

$$\sum_{(i)} a_{(i)} M_{(i)}(v), \ a_{(i)} \in K$$

with almost all $a_{(i)}$ equal to 0.

Definition 1.10. Given two algebras A and B we define an algebra structure on the tensor product $A \otimes B$ by

$$(a \otimes b) \circ (a' \otimes b') = aa' \otimes bb'$$

this is called ordinary tensor product of A and B.

Lemma 1.11. The ordinary tensor product actually satisfies the conditions of an algebra.

Definition 1.12. A *left-ideal* of a K-algebra is a linear subspace L with the following properties for all $x, y \in L$, $z \in A$ and $c \in K$

$$x + y \in L$$
$$cx \in L$$
$$z \circ x \in L.$$

With $x \circ z \in L$ we get a **right-ideal**. With both properties L is a **two-sided** ideal.

Theorem 1.13. Suppose that A and B are K-algebras and that $f : A \to B$ is an algebra homomorphism. Let I be an ideal such that $I \subset ker(f)$ then there exists a unique algebra homomorphism \tilde{f} such that the following diagramm commutes

