MSc Seminar on Hopf Algebras, tensor categories and three-manifold invariants: The Reshetikhin-Turaev construction

Paulina Goedicke

$7^{\text {th }}$ October 2020

Abstract

In this session we will extend the notion of an n-dimensional topological quantum field theory (TQFT) defined in the last session to a 3D-TQFT for 3 -bordisms with embedded ribbon graphs.

1 Motivation

Last session we defined n-dimensional TQFTs via a functor \mathcal{Z} from the bordism category Bord_{n} to the category of vector spaces Vect $_{\mathbb{K}}$. In this session we will construct an extended TQFT by replacing manifolds in Bord $_{n}$ by manifolds with some additional structure.

2 Bordism category of decorated 3-manifolds

Definition 1.1: A 3-manifold is a manifold that locally looks like \mathbb{R}^{3}.
Let C be a modular tensor category. The additional structure mentioned earlier is given by the notion of decoration and colouring.

Definition 1.2: We say that a conntected orientable surface is decorated if it is oriented and comes with a countable set of distinguished marked arcs where a marked arc is a a simple arc together with an object of C and a sign $v \in$ $\{-1,1\}$. We call these surfaces d-surfaces. Morphisms between d-surfaces are called d-homeomorphisms.

Definition 1.3: The d-type t of a d-surface of genus g and with m marked $\operatorname{arcs}\left\langle W_{i}, v_{i}\right\rangle_{i \leq m}$ is a tuple $\left\langle g ;\left\langle W_{1}, v_{1}\right\rangle, \ldots,\left\langle W_{m}, v_{m}\right\rangle\right\rangle$.

Recall that we call a ribbon graph coloured over C if it has the following additional structure:
i) Each band is directed.
ii) Each band is labeled (coloured) by an Object of C.
iii) Each coupon is labeled by a morphism of C

$$
f: V_{1}^{\eta_{1}} \otimes \ldots \otimes V_{m}^{\eta_{m}} \rightarrow W_{1}^{\epsilon_{1}} \otimes \ldots \otimes W_{n}^{\epsilon_{n}}
$$

where the V_{i} are the colours and the η_{i} the directions of the bands incident to the top edge and the W_{i} are the colours and the ϵ_{i} are the directions of the bands incident to the bottom edge.

This leads us to the following definition:
Definition 1.4: Let M be a 3-manifold whose boundary is endowed with a finite family of disjoint marked arcs.
A ribbon graph in M is an oriented surface Ω embedded in M and decomposed as a union of a finite number of directed annuli, directed bands and coupons such that Ω meets ∂M transversally along the distinguished arcs in ∂M which are bases of certain bands of Ω, other bases of bands lie on the bases of coupons, otherwise bands, coupons and annuli are disjoint. Moreover, the orientation of Ω induces on each arc of ∂M the orientation opposite to the given one.

Definition 1.5: A decorated 3-manifold is a compact oriented 3-manifold with parametrized decorated boundary and with a v-coloured ribbon graph sitting in this 3-manifold.

Remark 1.6: By parametrized we mean that the boundary is homeomorphic to Σ_{t} where $\Sigma_{t}=\partial U_{t}$ is the so-called canonical surface of a d-type t. The latter can be constructed as follows: Let R_{t} be a ribbon graph with one coupon and $m+g$ bands. The first m bands are untwisted and unlinked. For $i \leq m$, the i-th band is labeled with the respective V_{i}, where the sign determines the orientation of the band. Moreover, there are g bands that form unknots with the coupon. We can then fix a closed regular neighbourhood U_{t} of R_{t} which is a handlebody of genus g. Except for the m bands that meet the boundary $\partial U_{t}, R_{t}$ lies in the interior of U_{t}. We then set $\Sigma_{t}:=\partial U_{t}$. With that we can also define decorated 3 -bordisms:

Definition 1.7: A decorated 3-bordism is a triple $\left(M, \partial_{-} M, \partial_{+} M\right)$ where $\partial_{-} M$ and $\partial_{+} M$ are parametrized d-surfaces and M is a decorated 3-manifold with $\partial M=\left(-\partial_{-} M\right) \amalg \partial_{+} M$.

Remark 1.8: In particular a d-homeomorphism of decorated 3-manifolds $M \rightarrow$ M^{\prime} restricts to a d-homomorphism $\partial M \rightarrow \partial M^{\prime}$ that commutes with the parametrizations.

We can construct a bordism category Bord $_{3}$ where objects in Bord 3 are given
by classes of homeomorphisms of decorated 3-manifolds and morphisms are d homeomorphisms of 3-manifolds.

3 Construction of a TQFT

We are now ready to define $\mathcal{Z}(N)$ for N in Bord_{3}. Recall that the functor \mathcal{Z} sends to every manifold N in Bord_{n} a \mathbb{K}-vectorspace $\mathcal{Z}(N)$ and to every bordism M in Bord_{n} from $\partial_{-} M$ to ∂_{+}a \mathbb{K}-linear map $\mathcal{Z}(M): \mathcal{Z}\left(\partial_{-} M\right) \rightarrow \mathcal{Z}\left(\partial_{+} M\right)$.

Observation 2.1: We start by defining the space of states. For each d-type t we can define a projective \mathbb{K}-module Ψ_{t} via

$$
\begin{equation*}
\Phi(t ; i)=W_{1}^{v_{1}} \otimes \ldots \otimes W_{m}^{v_{m}} \otimes \bigotimes_{r=1}^{g}\left(V_{i_{r}} \otimes V_{i_{r}}^{*}\right) \tag{1}
\end{equation*}
$$

and setting

$$
\begin{equation*}
\Psi_{t}=\bigoplus_{i \in I^{g}} \operatorname{Hom}(\mathbb{I}, \Phi(t ; i)) \tag{2}
\end{equation*}
$$

We then define $\mathcal{Z}(N)$ to be the non-ordered tensor product of Ψ_{t} where t runs over types t of the components of N.

Next we assign to every 3 -bordism a \mathbb{K}-homomorphism (where τ is the operator invariant of M)

$$
\begin{equation*}
\tau(M)=\tau\left(M, \partial_{-} M, \partial_{+} M\right): \mathcal{Z}\left(\partial_{-} M\right) \rightarrow \mathcal{Z}\left(\partial_{+} M\right) \tag{3}
\end{equation*}
$$

such that:
i) For any connected component Σ of $\partial_{-} M$ of type $t=t(\Sigma)$, glue U_{t}, to M along the given parametrization $\partial U_{t}=\Sigma_{t} \rightarrow \Sigma$. These gluings are performed with respect to all components of $\partial_{-} M$.
ii) In the same way we glue U_{t}^{-}to M along the d-homeomorphism $\partial U_{t}^{-} \rightarrow$ $-\Sigma$ for every component Σ of $\partial_{+} M$ of type $t=t(\Sigma)$.
These gluings lead to a closed oriented 3 -manifold \tilde{M} with embedded ribbon graph $\tilde{\Omega}$ where $\tilde{\Omega}$ can be obtained by gluing Ω, the given ribbon graph in M, and the ribbon graphs in the standard handlebodies.
The colouring of the extension of $\tilde{\Omega}$ over Ω is not unique. Fixing a colouring we can apply the topological invariant τ of v-coloured ribbon graphs and get a certain $\tau(\tilde{M}, \tilde{\Omega}, y) \in \mathbb{K}$. This yields an element of \mathbb{K}. The assignment is polylinear with respect to the colours of coupons and thus yields a \mathbb{K}-homomorphism

$$
\begin{equation*}
\mathcal{Z}\left(\partial_{-} M\right) \otimes\left(\mathcal{Z}\left(\partial_{+} M\right)\right)^{*} \rightarrow \mathbb{K} \tag{4}
\end{equation*}
$$

The action of $\tau(M)$ is now defined as the composition of the adjoint transpose $\mathcal{Z}\left(\partial_{-} M\right) \rightarrow \mathcal{Z}\left(\partial_{+} M\right)$ with the endomorphism $\eta\left(\partial_{+} M\right): \mathcal{Z}\left(\partial_{+} M\right) \rightarrow$
$\mathcal{Z}\left(\partial_{+} M\right)$ which is defined on the summands $\operatorname{Hom}(\mathbb{I}, \Phi(t ; i))$ by multiplication with $(\operatorname{rk}(C))^{1-g} \Pi_{n=1}^{g} \operatorname{dim}\left(i_{g}\right)$ and on non-connected surfaces Σ_{1}, Σ_{2} such that $\eta\left(\Sigma_{1} \amalg \Sigma_{2}\right)=\eta\left(\Sigma_{1}\right) \otimes \eta\left(\Sigma_{2}\right)$ and $\eta(\emptyset)=\mathrm{id}_{\mathbb{K}}$.

Theorem 2.2: The function $\tau(M)=\tau\left(M, \partial_{-} M, \partial_{+} M\right): \mathcal{Z}\left(\partial_{-} M\right) \rightarrow \mathcal{Z}\left(\partial_{+} M\right)$ extends the functor \mathcal{Z} to a non-degenerate TQFT.

This implies in particular that we get a TQFT (\mathcal{Z}, τ) based on parametrized d-surfaces and decorated 3 -manifolds.

In proving this theorem one has to check that the axioms for a TQFT are satisfied. The main point is here to explicitly show functoriality where the idea is to use a geometric technique that enables us to present decorated 3-bordisms by ribbon graphs in \mathbb{R}^{3} and to express the operator invariants of 3-bordisms through operator invariants of ribbon graphs.

References

[1] Turaev. Quantum Invariants of Knots and 3-Manifolds. de Gruyter, 2010.
[2] Kirillov. Lectures on Tensor Categories and Modular Functors.
[3] C. Kissig. TQFTs and Invariants of 3-Manifolds.

