MSc Seminar on Hopf Algebras, tensor categories and three-manifold invariants: The Reshetikhin-Turaev construction

Paulina Goedicke

 7^{th} October 2020

Abstract

In this session we will extend the notion of an *n*-dimensional topological quantum field theory (TQFT) defined in the last session to a 3D-TQFT for 3-bordisms with embedded ribbon graphs.

1 Motivation

Last session we defined *n*-dimensional TQFTs via a functor \mathcal{Z} from the bordism category **Bord**_n to the category of vector spaces **Vect**_K. In this session we will construct an extended TQFT by replacing manifolds in **Bord**_n by manifolds with some additional structure.

2 Bordism category of decorated 3-manifolds

Definition 1.1: A 3-manifold is a manifold that locally looks like \mathbb{R}^3 .

Let C be a modular tensor category. The additional structure mentioned earlier is given by the notion of *decoration* and *colouring*.

Definition 1.2: We say that a conntected orientable surface is *decorated* if it is oriented and comes with a countable set of distinguished marked arcs where a marked arc is a a simple arc together with an object of C and a sign $v \in \{-1, 1\}$. We call these surfaces *d*-surfaces. Morphisms between *d*-surfaces are called *d*-homeomorphisms.

Definition 1.3: The *d*-type t of a *d*-surface of genus g and with m marked arcs $\langle W_i, v_i \rangle_{i \leq m}$ is a tuple $\langle g; \langle W_1, v_1 \rangle, ..., \langle W_m, v_m \rangle \rangle$.

Recall that we call a ribbon graph *coloured over* C if it has the following additional structure:

- i) Each band is directed.
- ii) Each band is labeled (coloured) by an Object of C.
- iii) Each coupon is labeled by a morphism of C

$$f: V_1^{\eta_1} \otimes \ldots \otimes V_m^{\eta_m} \to W_1^{\epsilon_1} \otimes \ldots \otimes W_n^{\epsilon_n}$$

where the V_i are the colours and the η_i the directions of the bands incident to the top edge and the W_i are the colours and the ϵ_i are the directions of the bands incident to the bottom edge.

This leads us to the following definition:

Definition 1.4: Let M be a 3-manifold whose boundary is endowed with a finite family of disjoint marked arcs.

A ribbon graph in M is an oriented surface Ω embedded in M and decomposed as a union of a finite number of directed annuli, directed bands and coupons such that Ω meets ∂M transversally along the distinguished arcs in ∂M which are bases of certain bands of Ω , other bases of bands lie on the bases of coupons, otherwise bands, coupons and annuli are disjoint. Moreover, the orientation of Ω induces on each arc of ∂M the orientation opposite to the given one.

Definition 1.5: A *decorated* 3-*manifold* is a compact oriented 3-manifold with parametrized decorated boundary and with a *v*-coloured ribbon graph sitting in this 3-manifold.

Remark 1.6: By parametrized we mean that the boundary is homeomorphic to Σ_t where $\Sigma_t = \partial U_t$ is the so-called canonical surface of a *d*-type *t*. The latter can be constructed as follows: Let R_t be a ribbon graph with one coupon and m+g bands. The first *m* bands are untwisted and unlinked. For $i \leq m$, the *i*-th band is labeled with the respective V_i , where the sign determines the orientation of the band. Moreover, there are *g* bands that form unknots with the coupon. We can then fix a closed regular neighbourhood U_t of R_t which is a handlebody of genus *g*. Except for the *m* bands that meet the boundary ∂U_t , R_t lies in the interior of U_t . We then set $\Sigma_t := \partial U_t$. With that we can also define decorated 3-bordisms:

Definition 1.7: A decorated 3-bordism is a triple $(M, \partial_-M, \partial_+M)$ where ∂_-M and ∂_+M are parametrized d-surfaces and M is a decorated 3-manifold with $\partial M = (-\partial_-M) \prod \partial_+M$.

Remark 1.8: In particular a *d*-homeomorphism of decorated 3-manifolds $M \to M'$ restricts to a *d*-homomorphism $\partial M \to \partial M'$ that commutes with the parametrizations.

We can construct a bordism category $Bord_3$ where objects in $Bord_3$ are given

by classes of homeomorphisms of decorated 3-manifolds and morphisms are *d*-homeomorphisms of 3-manifolds.

3 Construction of a TQFT

We are now ready to define $\mathcal{Z}(N)$ for N in **Bord**₃. Recall that the functor \mathcal{Z} sends to every manifold N in **Bord**_n a K-vectorspace $\mathcal{Z}(N)$ and to every bordism M in **Bord**_n from $\partial_{-}M$ to ∂_{+} a K-linear map $\mathcal{Z}(M) : \mathcal{Z}(\partial_{-}M) \to \mathcal{Z}(\partial_{+}M)$.

Observation 2.1: We start by defining the space of states. For each *d*-type *t* we can define a projective \mathbb{K} -module Ψ_t via

$$\Phi(t;i) = W_1^{v_1} \otimes \ldots \otimes W_m^{v_m} \otimes \bigotimes_{r=1}^g (V_{i_r} \otimes V_{i_r}^*)$$
(1)

and setting

$$\Psi_t = \bigoplus_{i \in I^g} \operatorname{Hom}(\mathbb{I}, \Phi(t; i)).$$
(2)

We then define $\mathcal{Z}(N)$ to be the non-ordered tensor product of Ψ_t where t runs over types t of the components of N.

Next we assign to every 3-bordism a \mathbb{K} -homomorphism (where τ is the operator invariant of M)

$$\tau(M) = \tau(M, \partial_{-}M, \partial_{+}M) : \mathcal{Z}(\partial_{-}M) \to \mathcal{Z}(\partial_{+}M)$$
(3)

such that:

- i) For any connected component Σ of $\partial_{-}M$ of type $t = t(\Sigma)$, glue U_t , to M along the given parametrization $\partial U_t = \Sigma_t \to \Sigma$. These gluings are performed with respect to all components of $\partial_{-}M$.
- ii) In the same way we glue U_t^- to M along the *d*-homeomorphism $\partial U_t^- \to -\Sigma$ for every component Σ of $\partial_+ M$ of type $t = t(\Sigma)$.

These gluings lead to a closed oriented 3-manifold \tilde{M} with embedded ribbon graph $\tilde{\Omega}$ where $\tilde{\Omega}$ can be obtained by gluing Ω , the given ribbon graph in M, and the ribbon graphs in the standard handlebodies.

The colouring of the extension of Ω over Ω is not unique. Fixing a colouring we can apply the topological invariant τ of *v*-coloured ribbon graphs and get a certain $\tau(\tilde{M}, \tilde{\Omega}, y) \in \mathbb{K}$. This yields an element of \mathbb{K} . The assignment is polylinear with respect to the colours of coupons and thus yields a \mathbb{K} -homomorphism

$$\mathcal{Z}(\partial_{-}M) \otimes (\mathcal{Z}(\partial_{+}M))^* \to \mathbb{K}.$$
 (4)

The action of $\tau(M)$ is now defined as the composition of the adjoint transpose $\mathcal{Z}(\partial_-M) \to \mathcal{Z}(\partial_+M)$ with the endomorphism $\eta(\partial_+M) : \mathcal{Z}(\partial_+M) \to$

 $\mathcal{Z}(\partial_+ M)$ which is defined on the summands $\operatorname{Hom}(\mathbb{I}, \Phi(t; i))$ by multiplication with $(\operatorname{rk}(C))^{1-g} \prod_{n=1}^g \operatorname{dim}(i_g)$ and on non-connected surfaces Σ_1, Σ_2 such that $\eta(\Sigma_1 \coprod \Sigma_2) = \eta(\Sigma_1) \otimes \eta(\Sigma_2)$ and $\eta(\emptyset) = \operatorname{id}_{\mathbb{K}}$.

Theorem 2.2: The function $\tau(M) = \tau(M, \partial_-M, \partial_+M) : \mathcal{Z}(\partial_-M) \to \mathcal{Z}(\partial_+M)$ extends the functor \mathcal{Z} to a non-degenerate TQFT.

This implies in particular that we get a TQFT (\mathcal{Z}, τ) based on parametrized *d*-surfaces and decorated 3-manifolds.

In proving this theorem one has to check that the axioms for a TQFT are satisfied. The main point is here to explicitly show functoriality where the idea is to use a geometric technique that enables us to present decorated 3-bordisms by ribbon graphs in \mathbb{R}^3 and to express the operator invariants of 3-bordisms through operator invariants of ribbon graphs.

References

- [1] Turaev. Quantum Invariants of Knots and 3-Manifolds. de Gruyter, 2010.
- [2] Kirillov. Lectures on Tensor Categories and Modular Functors.
- [3] C. Kissig. TQFTs and Invariants of 3-Manifolds.