Examples of invariants of ribbon graphs

Ada Masters*

5 October 2020

Contents

1 The Hopf link invariant 2
2 Group algebras 3
3 Function algebras 3
$4 \mathrm{U}_{q}(\mathrm{sl}(2))$ and the Jones polynomial 4
5 Modular tensor categories 6
6 Factorisable Hopf algebras 7

Preliminaries

See [Tur10, s\&I.2.5, XI.2-3-pp. 39-40, 496-503].

Theorem 1. Given a strict ribbon category ($\mathscr{V}, c, \theta,(*, b, d))$, there exists a unique covariant tensor-product-preserving functor $\mathrm{F}: \mathrm{Rib}_{\mathscr{V}} \rightarrow \mathscr{V}$ such that

[^0]The mirror image diagrams map to the mirror ribbon category $\overline{\mathscr{V}}$, in which

$$
\bar{c}_{\mathrm{V}, \mathrm{~W}}=\left(c_{\mathrm{W}, \mathrm{~V}}\right)^{-1} \quad \bar{\theta}_{\mathrm{V}}=\left(\theta_{\mathrm{V}}\right)^{-1}
$$

Given a ribbon Hopf algebra ($H, \mathrm{R}, \mathrm{v}$), the category of finite-dimensional left $\mathrm{H}-$ modules, ${ }_{H}$ Mod, is a ribbon category. In particular, $c=\tau R$ and $\theta=v$.

1 The Hopf link invariant

See [Tur10, SI.2.7—pp. 42-45].

Lemma 2.

Now consider an endomorphism Ω of an object η of Rib $_{\mathscr{V}}$, i.e. a ribbon graph from η to itself. We find that

By taking $\Omega=w$, we obtain the Hopf link invariant

2 Group algebras

See e.g. [Tur10, SXI.1.2.1-p. 494].
Let G be a finite group. Consider the group algebra $\mathrm{K}[\mathrm{G}]$. We can define a coproduct, counit, and antipode by

$$
\Delta: g \mapsto g \otimes g \quad \varepsilon: g \mapsto 1 \quad S: g \mapsto g^{-1}
$$

The group algebra $\mathrm{K}[\mathrm{G}]$ is cocommutative by definition, so the natural ribbon structure is topologically trivial. In particular, the natural choice is $c=\tau$, so that $c^{2}=1$, and $\theta=i d$. The ribbons can pass through one another, and can untwist, so for a framed link L with components $\mathrm{L}_{1}, \ldots, \mathrm{~L}_{n}$, respectively coloured $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{n}$,

$$
\mathrm{F}(\mathrm{~L})=\prod_{i=1}^{n} \mathrm{~F}(\mathrm{~L})=\prod_{i=1}^{n} \operatorname{trid}_{V_{i}}=\prod_{i=1}^{n} \operatorname{dim} V_{i}
$$

3 Function algebras

See [Tur10, \&8XI.1.2.2, 3.4.2, I.2.9.5-pp. 494, 502-3, 48].

Let G be a finite abelian group. Consider the algebra of K -valued functions on G , with Dirac-delta generators $\left\{\delta_{g}\right\}_{g \in G}$. We can define a coproduct, counit, and antipode by

$$
\Delta: \delta_{g} \mapsto \sum_{h \in G} \delta_{h} \otimes \delta_{h^{-1} g} \quad \varepsilon: g \mapsto \delta_{g}\left(l_{G}\right) \quad S: \delta_{g} \mapsto \delta_{g^{-1}}
$$

It is is easy to verify that this is cocommutative, but it turns out that a nontrivial braiding is possible. Suppose that G is endowed with a pairing $\mathrm{b}: \mathrm{G} \times \mathrm{G} \rightarrow \mathrm{K}^{*}$ and a homomorphism $\phi: \mathrm{G} \rightarrow \mathrm{K}^{*}$ s.t $\forall g \in \mathrm{G}, \phi\left(g^{2}\right)=1$. Then take

$$
\mathrm{R}=\sum_{g, h \in \mathrm{G}} b(g, h) \delta_{g} \otimes \delta_{h} \quad v=\sum_{g \in \mathrm{G}} \phi(g) b(g, g) \delta_{g}
$$

For a framed link L with components $\mathrm{L}_{\mathrm{l}}, \ldots, \mathrm{L}_{m}$, respectively coloured $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{m}$,

$$
F(L)=\prod_{1 \leq i \leq j \leq m}\left(b\left(g_{j}, g_{i}\right) b\left(g_{i}, g_{j}\right)\right)^{l_{i j}} \times \prod_{1 \leq i \leq m} b\left(g_{i}, g_{i}\right)^{l^{l}} \phi\left(g_{i}\right)^{l_{i}+1} \operatorname{dim} V_{i}
$$

where $l_{i j}$ is the linking number of L_{i} and L_{j}, and l_{i} is the number of twists in L_{i} (the framing number). Because of the commutativity of the algebra, the formula follows by definition of $l_{i j}, l_{i}$.

$4 \mathrm{U}_{q}(\mathrm{sl}(2))$ and the Jones polynomial

See [Oht02, 84.4—pp. 85-93].

Definition 3. $\mathrm{U}_{q}(\mathbf{s l}(2))$ is a Hopf algebra generated by $\mathrm{E}, \mathrm{F}, \mathrm{K}, \mathrm{K}^{-1}$, with the following relations:

$$
\begin{array}{lr}
\mathrm{KE}=q^{2} \mathrm{EK}, & \mathrm{Kk}^{-1}=\mathrm{K}^{-1} \mathrm{~K}=1, \\
\mathrm{KF}=q^{-2} \mathrm{FK}, & \mathrm{EF}-\mathrm{FE}=\frac{\mathrm{k}-\mathrm{K}^{-1}}{q-q^{-1}}
\end{array}
$$

	Δ	ε	S
E	$\mathrm{E} \otimes \mathrm{K}+1 \otimes \mathrm{E}$	0	$-\mathrm{EK}^{-1}$
F	$\mathrm{~F} \otimes 1+\mathrm{K}^{-1} \otimes \mathrm{~F}$	0	-KF
$\mathrm{K}^{ \pm 1}$	$\mathrm{~K}^{ \pm 1}$	1	$\mathrm{~K}^{\mp 1}$

Note that we may formally regard $K^{ \pm 1}$ as $q^{ \pm H}$.
(For our purposes, we will consider 9 generic and not consider the root-of-unity case.)
$\mathrm{U}_{q}(\mathbf{s}(2))$ is furthermore a ribbon Hopf algebra, with R-matrix

$$
\mathrm{R}=q^{\frac{1}{2}(H \otimes H)} \exp _{q}\left(\left(q-q^{-1}\right) \mathrm{E} \otimes \mathrm{~F}\right)
$$

and ribbon element

$$
v=\left.q^{-\frac{1}{2} \mathrm{H}^{2}} \sum_{n=0}^{\infty} \frac{1}{[n] q^{!}}\right|^{\frac{3}{2} n(n+1)}\left(q^{-1}-q\right)^{n} \mathrm{~F}^{n} \mathrm{~K}^{-n-1} \mathrm{E}^{n}
$$

Here, $[n]_{q}=\frac{q^{n}-q^{-n}}{q-q^{-1}}, \quad[n]_{q}!=[n]_{q}[n-1]_{q} \cdots[1]_{q}$, and

$$
\exp _{q}(x)=\sum_{n=0}^{\infty} \frac{1}{[n]_{q}!} q^{\frac{1}{2} n(n-1)} x^{n}
$$

(Note that, technically, R and θ are not in $\mathrm{U}_{q}(\mathbf{s l}(2))$, unless we take a completion.)

A ribbon invariant

We can obtain a topological invariant $\mathrm{F}^{\mathrm{V}}(\Omega)$ of a ribbon graph Ω by choosing some $\mathrm{V} \epsilon_{\mathrm{U}_{q}(\mathrm{~s}(2))} \mathrm{Mod}$ and using it to colour all the ribbons (annuli and bands) of Ω. Consider the two-dimensional irreducible representation of $\mathrm{U}_{q}(\mathbf{s}(2))$:

$$
\rho_{\mathbf{C}^{2}}(\mathrm{E})=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \quad \rho_{\mathbf{C}^{2}}(\mathrm{~F})=\left[\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right] \quad \rho_{\mathbf{C}^{2}}(\mathrm{H})=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Taking $V=\mathbf{C}^{2}$, we can proceed to calculate $c_{V, V}$.

Using $\rho_{V}\left(E^{2}\right)=\rho_{V}\left(F^{2}\right)=0$,

$$
\begin{aligned}
& \left(\rho_{V} \otimes \rho_{V}\right) \exp _{q}\left(\left(q-q^{-1}\right) E \otimes F\right) \\
& =\rho_{V}(1) \otimes \rho_{V}(1)+\left(q-q^{-1}\right) \rho_{V}(E) \otimes \rho_{V}(F) \\
& =\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & q-q^{-1} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \left(\rho_{V} \otimes \rho_{V}\right) q^{\frac{1}{2}(H \otimes H)}=q^{\frac{1}{2}\left(\rho_{V}(H) \otimes \rho_{V}(H)\right)} \\
& =q^{\frac{1}{2}}\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\sqrt{9} & 0 & 0 & 0 \\
0 & \sqrt{q}^{-1} & 0 & 0 \\
0 & 0 & \sqrt{q}^{-1} & 0 \\
0 & 0 & 0 & \sqrt{q}
\end{array}\right]
\end{aligned}
$$

Finally,

$$
\begin{aligned}
c_{V, V} & =\tau\left(\rho_{V} \otimes \rho_{V}\right) R \\
& =\sqrt{q}^{-1}\left[\begin{array}{cccc}
q & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 1 & q-q^{-1} & 0 \\
0 & 0 & 0 & q
\end{array}\right]
\end{aligned}
$$

It is straightforward to verify that the following skein relations are satisfied:

$$
\begin{aligned}
& \left.\sqrt{q}^{-1}<-\sqrt{q} \searrow=\left(q-q^{-1}\right)\right) \\
& \sqrt{q}^{-1} c_{V, V}-\sqrt{q} c_{V, V}^{-1}=\left(q-q^{-1}\right) \mathrm{id}_{V \otimes V}
\end{aligned}
$$

A link invariant

To get a link invariant from the ribbon invariant, we must deal with the extra information contained in a ribbon graph, i.e. the framing. $\operatorname{In}_{U_{q}(s(2))}$ Mod, the twist is

$$
\begin{aligned}
\theta_{\mathrm{V}, \mathrm{~V}}=\rho_{\mathrm{V}}(v) & =\rho_{\mathrm{V}}\left(q^{-\frac{1}{2} \mathrm{H}^{2}}\right) \rho_{\mathrm{V}}\left(\mathrm{~K}^{-1}+q^{2}\left(q^{-1}-q\right) \mathrm{FK}^{-2} \mathrm{E}\right) \\
& =\left[\begin{array}{cc}
\sqrt{q}^{-1} & 0 \\
0 & \sqrt{q}^{-1}
\end{array}\right]\left[\begin{array}{cc}
q^{-1} & 0 \\
0 & q^{-1}
\end{array}\right]=\sqrt{q}^{-3} \mathrm{I}
\end{aligned}
$$

which happens to be a scalar. For a link diagram Ω, the writhe $w(\Omega)$ is defined as the number of positive crossings minus negative crossings. The combination

$$
\theta_{V, V}^{w(\Omega)} \mathrm{F}^{\mathrm{V}}(\Omega)
$$

then, gives us an invariant of the underlying link L .
How the skein relations

are satisfied, which means that, up to a normalization and reparameterization, we have obtained the Jones polynomial.

5 Modular tensor categories

See [Tur10, SII.1—pp. 72-78], [Tak01, §4—pp. 638-640].
Definition 4. An Ab-category is a category \mathscr{V} in which there is an addition on morphisms, i.e. $\forall V, W \in \mathscr{V}, \operatorname{Hom}(V, W)$ is an additive abelian group.

If \mathscr{V} is monoidal, $\mathrm{k}=\operatorname{End}(\mathbf{1})=\operatorname{Hom}(\mathbf{I}, \mathbf{I})$ is a commutative ring, called the ground ring. How $\operatorname{Hom}(\mathrm{V}, \mathrm{W})$ is a left K -module with scalar multiplication $k f=k \otimes f$.
Definition 5. An object V of a monoidal Ab-category \mathscr{V} is called simple if End(V) is a rank-1 free K -module. In other words, V is simple if scalar multiplication defines a bijection $\mathrm{K} \rightarrow \operatorname{End}(\mathrm{V})$.

For instance,

- \mathbf{I} is always simple.
- In the category Vect K_{K} of vector spaces over a field K , the simple objects are the 1-dimensional vector spaces.

Definition 6. A monoidal Ab -category \mathscr{V} with direct sum \oplus is called semisimple if every object can be written as a direct sum of simple objects.

Definition 7. A semisimple ribbon category \mathscr{V} with a complete basis of simple objects $\left\{V_{i}\right\}_{\text {eI }}$ is a modular category if $S=\left[S_{i, j}\right]_{i, j \in \mathrm{I}}$ is an invertible matrix, where

$$
\left.S_{i, j}=\operatorname{tr}\left(c_{v_{j}, V_{i}} c_{v_{i}, V_{j}}\right) \doteq v_{j}\right\} v_{i}
$$

Example 8. For example, in the group algebra case, the simple objects just correspond to elements of G, so

$$
\mathrm{S}_{i, j}=\operatorname{dim} V_{i} \operatorname{dim} V_{j}=1,
$$

(using the formula for framed links), which is clearly not bijective (unless G is the trivial group).

Example 9. In the function algebra case,

$$
S_{i, j}=b\left(g_{j} ; g_{i}\right) b\left(g_{i}, g_{j}\right) \phi\left(g_{i}\right) \phi\left(g_{j}\right),
$$

which form an invertible matrix iff $\left[b\left(g_{j}, g_{i}\right) b\left(g_{i}, g_{j}\right)\right]_{i, j}$ is invertible.
Definition 10. The purpose of modular categories, as far as we are concerned, is to define invariants of 3 -manifolds. To accomplish this goal, we will need to select two elements of \mathscr{V}.

1. A rank \mathscr{D} is an element of K s.t.

$$
\mathscr{D}^{2}=\sum_{i \in \mathrm{I}}\left(\operatorname{dim} V_{i}\right)^{2}
$$

There may be many ranks, or none, and the invariant will depend on the choice of one.
2. Since V_{i} is simple, θ acts in V_{i} as a scalar $v_{i} \in K$, which is furthermore invertible. We define

$$
\Delta_{\mathscr{V}}=\sum_{i \in \mathrm{I}} v_{i}^{-1}\left(\operatorname{dim} V_{i}\right)^{2} \in \mathrm{~K}
$$

6 Factorisable Hopf algebras

See [Tak01, ss2-4—pp. 636-640].

Definition 11. For a (finite-dimensional) quasi-triangular Hopf algebra (H, R), we define the Drinfeld map as

$$
\begin{align*}
\Phi: \mathrm{H}^{*} & \longrightarrow \mathrm{H} \tag{1}\\
f & \longmapsto \mu \circ(\mathrm{id} \otimes f) \circ\left(\mathrm{R}_{21} \mathrm{R}\right) \tag{2}
\end{align*}
$$

If Φ is an isomorphism, H is called factorizable.
Theorem 12. Let H be a semisimple ribbon Hopf algebra over an algebraically closed field K. If H is factorizable then ${ }_{\mathrm{H}} \mathrm{Mod}$ is modular.

Example 13. For example, in the group algebra case,

$$
\Phi: f \mapsto \mu \circ(\mathrm{id} \otimes f) \circ(1 \otimes 1)=f(1)
$$

is clearly not bijective (unless G is the trivial group).
Example 14. In the function algebra case, on a basis element $f \in \mathrm{G}$

$$
\Phi: f \mapsto \mu \circ(\mathrm{id} \otimes f) \circ \sum_{g, h \in \mathrm{G}}\left(b(h, g) b(g, h) \delta_{g} \otimes \delta_{h}\right)=\sum_{g \in \mathrm{G}} b(f, g) b(g, f) \delta_{g}
$$

so $R_{21} R$ acts as a matrix, and Φ is bijective iff $[b(h, g) b(g, h)]_{g, h \in G}$ is an invertible matrix.

References

[0ht02] Tomotada Ohtsuki. Quantum Invariants. A Study of Knot, 3-Manifolds, and Their Sets. World Scientific, 2002.
[Tak01] Mitsuhiro Takeuchi. "Modular Categories and Hopf Algebras". In: Journal of Algebra 243.2 (2001), pp. 631-643.
[Tur10] Vladimir G. Turæv. Quantum Invariants of Knots and 3-Manifolds. 2nd ed. De Gruyter, 2010.

[^0]: *ada.masters@studium.uni-hamburg.de

