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Monoidal functors

Definition 1.1. (a) Let C = (C,⊗C , IC , aC , lC , rC) and
D = (D,⊗D, ID, aD, lD, rD) be tensor categories. A tensor functor
or monoidal functor from C to D is a triple (F,ϕ0, ϕ2) where
F : C → D is a functor,
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Monoidal functors

Definition 1.1. (a) Let C = (C,⊗C , IC , aC , lC , rC) and
D = (D,⊗D, ID, aD, lD, rD) be tensor categories. A tensor functor
or monoidal functor from C to D is a triple (F,ϕ0, ϕ2) where
F : C → D is a functor, ϕ0 is an isomorphism from ID to F (IC) in
D,
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Monoidal functors

Definition 1.1. (a) Let C = (C,⊗C , IC , aC , lC , rC) and
D = (D,⊗D, ID, aD, lD, rD) be tensor categories. A tensor functor
or monoidal functor from C to D is a triple (F,ϕ0, ϕ2) where
F : C → D is a functor, ϕ0 is an isomorphism from ID to F (IC) in
D, and

ϕ2(U, V ) : F (U)⊗D F (V )→ F (U ⊗C V )

is a family of natural isomorphisms for all pairs (U, V ) of objects of
C such that the following diagrams
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Monoidal functors

Definition 1.1. (a) Let C = (C,⊗C , IC , aC , lC , rC) and
D = (D,⊗D, ID, aD, lD, rD) be tensor categories. A tensor functor
or monoidal functor from C to D is a triple (F,ϕ0, ϕ2) where
F : C → D is a functor, ϕ0 is an isomorphism from ID to F (IC) in
D, and

ϕ2(U, V ) : F (U)⊗D F (V )→ F (U ⊗C V )

is a family of natural isomorphisms for all pairs (U, V ) of objects of
C such that the following diagrams

I ⊗ F (U) F (U) F (U)⊗ I F (U)

F (I)⊗ F (U) F (I ⊗ U), F (U)⊗ F (I) F (U ⊗ I)

ϕ0⊗idF (U)

lF (U)

idF (U)⊗ϕ0

rF (U)

ϕ2(I, U)

F (lU )

ϕ2(U, I)

F (rU )
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Monoidal functors

and

(F (U)⊗ F (V ))⊗ F (W ) F (U)⊗ (F (V )⊗ F (W ))

F (U ⊗ V )⊗ F (W ) F (U)⊗ F (V ⊗W )

F ((U ⊗ V )⊗W ) F (U ⊗ (V ⊗W )),

ϕ2(U, V )⊗ idF (W )

aF (U),F (V ),F (W )

idF (U)⊗ϕ2(V,W )

ϕ2(U ⊗ V,W ) ϕ2(U, V ⊗W )

F (aU,V,W )

commute for all objects (U, V,W ) in C.

The tensor functor (F,ϕ0, ϕ2) is said to be strict if the
isomorphism ϕ0 and the natural transformation ϕ2 are
identities in D.
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Monoidal functors

(b) A natural tensor transformation η : (F,ϕ0, ϕ2)→ (F ′, ϕ′0, ϕ
′
2)

between tensor functors from C to D is a natural transformation
η : F → F ′ such that for each couple (U, V ) of objects in C the
following hold:

ϕ′0 = η(I) ◦ ϕ0

η(U ⊗ V ) ◦ ϕ2(U, V ) = ϕ′2 ◦ η(U)⊗ η(V ).
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Monoidal functors

(b) A natural tensor transformation η : (F,ϕ0, ϕ2)→ (F ′, ϕ′0, ϕ
′
2)

between tensor functors from C to D is a natural transformation
η : F → F ′ such that for each couple (U, V ) of objects in C the
following equalities hold:

ϕ′0 = η(I) ◦ ϕ0

η(U ⊗ V ) ◦ ϕ2(U, V ) = ϕ′2 ◦ η(U)⊗ η(V ).

(c) A tensor equivalence between tensor categories is a tensor
functor F : C → D such there exists a tensor functor F ′ : D → C
and the natural tensor isomorphisms η : idD → FF ′ and
θ : F ′F → idC .

If there exists a tensor equivalence as defined in (c), we say
that C and D are tensor equivalent.
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Stritification of categories

Definition 1.2. A monoidal category is said to be strict if the
associativity and unit constraints a, l and r are all identities of the
category.
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Stritification of categories

Definition 1.2. A monoidal category is said to be strict if the
associativity and unit constraints a, l and r are all identities of the
category.

Given a tensor category C, one can construct a strict tensor
category Cstr. The main idea goes as follows.

Let S be the class of all the finite sequences S = (V1, ..., Vk) of
objects in C, including the empty sequence ∅, and define the
following product

S ∗ S′ = (V1, . . . , Vk, Vk+1, . . . , Vk+n)

for any two sequences S = (V1, ..., Vk) and S′ = (Vk+1, ..., Vk+n).
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Stritification of categories

To any sequence S of S , we assign an object F (V ) of C defined by

F (∅) = I, F ((V )) = V, F (S ∗ (V )) = F (S)⊗ V.
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Stritification of categories

To any sequence S of S , we assign an object F (V ) of C defined by

F (∅) = I, F ((V )) = V, F (S ∗ (V )) = F (S)⊗ V.

Then we can define the category Cstr as the category with:

elements of S as objects, i.e. finite sequences of objects of C,

morphisms given by HomCstr(S, S′) = HomC(F (S), F (S′)).
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Stritification of categories

To any sequence S of S , we assign an object F (V ) of C defined by

F (∅) = I, F ((V )) = V, F (S ∗ (V )) = F (S)⊗ V.

Then we can define the category Cstr as the category with:

elements of S as objects, i.e. finite sequences of objects of C,

morphisms given by HomCstr(S, S′) = HomC(F (S), F (S′)).

Proposition 1.3. The categories Cstr and C are equivalent.
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Stritification of categories

To any sequence S of S , we assign an object F (V ) of C defined by

F (∅) = I, F ((V )) = V, F (S ∗ (V )) = F (S)⊗ V.

Then we can define the category Cstr as the category with:

elements of S as objects, i.e. finite sequences of objects of C,

morphisms given by HomCstr(S, S′) = HomC(F (S), F (S′)).

Proposition 1.3. The categories Cstr and C are equivalent.

It suffices to identify S ⊗ S′ = S ∗ S′ in order to endow Cstr
with the structure of a strict tensor category.
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Stritification of categories

We define the following natural isomorphism

ϕ(S, S′) : F (S)⊗ F (S′)→ F (S ∗ S′)

for any pair in Cstr. Set ϕ(∅, S) = lS , ϕ(S, ϕ) = rS and

ϕ(S, (V )) = idF (S)⊗V : F (S)⊗ V → F (S ⊗ (V )),

ϕ(S, S′ ∗ (V )) = (ϕ(S, S′)⊗ idV ) ◦ a−1F (S),F (S′),V .
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Stritification of categories

We define the following natural isomorphism

ϕ(S, S′) : F (S)⊗ F (S′)→ F (S ∗ S′)

for any pair in Cstr. Set ϕ(∅, S) = lS , ϕ(S, ϕ) = rS and

ϕ(S, (V )) = idF (S)⊗V : F (S)⊗ V → F (S ⊗ (V )),

ϕ(S, S′ ∗ (V )) = (ϕ(S, S′)⊗ idV ) ◦ a−1F (S),F (S′),V .

If f : F (S)→ F (T ) and f ′ : F (S′)→ F (T ′) are any pair of
morphisms in C, we define the tensor product f ∗ f ′ in Cstr by
the commutative diagram

F (S)⊗ F (S′) F (S ∗ S′)

F (T )⊗ F (T ′) F (T ∗ T ′).

ϕ(S, S′)

f ⊗ f ′ f ∗ f ′

ϕ(T, T ′)
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Mac Lane’s coherence theorem

Theorem 1.4. Equipped with this tensor product Cstr is a strict
tensor category. The categories C and Cstr are tensor equivalent.
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Mac Lane’s coherence theorem

Theorem 1.4. Equipped with this tensor product Cstr is a strict
tensor category. The categories C and Cstr are tensor equivalent.

Theorem 1.4 implies Mac Lane’s coherence theorem which
asserts that in a tensor category any diagram built from the
constraints a, l, r, and the identities by composing and
tensoring, is commutative.

Interestingly enough, this establishes an equivalence between
monoidal categories and strict monoidal categories which, in
our case, means that we can work with strict ribbon
categories without loss of generality.
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Ribbon graphs: definitions

Before starting with a formal definition, we mention the basic
concepts to talk about ribbon graphs:

A band is the square [0, 1]× [0, 1] or any homeomorphic
image of it, whose intervals [0, 1]× 0 and [0, 1]× 1 are called
bases of the band;

the image of the band (1/2)× [0, 1] is called the core of the
band;

an annulus is the cylinder S1 × [0, 1] or a homeomorphic
image of it;

a coupon is a band with a distinguished base.

A band or an annulus is said to be directed if its core is oriented,
and this orientation of the core itself is called the direction.
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Ribbon graphs: definitions

Definition 2.1. Let k, l be non-negative integers. A
ribbon (k, l)-graph in R3 is an oriented surface Ω embedded in the

strip R2 × [0, 1] and decomposed into a union of a finite number of
annuli, bands, and coupons such that:

(i) Ω meets the planes R2 × 0, R2 × 1 orthogonally along the
following segments which are bases of certains bands of Ω:

{[i− (1/10), i+ (1/10)]× 0× 0 | i = 1, . . . , k},

{[j − (1/10), j + (1/10)]× 0× 1 | j = 1, . . . , l},

called the boundary intervals of the graph.
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Ribbon graphs: definitions

Definition 2.1. Let k, l be non-negative integers. A
ribbon (k, l)-graph in R3 is an oriented surface Ω embedded in the

strip R2 × [0, 1] and decomposed into a union of a finite number of
annuli, bands, and coupons such that:

(i) Ω meets the planes R2 × 0, R2 × 1 orthogonally along the
following segments which are bases of certains bands of Ω:

{[i− (1/10), i+ (1/10)]× 0× 0 | i = 1, . . . , k},

{[j − (1/10), j + (1/10)]× 0× 1 | j = 1, . . . , l},

called the boundary intervals of the graph.

(ii) other bases of bands lie on the bases of the coupons –
otherwise bands, coupons and annuli are disjoint;
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Ribbon graphs: definitions

Definition 2.1. Let k, l be non-negative integers. A
ribbon (k, l)-graph in R3 is an oriented surface Ω embedded in the

strip R2 × [0, 1] and decomposed into a union of a finite number of
annuli, bands, and coupons such that:

(i) Ω meets the planes R2 × 0, R2 × 1 orthogonally along the
following segments which are bases of certains bands of Ω:

{[i− (1/10), i+ (1/10)]× 0× 0 | i = 1, . . . , k},

{[j − (1/10), j + (1/10)]× 0× 1 | j = 1, . . . , l},

called the boundary intervals of the graph.

(ii) other bases of bands lie on the bases of the coupons –
otherwise bands, coupons and annuli are disjoint;

(iii) the bands and annuli are directed.
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Ribbon graphs: standard position

Coupons, bands and annuli go parellel to R× 0× R, with their
bases parallel to R× 0× 0,

the cores of bands and annuli do not overlap coupons and are
allowed to have only double transversal crossings.

After this deformation, we draw the projections into the plane
R× 0× R taking into account overcrossings and undercrossing.

Figure 1: Example of the standard position of the trefoil.

Up to isotopy, we can always recover the original ribbon graph.
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Ribbon graphs: coloring

Let V be a strict monoidal category with duality. A ribbon graph is
said to be colored over V if the bands are colored with its objects
and the coupons with its morphisms.

More precisely, let (V1, . . . , Vm) be the colors of the bands
incident to the bottom base and (W1, . . . ,Wn) to the top.
We denote as ε1, . . . , εm ∈ {−1,+1} and
ν1, . . . νn ∈ {−1,+1}, the numbers that indicate the
directions of the band, so that εi = 1, νj = −1 means they are
going out of the coupon and εi = −1, νj = 1 means they are
going in.
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Ribbon graphs: coloring

Let V be a strict monoidal category with duality. A ribbon graph is
said to be colored over V if the bands are colored with its objects
and coupons with its morphisms.

More precisely, let (V1, . . . , Vm) be the colors of the bands
incident to the bottom base and (W1, . . . ,Wn) to the top.
We denote as ε1, . . . , εm ∈ {−1,+1} , ν1, . . . νn ∈ {−1,+1},
the numbers that indicate the directions of the band, so that
εi = 1, νj = −1 means they are going out of the coupon and
εi = −1, νj = 1 means they are going in.

A color of the coupon is any morphism of the form

f : V ε1
1 ⊗ · · · ⊗ V

εm
m →W ν1

1 ⊗ · · · ⊗W
νn
n ,

where the objects in V are V +1 = V and V −1 = V ∗.
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Ribbon graphs: the category

The v-colored ribbon graphs over V may be regarded as a strict
monoidal category denoted by RibV :

objects are finite sequences η = ((V1, ε1), . . . , (Vm, εm)),

morphisms are (isotopy types of) v–colored ribbon graphs

The tensor product in RibV acts on the objects by juxtaposition,
while the morphisms are placed next to each other without
overlapping.

Composition of morphisms is basically obtained by putting one
colored ribbon graph on top of the other and gluing them.
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Operator invariant

Theorem 2.2. Let V be a strict ribbon category with braiding c,
twist θ, and compatible duality (∗, b, d). There exists a unique
covariant functor F = FV : RibV → V preserving the tensor
product and satisfying the following conditions:

(1) F transforms any object (V,+1) into V and any object
(V,−1) into V *;
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Operator invariant

Theorem 2.2. Let V be a strict ribbon category with braiding c,
twist θ, and compatible duality (∗, b, d). There exists a unique
covariant functor F = FV : RibV → V preserving the tensor
product and satisfying the following conditions:

(1) F transforms any object (V,+1) into V and any object
(V,−1) into V *;

(2) for any objects V , W of V, we have

F (X+
V,W ) = cV,W , F (ϕV ) = θV , F (∩V ) = bV , F (∪V ) = dV ;
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Operator invariant

(3) for any elementary v-colored ribbon graph Γ, we have
F (Γ) = f where f is the color of the only coupon of Γ.

Moreover, the functor F has the following properties:

F (X−V,W ) = (cW,V )−1, F (Y +
V,W ) = (cW,V *)−1, F (Y −V,W ) = cV *,W ,

F (Z+
V,W ) = (cW*,V )−1 F (Z−V,W ) = cV,W*,

F (T+
V,W ) = cV *,W*, F (T−V,W ) = (cW*,V *)−1, F (ϕ′V ) = (θV )−1.
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Operator invariant

(3) for any elementary v-colored ribbon graph Γ, we have
F (Γ) = f where f is the color of the only coupon of Γ.

Moreover, the functor F has the following properties:

F (X−V,W ) = (cW,V )−1, F (Y +
V,W ) = (cW,V *)−1, F (Y −V,W ) = cV *,W ,

F (Z+
V,W ) = (cW*,V )−1 F (Z−V,W ) = cV,W*,

F (T+
V,W ) = cV *,W*, F (T−V,W ) = (cW*,V *)−1, F (ϕ′V ) = (θV )−1.

The term operator invariant is meant to recall the following
properties of F :

F (↓V ) = idV , F (↑V ) = idV ∗ and F (ΩΩ′) = F (Ω)F (Ω′)

for any pair of composable ribbon graphs. Moreover, by
definition, note F is a functor that preserves the tensor
product, F (Ω⊗ Ω′) = F (Ω)⊗ F (Ω′).
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Final remarks

The results we may obtain for strict ribbon categories can be
extended to ribbon categories according to Mac Lane’s
coherence theorem.

We related the topology of ribbon graphs with the algebra of
ribbon categories through coloring by objects and morphisms.

Braiding, twist and duality are the elementary structures to
build up a consistent theory of isotopy invariants.

The functor F in theorem 2.2 can be regarded as a TFT in
Euclidean 3-space and a fundamental tool for the construction
of invariants of 3-manifolds.

Next: examples of invariants of ribbon graphs.
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