Exercise sheet \# 12
 Algebraic Geometry SS 2018

(Ingo Runkel)

Exercise 49 (3 P)

Let X, Y be varieties and $p \in X, q \in Y$. Suppose the local rings $\mathcal{O}_{p, X}$ and $\mathcal{O}_{q, Y}$ are isomorphic as k-algebras. Show that X and Y are birational.

Hint: Reduce the question to the case of affine varieties.

Exercise 50 (7 P)

Let $n \geq 2$ and $M=Z\left(\left\{X^{2}-Y^{n}\right\}\right) \subset \mathbb{A}^{2}$. Is M irreducible? If not, what are its irreducible components? Is it (or its irreducible components) isomorphic to \mathbb{A}^{1} ? Birational to \mathbb{A}^{1} ? For irreducible M let \tilde{M} be the blow-up of M at 0 . Give an affine variety in \mathbb{A}^{2} isomorphic to \tilde{M}. Is \tilde{M} isomorphic to \mathbb{A}^{1} ?

Exercise 51 (4 P)

Compute the blow up of the cone $M=Z\left(\left\{X^{2}-Y Z\right\}\right) \subset \mathbb{A}^{3}$ at zero. What is its intersection with $\pi^{-1}(\{0\})$? (Here, $\pi: \widetilde{\mathbb{A}}^{3} \rightarrow \mathbb{A}^{3}$ is the projection from the blow-up of \mathbb{A}^{3} to \mathbb{A}^{3}.) Is there a general statement about $\pi^{-1}(\{0\})$ for blowups of cones at 0 (possibly defined in terms of more than one homogeneous polynomial)?

Exercise 52 (0 P)

Prove the Cayley-Hamilton Theorem using methods from algebraic geometry.

Please turn over.

Exercise 53 (10 P)
Let L / K be a field extension, i.e. L, K are fields and $K \subset L$. A transcendence basis of L over K is a subset $S \subset L$ such that S is algebraically independent over K and L is finite over $K(S)$ (cf. Section 1.4). Here $K(S)$ denotes the subfield of L generated by K and S.
We say that an element $a \in L$ is algebraically dependent on S (over K) if a is the zero of a non-zero polynomial with coefficients in $K(S)$. Equivalently (why?) $(K(S))[a]$ is finite over $K(S)$.

Suppose L is finitely generated over K. Show:

1. Let K be infinite. L has a finite transcendence basis over K.

Hint: While L is finitely generated over K as a field, it is not necessarily finitely generated as an algebra. (Why are these notions different?). But maybe one can still reduce the question to Noether normalisation.
2. Every transcendence basis of L over K is finite.
3. Any two finite such transcendence bases have the same number of elements.

Hint: For parts 2 and 3 one can proceed as follows.
(a) Show the following exchange lemma: Let $\left\{a_{1}, \ldots, a_{n}\right\} \subset L$ be a subset and let $b \in L$. Suppose that b is algebraically dependent on $\left\{a_{1}, \ldots, a_{n}\right\}$ but not on $\left\{a_{1}, \ldots, a_{n-1}\right\}$. Then a_{n} is algebraically dependent on $\left\{a_{1}, \ldots, a_{n-1}, b\right\}$. (To do so, consider a polynomial relation $f\left(a_{1}, \ldots, a_{n}, b\right)=0$ as a polynomial in the last two entries.)
(b) Show: Let $S \subset L$ be an algebraically independent set over K. Suppose a is algebraically dependent on S and b is algebraically dependent on $S \cup\{a\}$. Then b is algebraically dependent on S. (Why is $K(S)[a, b]$ finite over $K(S)$?)
(c) Consider two transcendence bases X and Y, and suppose $X=\left\{a_{1}, \ldots, a_{n}\right\}$ is finite and smaller than Y. Carry out a recursive argument: If Y contains the elements $\left\{a_{1}, \ldots, a_{l}\right\}$ of X, then we can build Y^{\prime} with the same number of elements which now contains $\left\{a_{1}, \ldots, a_{l+1}\right\}$.

